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Abstract. Euclidean-based search spaces have been extensively studied
to drive optimization techniques to the search for better solutions. How-
ever, in high dimensional spaces, non-convex functions might become
too tricky to be optimized, thus requiring different representations aim-
ing at smoother fitness landscapes. In this paper, we present a variant
of the Harmony Search algorithm based on quaternions, which extend
complex numbers and have been shown to be suitable to handle opti-
mization problems in high dimensional spaces. The experimental results
in a number of benchmark functions against standard Harmony Search,
Improved Harmony Search and Particle Swarm Optimization showed the
robustness of the proposed approach. Additionally, we demonstrated the
robustness of the proposed approach in the context of fine-tuning para-
meters in Restricted Boltzmann Machines.
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1 Introduction

Function optimization plays an important role in a number of applications, rang-
ing from simulation in aerodynamics to fine-tuning machine learning algorithms.
Although one can find several problems that can be modeled by convex func-
tions, most applications out there pose a bigger challenge, since they are usually
encoded by non-convex functions, which means they may contain both local and
global optima. In light of that, one may handle such sort of functions by means
of two approaches: (i) the first one concerns with trying different optimization
techniques, and (ii) the second one aims at finding a different representation of
the search space in order to deal with smoother landscape functions.

In the last decades, the scientific community has focused even more on opti-
mization techniques based on the nature, the so-called meta-heuristics [23]. Such
techniques are based on different mechanisms that address the problem of opti-
mization, such as evolutionary processes, mimetism, and swarm intelligence, just
to name a few. These techniques have been in the spotlight mainly due to their
elegance and easiness of implementation, as well as solid results in a number of
well-known problems in the literature [1].
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Recently, Malan and Engelbrecht [11] presented an interesting study that
aimed at predicting possible situations in which the well-known Particle Swarm
Optimization (PSO) algorithm would fail based on the fitness landscape. Basi-
cally, depending on the “smoothness degree” of the fitness function landscape,
one can expect a probable performance of the algorithm. Once again, the fit-
ness function plays an important role in the optimization problem, and finding
suitable representations of that function in different search spaces is of great
importance to obtain more accurate results. Years before their work, Merz and
Freisleben [12] presented a study about fitness landscape analysis concerning
memetic algorithms, and Humeau et al. [9] conducted a similar study, but in the
context of local search algorithms.

Some years ago, Fister et al. [4] presented a modified version of the Firefly
Algorithm based on quaternions, and later on Fister et al. [3] proposed a sim-
ilar approach to the Bat Algorithm. Roughly speaking, the quaternion algebra
extends the complex numbers by representing a real number using four vari-
ables [6], being widely used in areas when one needs to perform rotations with
minimal computation, such as spacecraft controllers, for instance. Usually, stan-
dard representations of meta-heuristic techniques, i.e., the ones based on Euclid-
ean spaces, tend to get trapped from local optima in higher dimensional spaces,
since the fitness landscapes may become even more complicated. Therefore, that
is the main motivation in using quaternion-based algebra.

One of the main drawbacks related to swarm-driven meta-heuristics concerns
with their computational burden, since the fitness function needs to be evalu-
ate whenever a possible solution changes its position. Since all decisions of a
movement are taken into account collectively, a single movement of a possible
solution may affect all remaining ones, thus requiring their new positioning. Har-
mony Search (HS) is a technique that updates one solution at each iteration only,
making it one of the fastest meta-heuristic optimization techniques [5]. The idea
is to model each decision variable as an instrument, being the best combination
of them the solution to the chosen. By best combination we mean the one which
provides “the music with optimal harmony”.

One can refer to a number of different variants of HS, such as Improved Har-
mony Search [10], Global-best Harmony Search [13], and Self-adaptive Global-
best Harmony Search [14], just to name a few. However, to the best of our knowl-
edge, there is no Harmony Search implementation based on quaternions up to
date. Therefore, the main contribution of this paper is to propose a quaternion-
oriented Harmony Search, hereinafter called Quaternion Harmony Search (QHS).
The proposed approach is compared against PSO, HS and Improved Harmony
Search (IHS) for the task of benchmark function optimization. Also, we vali-
date the proposed approach to fine-tune parameters of Restricted Boltzmann
Machines to the task of binary image reconstruction, which turns out to be
another contribution of this work.

The remainder of the paper ir organized as follows. Sections 2 and 3 present
the theoretical background about quaternions and Harmony Search, respectively.
Sections 4 and 5 present the methodology and experiments, respectively. Finally,
Sect. 6 states conclusions and future works.
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2 Quaternion Algebra

A quaternion q is composed of real and complex numbers, i.e., q = x0 + x1i +
x2j + x3k, where x0, x1, x2, x3 ∈ � and i, j, k are imaginary numbers following
the next set of equations:

ij = k, (1)

jk = i, (2)

ki = j, (3)

ji = −k, (4)

kj = −i, (5)

ik = −j, (6)

and
i2 = j2 = k2 = −1. (7)

Roughly speaking, a quaternion q is represented in a 4-dimensional space over
the real numbers, i.e., �4. Actually, we can consider the real numbers only, since
most applications do not consider the imaginary part, as the one addressed in
this work.

Given two quaternions q1 = x0+x1i+x2j+x3k and q2 = y0+y1i+y2j+y3k,
the quaternion algebra defines a set of main operations [2]. The addition, for
instance, can be defined by:

q1 + q2 = (x0 + x1i + x2j + x3k) + (y0 + y1i + y2j + y3k) (8)
= (x0 + y0) + (x1 + y1)i + (x2 + y2)j + (x3 + y3)k,

while the subtraction is defined as follows:

q1 − q2 = (x0 + x1i + x2j + x3k) − (y0 + y1i + y2j + y3k) (9)
= (x0 − y0) + (x1 − y1)i + (x2 − y2)j + (x3 − y3)k.

Another important operation is the norm, which maps a given quaternion to
a real-valued number, as follows:

N(q1) = N(x0 + x1i + x2j + x3k) (10)

=
√

x2
0 + x2

1 + x2
2 + x2

3.

Finally, Fister et al. [3,4] introduced two other operations, qrand and qzero.
The former initializes a given quaternion with values drawn from a Gaussian
distribution, and it can be defined as follows:

qrand() = {xi = N (0, 1)|i ∈ {0, 1, 2, 3}}. (11)

The latter function initialized a quaternion with zero values, as follows:

qzero() = {xi = 0|i ∈ {0, 1, 2, 3}}. (12)

Although there are other operations, we defined only the ones employed in this
work.
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3 Harmony Search

Harmony Search is a meta-heuristic algorithm inspired in the improvisation
process of music players. Musicians often improvise the pitches of their instru-
ments searching for a perfect state of harmony [5]. The main idea is to use the
same process adopted by musicians to create new songs to obtain a near-optimal
solution according to some fitness function. Each possible solution is modelled
as a harmony, and each musician corresponds to one decision variable.

Let φ = (φ1,φ2, . . . ,φN ) be a set of harmonies that compose the so-called
“Harmony Memory”, such that φi ∈ �M . The HS algorithm generates after
each iteration a new harmony vector φ̂ based on memory considerations, pitch
adjustments, and randomization (music improvisation). Further, the new har-
mony vector φ̂ is evaluated in order to be accepted in the harmony memory:
if φ̂ is better than the worst harmony, the latter is then replaced by the new
harmony. Roughly speaking, HS algorithm basically rules the process of creating
and evaluating new harmonies until some convergence criterion is met.

In regard to the memory consideration step, the idea is to model the process of
creating songs, in which the musician can use his/her memories of good musical
notes to create a new song. This process is modelled by the Harmony Memory
Considering Rate (HMCR) parameter, which is the probability of choosing one
value from the historic values stored in the harmony memory, being (1−HMCR)
the probability of randomly choosing one feasible value1, as follows:

φ̂j =
{

φj
A with probability HMCR

θ ∈ Φj with probability (1-HMCR),
(13)

where A ∼ U(1, 2, . . . , N), and Φ = {Φ1, Φ2, . . . , ΦM} stands for the set of feasi-
ble values for each decision variable2.

Further, every component j of the new harmony vector φ̂ is examined to
determine whether it should be pitch-adjusted or not, which is controlled by the
Pitch Adjusting Rate (PAR) variable, according to Eq. 14:

φ̂j =
{

φ̂j ± ϕj� with probability PAR
φ̂j with probability (1-PAR).

(14)

The pitch adjustment is often used to improve solutions and to escape from
local optima. This mechanism concerns shifting the neighbouring values of some
decision variable in the harmony, where � is an arbitrary distance bandwidth,
and ϕj ∼ U(0, 1). In the following, we briefly present the Improved Harmony
Search technique, which has been used in the experimental section.

3.1 Improved Harmony Search

The Improved Harmony Search (IHS) [10] differs from traditional HS by updat-
ing the PAR and � values dynamically. The PAR updating formulation at time
1 The term “feasible value” means the value that falls in the range of a given decision

variable.
2 Variable A denotes a harmony index randomly chosen from the harmony memory.
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step t is given by:

PARt = PARmin +
PARmax − PARmin

T
t, (15)

where T stands for the number of iterations, and PARmin and PARmax denote
the minimum and maximum PAR values, respectively. In regard to the band-
width value at time step t, it is computed as follows:

�t = �max exp
ln(�min/�max)

T
t, (16)

where �min and �max stand for the minimum and maximum values of �, respec-
tively.

3.2 Quaternion Harmony Search

The proposed approach aims at mapping the problem of optimizing variables
in the Euclidean space to the quaternions space. As aforementioned, the idea
is to obtain smoother representations of the fitness landscape, thus making the
problem easier to handle.

In the standard Harmony Search, each harmony φi ∈ �M , i = 1, 2, . . . , N is
modeled as an array containing M variables to be optimized, such that φij ∈ �.
In QHS, each decision variable j is now represented by a quaternion qj ∈ �4,
such that each harmony can be seen as a matrix φ′

i ∈ �4×N . Therefore, each
harmony is no longer an array of decision variables, but a matrix instead.

However, we can map each quaternion to a real-valued number in order to
use standard HS. Basically, one has to compute φij = N(φ′

ij), i = 1, 2 . . . , N and
j = 1, 2, . . . ,M . Further, the standard HS procedure can be executed as usual.
But note the optimization process is conducted at quaternion level, which means
QHS aims finding the quaternions for each decision variable such that their norm
values minimizes the fitness function. An ordinary HS aims at learning values
for each decision variable that minimizes the fitness function.

4 Methodology

In this section, we present the methodology employed in this work to validate
the proposed approach. The next sections describe the techniques used for com-
parison purposes, benchmark functions and the statistical analysis.

4.1 Functions

The benchmark functions used in the experiments are the following:

– Sphere Function:
f(x, y) = x2 + y2

The minimum is f(0, 0) = 0, and the domain is
−∞ < x, y < ∞.
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– Ackley’s Function:
f(x, y) = −20e(−0.2

√
0.5(x2+y2)) − e(0.5(cos(2πx)+cos(2πy))) + e + 20

The minimum is f(0, 0) = 0, and the domain is −5 ≤ x, y ≤ 5.
– Rosenbrock’s Function:

f(x, y) = 100
(
y − x2

)2 + (x − 1)2

The minimum is f(1, 1) = 0, and the domain is
−∞ < x, y < ∞.

– Beale’s Function:
f(x, y) = (1.5 − x + xy)2 +

(
2.25 − x + xy2

)2 +
(
2.625 − x + xy3

)2
The minimum is f(3, 0.5) = 0, and the domain is −4.5 < x, y < 4.5.

– Matyas Function:
f(x, y) = 0.26

(
x2 + y2

) − 0.48xy
The minimum is f(0, 0) = 0, and the domain is
−10 ≤ x, y ≤ 10.

– Levi Function N.13:
f(x, y) = sin2 (3πx) + (x − 1)2

(
1 + sin2 (3πy)

)
+ (y − 1)2

(
1 + sin2 (2πy)

)
The minimum is f(1, 1) = 0, and the domain is
−10 < x, y < 10.

– Three-Hump Camel Function:
f(x, y) = 2x2 − 1.05x4 + x6

6 + xy + y2

The minimum is f(0, 0) = 0, and the domain is
−5 ≤ x, y ≤ 5.

– Easom Function:
f(x, y) = − cos (x) cos (y) e(−((x−π)2+(y−π)2))

The minimum is f(π, π) = −1, and the domain is
−100 < x, y < 100.

– S. Tang:
f(x, y) = 0.5 ((x4 − 16x2 + 5x) + (y4 − 16y2 + 5y)0
The minimum is f (−2.9035,−2.9035) = −78.3254, and the domain is
−5 < x, y < 5.

– Schaffer Function N2:
f(x, y) = 0.5 + (sin2(x2 − y2) − 0.5)/(1 + 0.001 ∗ (xx + yy)2)
The minimum is f (0, 0) = 0, and the domain is −100 < x, y < 100.

4.2 Meta-Heuristic Techniques

We compare the efficiency and effectiveness of QHS against three other methods,
say that: näıve HS, IHS and PSO. For each optimization method and function,
we conducted a cross-validation with 20 runs. Table 1 displays the parameters
setup, being their values empirically chosen [18]. Notice we employed 20 agents
and 15,000 iterations for all meta-heuristic techniques, and both x and y deci-
sion variables of the aforementioned functions were initialized within the range
[−10, 10].
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Table 1. Parameter values used for all optimization techniques.

Technique Parameters

HS HMCR = 0.7, PAR= 0.7

IHS HMCR = 0.7, PARmin = 0.1, PARmax = 0.9

PSO c1 = c2 = 2.0, w = 0.9

QHS HMCR = 0.7, PAR= 0.7

5 Experimental Evaluation

In this section, we present the experimental results considering the aforemen-
tioned optimization techniques in the context of benchmark functions (Sect. 5.1),
as well as to fine-tune Restricted Boltzmann Machines (Sect. 5.2).

5.1 Benchmark Functions

As aforementioned in Sect. 4.1, we considered 10 benchmark functions to evalu-
ate the robustness of QHS. Table 2 displays the mean values obtained by all tech-
niques. Since we are dealing with minimization problems, the smaller the values,
the better the techniques. The values in bold stand for the best techniques accord-
ing to the Wilcoxon signed-rank test [22] with significance level of 0.05.

Clearly, we can observe QHS obtained the best results in 9 out 10 functions,
and it has been the sole technique in 4 functions that achieved the best val-
ues. In fact, if one take into account the convergence of the techniques, one can
realize HS took longer to converge, even on a convex function like Sphere, for
instance. Figure 1a depicts the convergence process with respect to Sphere func-
tion. We constrained the convergence up to 600 iterations to have a better look
at the beginning of the process. One can observe QHS converges at the very first
iterations, while HS and IHS need a few hundred of them.

Table 2. Mean values obtained through cross-validation.

Function PSO IHS HS QHS

Sphere 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Ackley’s 0.24 ± 0.77 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Rosebrock’s 0.06 ± 1.96 0.01 ± 0.00 0.13 ± 0.24 0.00 ± 0.00

Beale’s 0.07 ± 0.19 0.10 ± 0.06 0.09 ± 0.30 0.04 ± 0.05

Matyas 0.42 ± 1.07 0.19 ± 0.07 0.18 ± 0.00 0.00 ± 0.00

Levi 0.02 ± 0.07 0.09 ± 0.01 0.08 ± 0.04 0.01 ± 0.01

Three Hump 0.01 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Easom −0.99 ± 0.36 −0.95 ± 0.03 −0.93 ± 0.03 −0.99 ± 0.01

S. Tang −57.76 ± 2.78 −51.06 ± 21.34 −51.81 ± 13.45 −50.00 ± 0.01

Schaffer 0.004 ± 0.001 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
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Fig. 1. Convergence analysis considering (a) Sphere, (b) Rosenbrock’s and (c) Beale’s
benchmark functions.

Figure 1b displays the convergence study over Rosenbrock’s function. Almost
all techniques, except PSO, achieved the global minimum, being HS the fastest
to converge, followed by QHS and IHS. Finally, in regard to Beale’s function
(Fig. 1c), QHS took longer than all techniques to converge, but it obtained the
best results so far. In fact, HS-based techniques usually suffer from slow con-
vergence when compared to swarm-based ones, since Harmony Search produces
only one new solution at each iteration. We can also observe the convergence
behaviour of QHS considering Rosenbrock’s and Beale’s functions, which follows
a “stair pattern”, which means QHS can get trapped from local optima (e.g.,
plateaus in the convergence curve), but also has the ability to escape from them.

Table 3 presents the mean computational load in seconds considering all tech-
niques and functions. Clearly, QHS is the slowest one, since we need an extra loop
to access the content of each decision variable (each variable is now represented
as a 4-dimensional vector). In fact, for some datasets, QHS can be faster if we
employ a different convergence criterion, since we fixed the number of iterations
for all techniques in this work.

5.2 Fine-Tuning Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are stochastic neural networks that
aim at learning input representation by means of latent variables placed in a
hidden layer [19]. They have become extremely used in the last years due to the
“deep learning phenomenon”, where we can stack RBMs on top of each other
and obtain the so-called Deep Belief Networks.
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Table 3. Mean computational load in seconds.

Function PSO IHS HS Q-HS

Sphere 2.76 ± 1.58 0.44 ± 0.10 0.39 ± 0.06 9.26 ± 1.06

Ackley’s 2.12 ± 0.15 0.45 ± 0.11 0.39 ± 0.04 9.49 ± 1.17

Rosebrock’s 2.14 ± 0.16 0.45 ± 0.06 0.41 ± 0.05 9.27 ± 1.20

Beale’s 2.18 ± 0.14 0.47 ± 0.08 0.41 ± 0.05 9.41 ± 1.15

Matyas 2.16 ± 0.06 0.44 ± 0.07 0.40 ± 0.04 9.48 ± 1.32

Levi 2.51 ± 0.18 0.46 ± 0.076 0.45 ± 0.06 9.51 ± 1.26

Three Hump 2.18 ± 0.23 0.46 ± 0.09 0.40 ± 0.05 9.39 ± 1.16

Easom 2.20 ± 0.23 0.46 ± 0.08 0.40 ± 0.04 9.44 ± 0.91

S. Tang 2.16 ± 0.18 0.47 ± 0.08 0.41 ± 0.04 9.5 ± 0.78

Schaffer 2.21 ± 0.21 0.44 ± 0.09 0.40 ± 0.05 9.09 ± 0.70

Although RBMs have been extensively used in the last years for so many
tasks, such as image classification and speech recognition, they are parameter-
dependent, which may affect the final results. As far as we are concerned, only
a few works have considered optimizing RBMs by means of meta-heuristic tech-
niques [15–17]. In addition, we have not observed any work that attempted at
using quaternion-based optimization in the context of RBMs fine-tuning.

In this section, we considered optimizing four parameters concerning the
task of binary image reconstruction: n ∈ [5, 100], η ∈ [0.1, 0.9], λ ∈ [0.1, 0.9] and
ϕ ∈ [0.00001, 0.01]. In this case, n stands for the number of hidden neurons, η is
the learning rate, λ denotes the weight decay parameter, and ϕ stands for the
momentum [8]. The learning rate is used to control the convergence, and λ and
ϕ are used to avoid oscillations and to keep the values of weights small enough
for the learning process.

Therefore, we have a four-dimensional search space with three real-valued
variables, as well as the integer-valued number of hidden units. Roughly speak-
ing, the proposed approach aims at selecting the set of RBM parameters that
minimizes the minimum squared error (MSE) of the reconstructed images from
the training set. After that, the selected set of parameters is thus applied to
reconstruct the images of the test set. We employed the well-known MNIST
dataset3, which is composed of images of handwritten digits. The original ver-
sion contains a training set with 60, 000 images from digits ‘0’–‘9’, as well as a
test set with 10, 000 images. Due to the computational burden for RBM model
selection, we decided to employ the original test set together with a reduced
version of the training set (we used 2 % of the original training set).

We conducted a cross-validation with 20 runnings, 10 iterations for the
learning procedure of each RBM, and mini-batches of size 20. In addition,
we also considered three learning algorithms: Contrastive Divergence (CD) [7],

3 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Persistent Contrastive Divergence (PCD) [20] and Fast Persistent Contrastive
Divergence (FPCD) [21]. Finally, the Wilcoxon signed-rank test [22] with signif-
icance of 0.05 was used for statistical validation purposes. Table 4 presents the
results concerning RBM fine-tuning, where PSO, HS, IHS and a random search
(RS) are compared against QHS.

Table 4. Average MSE values considering MNIST dataset.

CD PCD FPCD

PSO 0.1057 0.1058 0.1057

HS 0.1059 0.1325 0.1324

IHS 0.0903 0.0879 0.0882

RS 0.1105 0.1101 0.1102

QHS 0.0876 0.0876 0.0899

One can observe QHS obtained the best results using CD and PCD as the
training algorithms, meanwhile IHS obtained the lowest errors using FPCD. As
a matter of fact, FPCD is used to control possible deviations of the probability
distribution of the input data, and it may require more iterations for convergence.
Probably, QHS would require more iterations than IHS for some applications,
as displayed in Fig. 1. However, the best results were obtained by means of CD
and PCD using the proposed QHS technique.

6 Conclusions

In this paper, we proposed a Harmony Search approach based on quaternions,
being inspired by previous works that proposed modifications of the well-known
Firefly Algorithm and Bat Algorithm in the same context. The Quaternion Har-
mony Search was compared against näıve Harmony Search, Improved Harmony
Search and Particle Swarm Optimization in 10 benchmark functions, and it
has demonstrated to be able to escape from local optima as well as to con-
vergence faster (for some datasets). However, QHS pays the price of a higher
computational burden, since it maps each decision variable onto a 4-dimensional
space. Therefore, given an optimization problem with N variables, each possible
solution can be seen as a tensor of dimensions 4 × N in this space. Also, we
demonstrated the validity of quaternion-based optimization in the context of
RBM parameter fine-tuning.

In regard to future works, we intend to implement other variants of the Har-
mony Search using quaternions, as well as other swarm-based meta-heuristics,
such as Particle Swarm Optimization and Cuckoo Search. Additionally, we aim
at studying the behavior of QHS in high dimensional spaces, and also parallel
implementations of quaternion-based optimization techniques in both CPU and
GPU devices.
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