Approximation of Graph Edit Distance
by Means of a Utility Matrix

Kaspar Riesen' ™) Andreas Fischer?, and Horst Bunke?

! Institute for Information Systems, University of Applied Sciences FHNW,
Riggenbachstrasse 16, 4600 Olten, Switzerland
kaspar.riesen@fhnw.ch
2 Department of Informatics, University of Fribourg and HES-SO,

1700 Fribourg, Switzerland
andreas.fischerQunifr.ch
3 Institute of Computer Science and Applied Mathematics, University of Bern,
Neubriickstrasse 10, 3012 Bern, Switzerland
bunke@iam.ch

Abstract. Graph edit distance is one of the most popular graph match-
ing paradigms available. By means of a reformulation of graph edit dis-
tance to an instance of a linear sum assignment problem, the major draw-
back of this dissimilarity model, viz. the exponential time complexity,
has been invalidated recently. Yet, the substantial decrease of the com-
putation time is at the expense of an approximation error. The present
paper introduces a novel transformation that processes the underlying
cost model into a utility model. The benefit of this transformation is
that it enables the integration of additional information in the assign-
ment process. We empirically confirm the positive effects of this trans-
formation on three standard graph data sets. That is, we show that the
accuracy of a distance based classifier can be improved with the proposed
transformation while the run time remains nearly unaffected.

1 Introduction

Graphs are recognized as versatile alternative to feature vectors and thus, they
found widespread application in pattern recognition and related fields [1,2]. How-
ever, one drawback of graphs, when compared to feature vectors, is the significant
increase of the complexity of many algorithms. Regard, for instance, the algo-
rithmic comparison of two patterns (which is actually a basic requirement for
pattern recognition). Due to the homogeneous nature of feature vectors, pair-
wise comparisons is straightforward and can be accomplished in linear time with
respect to the length of the two vectors. Yet, the same task for graphs, commonly
referred to as graph matching, is much more complex, as one has to identify com-
mon parts of the graphs by considering all of their subsets of nodes. Regarding
that there are O(2") subsets of nodes in a graph with n nodes, the inherent
difficulty of graph matching becomes obvious.

In the last four decades a huge number of procedures for graph matching have
been proposed in the literature [1,2]. They range from spectral methods [3,4], over

© Springer International Publishing AG 2016
F. Schwenker et al. (Eds.): ANNPR 2016, LNAI 9896, pp. 185-194, 2016.
DOI: 10.1007/978-3-319-46182-3_16

186 K. Riesen et al.

graph kernels [5,6], to reformulations of the discrete graph matching problem to
an instance of a continuous optimization problem (basically by relaxing some
constraints) [7]. Graph edit distance [8,9], introduced about 30 years ago, is still
one of the most flexible graph distance models available and topic of various
recent research projects.

In order to compute the graph edit distance often A* based search techniques
using some heuristics are employed (e.g. [10]). Yet, exact graph edit distance
computation based on a tree search algorithm is exponential in the number of
nodes of the involved graphs. Formally, for two graphs with m and n nodes
we observe a time complexity of O(m'™). This means that for large graphs the
computation of the exact edit distance is intractable.

In [11] authors of the present paper introduced an algorithmic framework for
the approximation of graph edit distance. The basic idea of this approach is to
reduce the difficult problem of graph edit distance to a linear sum assignment
problem (LSAP), for which an arsenal of efficient (i.e. cubic time) algorithms
exist [12]. In two recent papers [13,14] the optimal algorithm for the LSAP has
been replaced with a suboptimal greedy algorithm which runs in quadratic time.
Due to the lower complexity of this suboptimal assignment process, a substantial
speed up of the complete approximation procedure has been observed. However,
it was also reported that the distance accuracy of this extension is slightly worse
than with the original algorithm. Major contribution of the present paper is to
improve the overall distance accuracy of this recent procedure by means of an
elaborated transformation of the underlying cost model.

The remainder of this paper is organized as follows. Next, in Sect.2, the
computation of graph edit distance is thoroughly reviewed. In particular, it is
shown how the graph edit distance problem can be reduced to a linear sum
assignment problem. In Sect. 3, the transformation of the cost model into a utility
model is outlined. Eventually, in Sect. 4, we empirically confirm the benefit of this
transformation in a classification experiment on three graph data sets. Finally,
in Sect. 5, we conclude the paper.

2 Graph Edit Distance (GED)

2.1 Exact Computation of GED

A graph g is a four-tuple ¢ = (V, E, u,v), where V is the finite set of nodes,
E CV xV is the set of edges, p : V — Ly is the node labeling function, and
v: E — Lg is the edge labeling function. The labels for both nodes and edges
can be given by the set of integers L = {1,2,3,...}, the vector space L = R",
a set of symbolic labels L = {«,3,7,...}, or a combination of various label
alphabets from different domains. Unlabeled graphs are obtained by assigning
the same (empty) label @ to all nodes and edges, i.e. Ly = Lg = {&}.

Given two graphs, g1 = (V1, F1, u1,v1) and go = (Va, Eg, o, 1), the basic
idea of graph edit distance (GED) [8,9] is to transform ¢; into go using edit
operations, viz. insertions, deletions, and substitutions of both nodes and edges.
The substitution of two nodes u and v is denoted by (u — v), the deletion of

Approximation of Graph Edit Distance by Means of a Utility Matrix 187

node u by (u — €), and the insertion of node v by (¢ — v)!. A set of edit
operations (g1, g2) = {e1,...,er} that transform ¢g; completely into go is called
an edit path between g; and gs.

Note that edit operations on edges are uniquely defined by the edit operations
on their adjacent nodes. That is, whether an edge (u,v) is substituted with an
existing edge from the other graph, deleted, or inserted actually depends on the
operations performed on both adjacent nodes v and v. Thus, we define that an
edit path A(g1,g2) explicitly contains the edit operations between the graphs’
nodes V; and Vs, while the edge edit operations are implicitly given by these
node edit operations.

A cost function that measures the strength of an edit operation is commonly
introduced for graph edit distance. The edit distance between two graphs ¢;
and g is then defined by the sum of cost of the minimum cost edit path Apin
between g; and go. In fact, the problem of finding the minimum cost edit path
Amin between g; and go can be reformulated as a quadratic assignment problem
(QAP). Roughly speaking, QAPs deal with the problem of assigning n entities
of a first set S = {s1,...,8,} to n entities of a second set Q@ = {q1,...,qn}
under some (computationally demanding) side constraints. A common way to
formally represent assignments between the entities of S and @ is given by
means of permutations (@1, ..., ¢,) of the integers (1,2,...,n). A permutation
(@1, ..., pn) refers to the assignment where the first entity s; € S is mapped to
entity g,, € @, the second entity sy € S is assigned to entity ¢,, € @, and so
on.

By reformulating the graph edit distance problem to an instance of a QAP,
two major issues have to be resolved. First, QAPs are generally stated on sets
with equal cardinality. Yet, in case of graph edit distance the elements to be
assigned to each other are given by the sets of nodes (and edges) with unequal
cardinality in general. Second, solutions to QAPs refer to assignments of elements
in which every element of the first set is assigned to exactly one element of the
second set and vice versa (i.e. a solution to a QAP corresponds to a bijective
assignment of the underlying entities). Yet, GED is a more general assignment
problem as it explicitly allows both deletions and insertions to occur on the basic
entities (rather than only substitutions).

These two issues can be simultaneously resolved by adding an appropriate
number of empty “nodes” € to both graphs g; and g,. Formally, assume that
|[Vi| = n and |V2| = m, we extend V; and V2 according to

m empty nodes

—_—~
Vii=Viu{er,...,em} and Vi"=VoUl{ey,...,e,}.
~——

n empty nodes

Since both graphs g1 and g2 have now an equal number of nodes, viz. (n+m),
their corresponding adjacency matrices A and B offer also equal dimension.

1 A similar notation is used for edges.

188 K. Riesen et al.

These adjacency matrices of g; and g, are defined by

1 ... n 1 .. m 1 ..ooom
1_a11...a1n 6...6_ 1_b11...b1m 6...5_
nlap ...a £€... € m|bmp ... b £€...¢
A= 2 Qo and B = T Zmle Omm (1)
1 e 3 1 3 3 3
m| € ... & |€...¢&] nl &€ ... & g...¢&]

If there actually is an edge between node u; € Vi and v; € Vi, entry a;;
refers to this edge (u;,v;) € E4, and otherwise to the empty “edge” e. Note that
there cannot be any edge from an existing node in V; to an empty node € and
thus the corresponding entries a;; € A with ¢ > n and/or j > n are also empty.
The same observations account for entries b;; in B.

Next, based on the extended node sets V;" and V," of g; and go, respectively,
a cost matriz C can be established as follows.

V] V2 ... Uy €1 €2 ... €p
ui [C11 €12 *** Clm |Cle Cle "+ Cle |
u2 C21 €22 *** C2m | C2¢ C2¢
C= Un | Cnl Cn2 *** Cnm [Cne *** Cne Cne (2)
1| €1 Ce1 - C1 | O O - 0
€2 | Ce2 Ce2 - . 0 O
0
em LCem *** Cem Cem | O <+ 0 0

Entry c;; thereby denotes the cost ¢(u; — v;) of the node substitution (u; — v;),
¢;e denotes the cost ¢(u; — €) of the node deletion (u; — €), and ¢.; denotes the
cost ¢(e — v;) of the node insertion (¢ — v;). Obviously, the left upper part of
the cost matrix represents the costs of all possible node substitutions, the right
upper part the costs of all possible node deletions, and the bottom left part the
costs of all possible node insertions. The bottom right part of the cost matrix is
set to zero since substitutions of the form (¢ — ¢) should not cause any cost.

Given the adjacency matrices A and B as well as the cost matrix C (Egs. 1
and 2), the following optimization problem can now be stated.

n+m n+mmn+m

(@1, s Pntm)) = arg min Z Cip; + Z Z c(aij = o) |

(@15 P (ntm)) ES(ntm) i=1 i=1 j=1

where S(,, +m) refers to the set of all (n+m)! possible permutations of the integers
1,2,...,(n+m). Note that this optimal permutation (¢1,...,P(n+m)) (as well

Approximation of Graph Edit Distance by Means of a Utility Matrix 189

as any other valid permutation) corresponds to a bijective assignment

A= {(u; — Usal)v (ug — Usaz)v N U«pm+n,)}

of the extended node set V; of g1 to the extended node set V5" of go. That is,
assignment A includes node edit operations of the form (u; — v;), (u; — €),
(e = vj), and (¢ — €) (the latter can be dismissed, of course). In other words,
an arbitrary permutation (o1, ..., @(n4m)) Perfectly corresponds to a valid edit
path \ between two graphs.

The optimization problem stated in Eq. 2.1 exactly corresponds to a standard
QAP. Note that the linear term Zf:lm Cip, refers to the sum of cost of all
node edit operations, which are defined by the permutation (¢1,...,¢nt+m)-
The quadratic term 3™ ;jlm c(ai; — by, ,,) refers to the implied edge edit
cost defined by the node edit operations. That is, since node u; € Vl+ is assigned
to a node vy, € V5" and node u; € V" is assigned to a node v,, € V5", the
edge (u;,u;) € E1 U{e} (stored in a;; € A) has to be assigned to the edge
(Vg5 Vyp;) € B2 U{e} (stored in by, € B).

2.2 Approximate Computation of GED

In fact, QAPs are very hard to solve as they belong to the class of NP-hard prob-
lems. Authors of the present paper introduced an algorithmic framework which
allows the approximation of graph edit distance in a substantially faster way than
traditional methods [11]. The basic idea of this approach is to reduce the QAP
of graph edit distance computation to an instance of a Linear Sum Assignment
Problem (LSAP). LSAPs are similar to QAPs in the sense of also formulating
an assignment problem of entities. Yet, in contrast with QAPs, LSAPs are able
to optimize the permutation (¢1,...,P(n+m)) With respect to the linear term

S iy, only. That is, LSAPs consider a single cost matrix C without any
side constraints. For solving LSAPs a large number of efficient (i.e. polynomial)
algorithms exist (see [12] for an exhaustive survey on LSAP solvers).

Yet, by omitting the quadratic term 3 7™ ;Lilm c(ai; — by,yp,) during
the optimization process, we neglect the structural relationships between the
nodes (i.e. the edges between the nodes). In order to integrate knowledge about
the graph structure, to each entry c¢;; € C, i.e. to each cost of a node edit
operation (u; — v;), the minimum sum of edge edit operation costs, implied by
the corresponding node operation, can be added. Formally, for every entry c;; in
the cost matrix C one might solve an LSAP on the ingoing and outgoing edges
of node u; and v; and add the resulting cost to ¢;;. That is, we define

n+m

min Z claik, = bjg,) + clari — bpyj),

"
Cii = Cij+
(@155P(nt+m))ES(ntm) =1

]

where S(;,) refers to the set of all (n+m)! possible permutations of the integers
1,...,(n+m). To entry ¢;., which denotes the cost of a node deletion, the cost of
the deletion of all incident edges of u; can be added, and to the entry c.;, which

190 K. Riesen et al.

denotes the cost of a node insertion, the cost of all insertions of the incident
edges of v; can be added. We denote the cost matrix which is enriched with
structural information with C* = (cj;) from now on.

In [11] the cost matrix C* = (cj;) as defined above is employed in order
to optimally solve the LSAP by means of Munkres Algorithm [15]2. The LSAP
optimization comsists in finding a permutation (¢7,...,¢;,,) of the integers

v er .. Sim-
ilar to the permutation (¢1,...,@n+m) obtained on the QAP, the permutation
(01,5} 4m) corresponds to a bijective assignment of the entities in Vit to

the entities in ;. In other words, the permutation (¢7, ..., gpz‘ner)) refers to

(1,2,...,(n+m)) that minimizes the overall assignment cost ZE

an admissible and complete (yet not necessarily minimal cost) edit path between
the graphs under consideration. We denote this approximation framework with
BP-GED from now on.

Recently, it has been proposed to solve the LSAP stated on C* with an
approximation rather than with an exact algorithm [13,14]. This algorithm iter-
ates through C* from top to bottom through all rows and assigns every element
to the minimum unused element in a greedy manner. Clearly, the complexity of
this suboptimal assignment algorithm is O((n +m)?). For the remainder of this
paper we denote the graph edit distance approximation where the LSAP on C*
is solved by means of this greedy procedure with GR-GED.

3 Building the Utility Matrix

Similar to [13,14] we aim at solving the basic LSAP in O(n?) time in order to
approximate the graph edit distance. Yet, in contrast with this previous app-
roach, which considers the cost matrix C* = (c};) directly as its basis, we trans-
form the given cost matrix into a utility matriz with equal dimension as C* and
work with this matrix instead.

The rationale behind this transformation is based on the following observa-
tion. When picking the minimum element ¢;; from cost matrix C*, i.e. when
assigning node u; to v;, we exclude both nodes u; and v; from any future assign-
ment. However, it may happen that node v; is not only the best choice for u;
but also for another node uy. Because v; is no longer available, we may be forced
to map wuj to another, very expensive node v;, such that the total assignment
cost becomes higher than mapping node u; to some node that is (slightly) more
expensive than v;. In order to take such situations into account, we incorpo-
rate additional information in the utility matrix about the the minimum and
maximum value in each row, and each column.

Let us consider the i-th row of the cost matrix C* and let row-min; and
row-max; denote the minimum and maximum value occurring in this row, respec-
tively. Formally, we have

Tow-min; = min ¢ and row-maz; = max cj.
j=1,...,(n+m) j=1,...,(n+m)

2 The time complexity of this particular algorithm is cubic in the size of the problem,
i.e. O((n +m)?).

Approximation of Graph Edit Distance by Means of a Utility Matrix 191

If the node edit operation (u; — v;) is selected, one might interpret the quantity

TOW-maz; — ¢;;

TOW-WiN,;; = -
rOW-Maz; — Tow-min;

as a win for (u; — v;), when compared to the locally worst case situation where

v With k = argmax;—1 . (nym) cz‘j is chosen as target node for u;. Likewise, we

might interpret

iy — row-min;

row-10ss;; = _
rOW-Mmaz; — row-min;

as a loss for (u; — v;), when compared to selecting the minimum cost assignment
which would be possible in this row. Note that both row-win;; and row-loss;;
are normalized to the interval [0,1]. That is, when ¢}; = row-min; we have a
maximum win of 1 and a minimum loss of 0. Likewise, when cj;
observe a minimum win of 0 and a maximum loss of 1.

Overall we define the utility of the node edit operation (u; — v;) with respect
to row ¢ as

= row-max; we

row-max; + row-min; — 2c;‘j

row-utility;; = row-win;; — row-loss;; = -
TOW-Max; — TOW-Min;
Clearly, when ¢;; = row-min; we observe a row utility of +1, and vice versa,
when ¢;; = row-max; we have a row utility of —1.
So far the utility of a node edit operation (u; — v;) is quantified with respect
to the i-th row only. In order to take into account information about the j-th
column, we seek for the minimum and maximum values that occur in column j

by

col-minj = min ¢ and col-maz; = max cj;.
i=1,...,(n+m) i=1,...,(n+m)
Eventually, we define
PR * * — - ;. .
col-max; — c;; i — col-min,

col-win;; = and col-loss;; =

col-maz; — col-min; col-maz; — col—minj'

Similarly to the utility of the node edit operation (u; — v;) with respect
to row ¢ we may define the utility of the same edit operation with respect to
column j as

. -), P— *
col-maz; + col-min; — 2c;

col—utilityij = col-win;; — col-loss;; = -
col-maz; — col-min;

To finally estimate the utility u;; of a node edit operation (u; — v;) with
respect to both row ¢ and column j we compute the sum

wij = row-utility;; + col-utility,;.

Since both row-utility,; and col-utility,; lie in the interval [~1, 1], we have u;; €
[-2,2] for i,j =1,...,(n+m). We denote the final utility matrix by U = (u;;).

192 K. Riesen et al.

4 Experimental Evaluation

In the experimental evaluation we aim at investigating the benefit of using the
utility matrix U instead of the cost matrix C* in the framework GR-GED. In
particular, we aim at assessing the quality of the different distance approxima-
tions by means of comparisons of the sum of distances and by means of a distance
based classifier. Actually, a nearest-neighbor classifier (NN) is employed. Note
that there are various other approaches to graph classification that make use of
graph edit distance in some form. Yet, the nearest neighbor paradigm is particu-
larly interesting for the present evaluation because it directly uses the distances
without any additional classifier training.

We use three real world data sets from the IAM graph database reposi-
tory [16]2. Two graph data sets involve graphs that represent molecular com-
pounds (AIDS and MUTA). These data set consists of two classes, which repre-
sent molecules with activity against HIV or not (AIDS), and molecules with and
without the mutagen property (MUTA), respectively. The third data set consists
of graphs representing proteins stemming from six different classes (PROT).

Table 1. The mean run time for one matching (#t), the relative increase of the sum of
distances compared with BP-GED, and the recognition rate (rr) of a nearest-neighbor
classifier using a specific graph edit distance algorithm.

Data Set | Algorithm

BP-GED(C™) GR-GED(C™) GR-GED(U)

Zt sod | rr 2t sod |rr 2t sod |rr
AIDS 3.61 |- 99.07| 1.21| 1.92/98.93| 1.34|2.40|99.00
MUTA 33.89 - 70.20 4.56| 1.50|70.10| 5.06|0.68 | 71.60
PROT 25.54 | - 67.50 | 13.31|10.86 | 64.50 | 14.11 | 2.71 | 66.00

In Tablel the results obtained with three different graph edit distance
approximations are shown. The first algorithm is BP-GED(C*), which solves
the LSAP on C* in an optimal manner in cubic time [11]. The second algorithm
is GR-GED(C*), which solves the LSAP on C* in a greedy manner in quadratic
time [13,14]. Finally, the third algorithm is GR-GED(U), which operates on the
utility matrix U instead of C* (also using the greedy assignment algorithm).

We first focus on the mean run time for one matching in ms (¢) and compare
BP-GED with GR-GED that operates on the original cost matrix C*. On all
data sets substantial speed-ups of GR-GED(C*) can be observed. On the AIDS
data set, for instance, the greedy approach GR-GED(C*) is approximately three
times faster than BP-GED. On the MUTA data set the mean matching time
is decreased from 33.89ms to 4.56ms (seven times faster) and on the PROT
data the greedy approach approximately halves the matching time (25.43 ms

3 www.iam.unibe.ch/fki/databases/iam-graph-database.

www.iam.unibe.ch/fki/databases/iam-graph-database

Approximation of Graph Edit Distance by Means of a Utility Matrix 193

vs. 13.31ms). Comparing GR-GED(C*) with GR-GED(U) we observe only a
small increase of the matching time when the latter approach is used. The slight
increase of the run time, which is actually observable on all data sets, is due to
the computational overhead that is necessary for transforming the cost matrix
C* to the utility matrix U.

Next, we focus on the distance quality of the greedy approximation algo-
rithms. Note that all of the employed algorithms return an upper bound on
the true edit distance, and thus, the lower the sum of distances of a specific
algorithm is, the better is its approximation quality. For our evaluation we take
the sum of distances returned by BP-GED as reference point and measure the
relative increase of the sum of distances when compared with BP-GED (sod).
We observe that GR-GED(C*) increases the sum of distances by 1.92% on the
AIDS data when compared with BP-GED. On the other two data sets the sum
of distances is also increased (by 1.50% and 10.86 %, respectively). By using
the utility matrix U rather than the cost matrix C in the greedy assignment
algorithm, we observe smaller sums of distances on the MUTA and PROT data
sets. Hence, we conclude that GR-GED(U) is able to produce more accurate
approximations than GR-GED(C) in general.

Finally, we focus on the recognition rate (rr) of a NN-classifier that uses
the different distance approximations. We observe that the NN-classifier that
is based on the distances returned by GR-GED(C*) achieves lower recognition
rates than the same classifier that uses distances from BP-GED (on all data
sets). This loss in recognition accuracy may be attributed to the fact that the
approximations in GR-GED are coarser than those in BP-GED. Yet, our novel
procedure, i.e. GR-GED(U), improves the recognition accuracy on all data sets
when compared to GR-GED(C*). Moreover, we observe that GR-GED(U) is
inferior to BP-GED in two out of three cases only.

5 Conclusions and Future Work

In the present paper we propose to use a utility matrix instead of a cost matrix
for the assignment of local substructures in a graph. The motivation for this
transformation is based on the greedy behavior of the basic assignment algo-
rithm. More formally, with the transformation of the cost matrix into a utility
matrix we aim at increasing the probability of selecting a correct node edit oper-
ation during the optimization process. With an experimental evaluation on three
real world data sets, we empirically confirm that our novel approach is able to
increase the accuracy of a distance based classifier, while the run time is nearly
not affected.

In future work we aim at testing other (greedy) assignment algorithms on
the utility matrix U. Moreover, there seems to be room for developing and
researching variants of the utility matrix with the aim of integrating additional
information about the trade-off between wins and losses of individual assign-
ments.

194 K. Riesen et al.

Acknowledgements. This work has been supported by the Hasler Foundation
Switzerland.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recognit. Art Intell. 18(3), 265-298 (2004)

2. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. Int. J. Pattern Recognit. Art Intell. 28(1), 1450001
(2014)

3. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral feature vectors for graph clustering.
In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR
2002 and SSPR 2002. LNCS, vol. 2396, p. 83. Springer, Heidelberg (2002)

4. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory.
IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112-1124 (2005)

5. Gaiizere, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics.
Pattern Recognit. Lett. 33(15), 2038-2047 (2012)

6. Borgwardt, K., Kriegel, H.-P.: Graph kernels for disease outcome prediction from
protein-protein interaction networks. Pac. Symp. Biocomput. 2007, 4-15 (2007)

7. Torsello, A., Hancock, E.: Computing approximate tree edit distance using relax-
ation labeling. Pattern Recognit. Lett. 24(8), 1089-1097 (2003)

8. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognit. Lett. 1, 245-253 (1983)

9. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs
for pattern recognition. IEEE Trans. Syst. Man Cybern. (Part B) 13(3), 353-363
(1983)

10. Fischer, A., Plamondon, R., Savaria, Y., Riesen, K., Bunke, H.: A hausdorff heuris-
tic for efficient computation of graph edit distance. In: Franti, P., Brown, G.,
Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp.
83-92. Springer, Heidelberg (2014)

11. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(4), 950-959 (2009)

12. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Indus-
trial and Applied Mathematics, Philadelphia (2009)

13. Riesen, K., Ferrer, M., Dornberger, R., Bunke, H.: Greedy graph edit distance.
In: Perner, P. (ed.) MLDM 2015. LNCS, vol. 9166, pp. 3-16. Springer, Heidelberg
(2015)

14. Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation of graph edit dis-
tance in quadratic time. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.)
GbRPR 2015. LNCS, vol. 9069, pp. 3—12. Springer, Heidelberg (2015)

15. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soci.
Ind. Appl. Math. 5(1), 32-38 (1957)

16. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F.,
Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Struc-
tural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287—
297. Springer, Heidelberg (2008)

	Approximation of Graph Edit Distance by Means of a Utility Matrix
	1 Introduction
	2 Graph Edit Distance (GED)
	2.1 Exact Computation of GED
	2.2 Approximate Computation of GED

	3 Building the Utility Matrix
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

