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Abstract. Deep neural networks (DNNs) became very popular for
learning abstract high-level representations from raw data. This lead
to improvements in several classification tasks including emotion recog-
nition in speech. Besides the use as feature learner a DNN can also be
used as classifier. In any case it is a challenge to determine the number of
hidden layers and neurons in each layer for such networks. In this work
the architecture of a DNN is determined by a restricted grid-search with
the aim to recognize emotion in human speech. Because speech signals
are essentially time series the data will be transformed in an appropriate
format to use it as input for deep feed forward neural networks without
losing much time dependent information. Furthermore the Elman-Net
will be examined. The results shows that by maintaining time dependent
information in the data better classification accuracies can be achieved
with deep architectures.

1 Introduction

Paralinguistic information like the intonation are important parts in a conver-
sation. We can consider these kinds of information as the semantics of a spoken
utterance. For example, the word “yes” is basically an expression of agreement,
but with a contemptuous intonation it can mean exactly the opposite namely
rejection and this can be an evidence that the speaker is angry. Hence it is possi-
ble to perceive the emotional state of the speaker with paralinguistic information
conveyed in the speech signal. Because emotions could be crucial for the inter-
pretation of a spoken utterance, efforts are made to give computers the ability
to recognize emotion in speech to improve the human-computer interaction (cf.
[15]). Nowadays this is a growing field of research which is known as affective
computing. Therefore the aim of speech emotion recognition is to identify the
high-level affective state of an utterance from the low-level features. The task
here is to recognize specific pattern as sequences in the speech signal and to
categorize them into several classes of emotions.

There are several machine learning models that can be used for classification.
In machine learning theory a model is an algorithm which learns from data
to tackle a specific task without having to have been explicitly programmed.
The learning process is often called training. One of those models are artificial
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neural networks (ANN), which are slightly inspired by the functioning of the
human brain. A deep neural network is an ANN with many layers of nonlinear
processing units. The field of research that studies methods to train ANNs with
deep architectures is called deep learning. Deep learning architectures (DLAs)
have been shown to exceed preliminary state-of-the art results in several tasks
including emotion recognition in speech [1–3].

2 Related Work

For a long time, DNNs were considered to be hard to train, because gradient-
based learning algorithms with a random start initialization produced often poor
solutions. Therefore an unsupervised greedy layer-wise learning algorithm for so
called deep belief networks (DBNs) is proposed in [4]. A DBN is a composition of
simple learning modules which have a layer of visible units to capture the input
data and a layer of stochastic hidden units that learn to represent high-level
abstractions of the input data. A so trained DBN serves as a start initialization
by transforming it into a DNN. The DNN is then trained via backpropagation
(bpp) to find a better solution than a randomly initialized network. The training
algorithm for the DBN is therefore called pre-training and the phase with bpp
is called fine-tuning.

In the work [5] a DBN is used to classify emotion in speech. Like in the
present work the Berlin Database of Emotional Speech (EmoDB) with the Mel
frequency cepstral coefficients (MFCCs) as speech features is used in the exper-
iments. A multilayer perceptron (MLP) with one hidden layer served as model
with a shallow network structure and as baseline. The best result of 60.32 %
accuracy is obtained by the DBN in a speaker independent scheme. That was
an improvement of 8.67 % over the baseline. In [6] a DBN is used to extract
characteristic features for emotional expressions in the speech signal. An SVM
is then used as classifier for the extracted features. In [1] a MLP with more
than one hidden layer is used as DLA to recognize emotion in speech. Similar to
the presented work the number of hidden layers and units are selected via cross
validation. However the MLP is there used as feature-extractor and an extreme
learning machine is then used to classify the data. In [17] a convolutional deep
belief network (CDBN) was used for feature learning from audio data. The so
generated features performed often better then MFCCs on several audio classi-
fication tasks. Using a more diverse set of features (i.e. including voice quality),
the accuracy on the EmoDB dataset can be improved to over 88% [23].

3 Deep Learning Architectures and Recurrent Neural
Networks

In the present work DNNs are used as classifier to recognize emotion in speech.
DNNs are not only standalone models, but also the basis of other deep learning
models. For example, the deep RNN that is also used in this work, can be viewed
as a special form of a DNN. In this section the basics of DNNs and RNNs are
explained. Furthermore it will be shown how they can be used as classifiers.
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3.1 Deep Neural Networks

Deep learning is essentially a method to approximate a parametric function via
neural networks with many hidden layers. For this purpose a neural network rep-
resents the function f(x; θ) where x is the input vector and θ a set of parameters.
To be more precise f is a composition of functions. Therefore the smallest unit
of a neural network is a so called neuron. It maps the weighted sum

∑k
i=1 xiwi

to an activation value via the function fact(xTw) where x is the vector of inputs
for the neuron and w a vector of parameters denoted as weights. A layer of the
network is a set of neurons that usually uses the same activation function. In this
case a layer can be represented as function f (i)(x;W (i)) = fact(W (i)Tx) where x
is the input vector of the layer, W ∈ R

k × l the matrix that contains the weights
of l neurons (each column of W represents the weights of a neuron) and i is the
number of the layer. Putting all together such a neural network represents a com-
position of the layer functions with the parameters θ = {W (1),W (2), . . . , W (n)}
(cf. [9]):

f(x; θ) := f (n)(. . . f (2)(f (1)(f (0)(x);W (1));W (2)) . . . ;W (n)) (1)

As it can be seen, the output of a layer is the input of the next layer. This can
be considered as forward propagation of the input through the network. Hence
one speaks of a feed forward neural network. The first layer is called input layer
and is only there to receive the input with the identity function f (0)(x) = x. The
last layer f (n) is called output layer. All other layers are called hidden layers.
A feed forward neural network with more than one hidden layer is called deep
neural network. A neural network can be modeled as acyclic directed graph as
shown in Fig. 1.

Fig. 1. DNN as directed acyclic graph. For simplification all layers have only two
neurons.

It has been shown that it is very effective for DNNs to use the rectified
linear function relu(xTw) = max(xTw, 0) as activation for the hidden layers
[7,8]. The activation function of the output layer depends on the task to tackle.
To approximate a specific function f∗ the backpropagation-algorithm is used to
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learn the parameters θ that result in the ideal case in the best approximation
f̊(x; θ) ≈ f∗(x). This algorithm is based on stochastic gradient descent and
computes recursively the gradients beginning with the last layer back to the first
hidden layer. The gradients are then used to update the parameters. For this
purpose a training set of examples Xtrain = {(xi,yi)}mi is iteratively processed
by the bbp-algorithm. A detailed description of the bbp-Algorithm can be found
in [22].

3.2 Dropout Regularization

DNNs have a high number of adjustable parameters. Such powerful models tend
to memorize the training set which is called overfitting. This phenomena is also
well known for other classification models and hence there are several regular-
ization techniques to overcome this problem. For DNNs the so called dropout
regularization has been proven to be an effective tool [18]. The key idea is to
deactivate a certain percentage of neurons. This can be performed as follows for
all layers i = 2, 3 . . . , l :

x(i+1) = f (i)(W (i)T (x(i) ∗ r(i))) with r(i) ∼ Bernoullli(ρ) (2)

r(i) is a vector of Bernoulli distributed random variables which have the value
1 with probability ρ. Such a sampled vector is element-wise multiplied with
the result of the previous layer x(i) = f (i−1)(. . . ). Therefore a 0 in this vector
deactivates one respective neuron. This constitutes noise in the training data
that makes it more difficult to memorize the training set.

3.3 Deep Recurrent Neural Networks

A drawback of the DNN is that it cannot take into account the inputs from
the past of a time series, because it has no memory. Hence it is principally not
suitable to process temporal data like time series. A better model for this purpose
is the Elman-Network, a recurrent neural network invented by Elman [10]. It has
only one hidden layer and parallel to the input layer a so called context layer
that is fully connected to the hidden layer which serves as additional input. At
timestep t the context layer contains the output of the hidden layer at timestep
t − 1. The RNN represents following recursive function:

h(t) = fh(WTx(t) + CTh(t − 1)) (3)
y(t) = fo(V Th(t)) (4)

Here x(t) is input vector, h(t) the output vector of the hidden layer and y(t)
the output of the whole network at time t. W,C, V are the weight matrices for
input to hidden layer, context to hidden layer and hidden to output layer. fh
and fo are the activation function for the hidden layer and output layer. Figure 2
illustrates the recursive flow of h(t) between the context and hidden layer.
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Fig. 2. Structure of a RNN.

After n time steps a DNN with n hidden layers is computed. In order
to demonstrate this we concatenate W and C to one weight matrix U . To
concatenate two vectors x ∈ R

n, h ∈ R
m we write [x;h] with the vector

(x1, . . . , xn, hn+1, . . . , hn+m) as result. For a easier understanding we consider
only 3 time steps. Now we can write the hidden activation function as follows:

h(3) = f
(3)
h (UT [x(3); f

(2)
h (UT [x(2); f

(1)
h (UT [x(1); f

(0)
h ])

︸ ︷︷ ︸
hidden layers of the previous 2 time steps

]) (5)

f
(t)
h is here the hidden activation function at time step t and f

(0)
h is an initial null

vector. At time step t = 3 the additional input is f
(2)
h which computes two hidden

layers with the previous inputs x(2) and x(1). In this way the temporal data of
the past is taken into account. With the hidden layer of the current time step
and the output layer fo a DNN with overall 3 hidden layers is computed. To train
such a network a slightly modified bpp-algorithm is used called backpropagation
through time [11].

3.4 Deep Neural Networks as Classifier

In general a classifier is a function y = f∗(x) that maps an n-dimensional input
x to a category y. To us a neural network for multinomial classification the
softmax function is often used in the output layer. Each neuron represents one
category y ∈ {c1, . . . , cn} and with the softmax function a probability for each
category is predicted as follows:

P (y = ci|x) =
ex

Twi

∑n
j=1 ex

Twj
(6)

Consequently a neural network classifier p = f(x; θ) maps an input x to a
vector of probabilities p. The element pi ∈ p with the highest probability stands
for the predicted class ki. To asses the performance of a classifier the classification
accuracy with a test set Xtest = {(xi,yi)}mi with Xtrain ∩Xtest = ∅ can be used
as cost function:

accuracy :=
1
m

m∑

i=1

L(ki, ci) with L(ki, ci) =

{
1 if ci = ki

0 else
(7)
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4 Feature Extraction and Preprocessing

The speech signal is provided as time series of amplitudes which is the result of an
analog digital conversion. A time series is a sequence of scalars or vectors which
depends on time. In case of the raw digital speech signal {x[t]} the elements are
scalars:

{x[t]} = {x(t0), x(t1), . . . , x(ti−1), x(ti), x(ti+1), . . . } (8)

The raw speech signal contains to much unnecessary information that is an
obstacle to recognize certain emotion pattern. Hence a crucial step towards emo-
tion recognition in speech is to extract appropriate features from the speech
signal. Furthermore feature extraction reduces the high dimensionality of the
raw speech signal. In several studies it has been shown that the Mel-Frequency
Cepstral Coefficients (MFCCs) are very useful features to recognize emotion in
speech [12]. One reason for that could be that MFCC mimics some parts of
the human speech production and speech perception. In the presented work the
MFCC-Algorithm is treated as black box which delivers very useful features.
The MFCC-algorithm divides the speech signal into overlapping frames with
a window of sufficient size winmfcc to compute the features. This window is
shifted with a time step over the signal. The computed features for each frame
are vectors. The result of the MFCC-algorithm is therefore a time series {v[t]}
of vectors with time step δt:

{v[t]} = {v(0),v(δt),v(2δt), . . . ,v(nδt)} (9)

Here n is the number of frames. The vector v(i) = (v1, . . . , vm) contains
the m extracted features of the i-th frame. This time series can be represented
as feature matrix V ∈ R

n×m whereby the i-th row is the i-th element of the
time series. A typical value for δt is 10 ms and since utterances have usually a
duration of a few seconds, that results in feature matrices with several hundred
rows. One simple approach to avoid this problem is to reduce the feature matrix
to a vector v by computing the mean of all rows of V (cf. [13]):

v =
1
n

(
∑n

i=0 vi1, . . . ,
∑n

i=0 vim) (10)

But thereby the number of data points are the number of utterances and
this is a sub-optimal solution, because one of the main problems of speech-
based emotion recognition systems are the small number of available patterns
[14]. Another problem is, that by building the mean of the time series much
time dependent information are lost. Since emotions are generally expressed over
time in an utterance, this could make it more difficult to recognize the emotion.
Therefore we compute the mean over each 1 < l < n rows and get a new feature
matrix U ∈ R

� n
l � ×m whose rows build a new time series {u[t]} with time step

l. Then each element u(ti) represents a section of winmfcc · l ms of the origin
speech signal {x[t]}.
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5 Classification of Time Series

5.1 Windowing for Deep Feed Forward Neural Networks

Unlike RNNs feed forward neural networks are not constructed to process sequen-
tial data like time series. One method to take time distributed information into
account is to window the time series before using it as input for the neural
network. This is achieved by sliding a window wini of size k over several steps
along the times series {u[t]}. In this way a section of k elements of {u[t]} are
concatenated to a new vector xi−1 = [u(t(i−1)s); . . . ;u(tk−1)] whereby i is the
number of the window and s the step size.

Fig. 3. Two steps of windowing the time series {u[t]} with a window size of k = 4 and
step size of s = 2.

As it can be seen in Fig. 3 if s < k an overlap of k − s elements in the newly
generated data xi is created. By this overlap the neural network receives some
information more than once.

5.2 Voting Based Classification

To classify the utterance {u[t]} with the label yj a majority voting scheme
can bee used to predict a class cl based on the associated windowed data set
{(x1, yj), . . . (xm, yj)} as follows:

cl = arg maxl=1...NVcl (11)

Vcl are the votes for class cl and determined for all available classes l = 1 . . . N
with:

Vcl =
m∑

i=0

G(xi, cl) with G(xi, cl) =

{
1 if f(xi, θ) predicted cl

0 else
(12)
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6 Datasets

The used data is a significant component to asses an emotion recognition system.
In this paper the widely used Berlin Database of Emotional Speech (EmoDB)
serves as dataset [16]. The EmoDB consists of professional audio-recordings of
seven acted emotions (anger, boredom, disgust, fear, happiness, sadness, neutral)
spoken by 10 different actors in 10 different sentences. Overall 535 recorded and
labeled utterances are provided. As mentioned above we used MFCCs as speech
features. This was done by using window size of winmfcc = 25 ms and a time step
of δt = 10 ms to extract the first twelve cepstral coefficients with the energy as
13-th feature per window. Furthermore the first and second order derivatives of
the cepstral coefficients are computed for each feature vector v(t) = (v1, . . . , v13)
for i = 1, . . . , 12:

Δvi =
1
2
(vi+1 − vi−1) (13)

ΔΔvi =
1
2
(Δvi+1 − Δvi−1) (14)

vi is here the i-th element in the feature vector. As additionally statistical feature
the standard deviation σj was computed for each column j = 1, . . . , 37 of the
feature matrix M ∈ R

n× 37 as follows:

σj =

√
√
√
√ 1

n

n∑

i=1

(vij − vm,j)2 (15)

Here vm,j is the j-th element of the m-th mean vector over every l rows of the
feature matrix with m = 1, . . . , �n

l 	. Hence for each utterance a feature matrix
U ∈ R

�n
l � × 74 was computed whereby n is the number of feature vectors of the

respective utterance. With this procedure we created two types of datasets Dc

and Dp. Dc contains the means of each feature matrix and therefor consists of
535 feature vectors xi ∈ R

74. For Dp we computed the means of each feature
matrix partially over l = 15 rows as described in Sect. 4. After windowing the
data with a window size of k = 7 and step size of s = 1 as described in Sect. 5
Dp contains 6915 features vectors xi ∈ R

518.

6.1 Testing the Datasets with a Support Vector Machine

Because erroneous data can lead to wrong conclusion, we tested the generated
data sets with a support vector machine with a radial basis kernel (SVM-RBF).
Hence for a given training set X ∈ R

n× 74 ⊂ D the following classifier has to be
learned:

f(x) =
n∑

i

αiyiexp(−γ‖x − xi‖2) + b (16)
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The classifier is learned by solving the following optimization problem:

minimize:
1
2
‖w‖2 + C

n∑

i=1

ξi (17)

subject to: yi(wTxi + b) ≥ 1 − ξi ∀i = 1, . . . , n (18)

The tests were performed in a speaker independent scheme with leave-one-
speaker-out cross-validation (LOSO) and a text independent scheme with leave-
one-text-out (LOTO).

Table 1. Classification accuracies for SVM-RBF

Dataset LOSO accuracy (avg) LOTO accuracy (avg)

Dc 59.0 % 78.9 %

Dp 65.5 % 79.0 %

To optimize the parameters C and γ of the SVM a grid-search was per-
formed with C = {10−2, 10−1, 100, 101, . . . , 109} and γ = {10−5, 10−4, . . . , 104}.
Table 1 shows that with the windowed dataset Dp of partially feature-means an
improvement of 6.5 % classification accuracy could be achieved for the LOSO.
In contrast to that, for LOTO the difference between Dc and Dp is negligibly
small. Since the SVM can be considered as model with a flat architecture, these
results suggest that more time dependent information can lead to better results
only for a speaker independent scheme, even without a deep architecture.

7 Results

In this section we describe the results of our experiments. Like in the work
of Albornoz et al. [5] we evaluated the models with two kinds of cross valida-
tion. Once with leave-one-speaker-out (LOSO) and once with leave-one-text-out
(LOTO). LOSO is possibly the severest challenge for a speech based emotion
recognition system, because the model has to abstract from the speaker depen-
dent properties in the speech signal. To solve this very non-linear classification
problem a very complex function has to be learned. And this is exactly where
deep architectures could help [20]. For LOTO a much lesser complex relation
between input data and desired output has to be learned. In this case deep
learning methods could provide a less benefit [5].

We investigated several neural network architectures which differ from the
number of hidden layers and hidden units. In order to facilitate the examination
all architectures shared the same setting of the hyper-parameters learn rate =
0.3, learn rate decay = 0.09, momentum = 0.9, weight decay = 0.007, dropout
= 0.09, mini batch size = 64 and epochs = 55. To train the networks we
used a variant of the backpropagation-algorithm based on Nesterovs Accelerated
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Gradient Descent (cf. [19]). The weights for a given layer are initialized with
random values ∈ (−1, 1). We denote an architecture as DNNi× j whereby i is
the number of hidden layers and j the number of hidden neurons. We first used
a shallow neural network DNN1× 80 with one hidden layer and 80 hidden units
as baseline by using the smaller Dataset Dc ∈ R

535× 74. In the LOSO-scheme
the DNN1× 80 classified with 58.5 % accuracy (avg). With LOTO a substantially
higher accuracy (avg) of 76.6 % is achieved.

7.1 Experiments with DNNs

In order to examine if an improvement can be obtained with more hidden layers
in combination by using the larger dataset Dp ∈ R

6195× 518, we investigated the
following set of architectures:

{DNNi× j | i ∈ {1, 2, . . . , 5}, j ∈ {100, 200, . . . , 600}}

Fig. 4. Effect of adding more hidden layers to a DNN on classification accuracy with
LOSO (a) and LOTO (b). Box plots shows the distribution of accuracies associated
with 6 different numbers j of hidden neurons per layer j ∈ {100, 200, . . . , 600}.

Figure 4(a) shows that for LOSO additional hidden layers improved the clas-
sification accuracy (avg) until the 4th hidden layer. However with the 5th hidden
layer the accuracy gets worse. Maybe the DNNs are then to big and need more
data to prevent overfitting. The best result of 67.2 % with was achieved by the
network DNN4× 500 with 4 hidden layers and 500 neurons per layer. The confu-
sion matrix in Fig. 5(a) shows that the best classification performance is signif-
icantly obtained whit the emotion angry. One reason for that could be the far
larger number of samples of this class. Another reason could be the high energy
in the speech signal of angrily spoken utterances. As assumed above and also
observed in [5] with LOTO additional hidden layers did not improve the accuracy
significantly as Fig. 4(b) shows. The highest result of 80.6 % is here achieved by
the network DNN2× 600 with 2 hidden layers and 600 hidden neurons per layer.
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(a) LOSO with DNN4×500: 67.2 % (b) LOTO with DNN2×600: 80.6 %

Fig. 5. Classification performance of the best DNNs of the individual classes illustrated
as confusion matrix with A = Anger, B = Boredom, S = Sadness, H = Happiness,
D = Disgust, F = Fear, N = Neutral.

The comparison of the two confusion matrices in Fig. 5 shows that the
improvement with LOTO concerned mainly only the emotions sadness, neutral,
boredom and fear. It could therefore be assumed that for the other emotions
anger, disgust and happiness the speaker dependent properties have a reduced
role for speech based emotion recognition.

7.2 Experiments with RNNs

The result of 67.2 % with the DNN4× 500 is only slightly better than the result
of 65.5 % with the SVM-RBF. There is a suspicion that the windowed dataset
Dp is the main reason for the good results in both cases. As described above we
created Dp to maintain time dependent information. Hence we investigated now
Elman-Networks which are constructed to process time series. The depth of a
RNN depends on the length of the time series to process. To vary the number
of hidden layers we created therefor several datasets by computing the means of
each features matrix over several number l of rows as described in Sect. 4. Table 2
shows the smaller the averaged sections of the initial feature matrix, the longer
the resulting time series and thus the more hidden layer in a respective unfolded
RNN. The RNNs are trained via backpropagation through time (bptt) with the
hyper-parameters learn rate = 0.004, momentum = 0.9 and epochs = 200. To
asses the essential performance of the RNN for speech based emotion recognition
no other optimization or regularization techniques are used. However to deal with
the unbounded rectified linear function (cf. [21]) in the hidden layer we clipped
the outputs y = relu(x) of the hidden neurons as follows:

y =

{
y if y ≤ xmax

xmax else y > xmax

(19)
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In some way xmax can also be viewed as hyper-parameters and we chose the
value xmax = 40. We performed the tests again with both validation schemes
LOSO and LOTO.

Table 2. Relationship between averaging and length of resulting time series

Avg. over l rows ≈ Length of time series

30 10

60 5

90 4

120 3

150 2

180 2

Fig. 6. Effect of using longer time series as input for a RNN on classification accuracy
(test, train) with LOSO (a) and LOTO (b). The X axis shows the respective number
l of averaged rows of the feature matrices.

Interestingly as with the DNN-experiments the highest classification accuracy
(here: 59.5 %) with LOSO is again obtained by using a network with 4 unfolded
hidden layers (l = 90) as it can be seen in Fig. 6(a). In view of the fact that
only a basic version of the bptt-algorithm is used the result of 59.5 % accuracy
with LOSO is highly promising. With LOTO the highest accuracy of 71.8 % is
achieved by using the network with 2 hidden layers (l = 150). This suggests again
that for LOTO deeper architectures may not improve the result significantly.
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8 Conclusion

The performed experiments with the partially averaged and windowed time series
suggest adding more hidden layers could improve the performance of feed for-
ward neural networks for recognizing emotion in speech. The performance of
the support vector machine also improved considerably when using the partially
averaged feature matrices whereby the classification accuracy is only 1.7 % worse
than with the DNN. Hence there is a suspicion that the method of preprocessing
that we were using is the main reason for the improved results. To assess this
more precisely more experiments have to be conducted.

Highly promising are the results with the RNNs, because only with a basic
version of the backpropagation through time algorithm a accuracy of about
60 % is obtained. It would be interestingly to investigate if a significantly bet-
ter performance can be obtained with several regularization and optimization
techniques.
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