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Abstract. The aim of the paper is to show that linear dynamical sys-
tems can be quite useful when dealing with sequence learning tasks.
According to the complexity of the problem to face, linear dynamical
systems may directly contribute to provide a good solution at a reduced
computational cost, or indirectly provide support at a pre-training stage
for nonlinear models. We present and discuss several approaches, both
linear and nonlinear, where linear dynamical systems play an impor-
tant role. These approaches are empirically assessed on two nontrivial
datasets of sequences on a prediction task. Experimental results show
that indeed linear dynamical systems can either directly provide a satis-
factory solution, as well as they may be crucial for the success of more
sophisticated nonlinear approaches.
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1 Introduction

With the diffusion of cheap sensors, sensor-equipped devices (e.g., drones), and
sensor networks (such as Internet of Things [1]), as well as the development
of inexpensive human-machine interaction interfaces, the ability to quickly and
effectively process sequential data is becoming more and more important. Many
are the tasks that may benefit from advancement in this field, ranging from mon-
itoring and classification of human behaviour to prediction of future events. Most
of the above tasks require pattern recognition and machine learning capabilities.

Many are the approaches that have been proposed in the past to learn in
sequential domains (e.g., [2]). A special mention goes to recent advancements
involving Deep Learning [3-5]. Deep Learning is based on very non-linear sys-
tems, which reach quite good classification/prediction performances, very often
at the expenses of a very high computational burden. Actually, it is common
practice, when facing learning in a sequential, or more in general structured,
domain to readily resort to non-linear systems. Not always, however, the task
really requires a non-linear system. So the risk is to run into difficult and compu-
tational expensive training procedures to eventually get a solution that improves
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of an epsilon (if not at all) the performances that can be reached by a simple
linear dynamical system involving simpler training procedures and a much lower
computational effort.

The aim of this paper is to open a discussion about the role that linear
dynamical systems may have in learning in sequential domains. On one hand,
we like to point out that a linear dynamical system (LDS) is able, in many
cases, to already provide good performances at a relatively low computational
cost. On the other hand, when a linear dynamical system is not enough to
provide a reasonable solution, we show how to resort to it to design quite effective
pre-training techniques for non-linear dynamical systems, such as Echo State
Networks (ESNs) [6] and simple Recurrent Neural Networks (RNNs) [7].

Specifically, here we consider the task of predicting the next event into a
sequence of events. Two datasets involving polyphonic music and quite long
sequences are used as practical exemplification of this task. We start by intro-
ducing a simple state space LDS. Three different approaches to train the LDS are
then considered. The first one is based on random projections and it is particu-
larly efficient from a computational point of view. The second, computationally
more demanding approach, projects the input sequences onto an approximation
of their spanned sub-space obtained via a linear autoencoder naturally associated
to the LDS. For both approaches the output weights are obtained by computing
the pseudo-inverse of the hidden states matrix. Finally, we consider a refinement
via stochastic gradient descent of the solution obtained by the autoencoder-based
training scheme. Of course, this last approach requires additional computational
resources.

We then move to the introduction of non-linearities. From this point of view,
ESNs can be considered a natural extension of the first linear approach, since
non-linear random projections are used to define a coding of input sequences,
and pseudo-inverse exploited to estimate output weights. In addition, these are
the less computationally demanding models in the non-linear models arena. The
second considered family of non-linear models is given by simple RNNs, which
computationally are significantly more demanding. Here we experimentally show
that, at least for the addressed prediction task and the considered datasets,
the introduction of pre-training approaches involving linear systems leads to
quite large improvements in prediction performances. Specifically, we review pre-
training via linear autoencoder previously introduced in [8], and an alternative
based on Hidden Markov Models (HMMs) [9].

Finally, it is worth to notice that linear autoencoders have been exploited in a
recent theoretical work [10] to provide equivalence results between feed-forward
networks, that have simultaneous access to all items composing a sequence, and
single-layer RNNs which access information one step at a time.

2 Computational Models

In this section, we introduce the addressed learning task as well as the stud-
ied linear and non-linear models. Moreover, we present the different training
approaches for these models that we have experimentally assessed.
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2.1 Learning Task

In this paper, we focus on a prediction task over sequences that can be formalized
as described in the following. We would like to learn a function F(-) from mul-
tivariate bounded length input sequences to desired output values. Specifically,

given a training set 7 = {(s?,d%)|¢ = 1,...,N, s? = (x‘f,xg,...,x?q),dq =
(df,di,... ,d?q), x{ € R", d € R®}, we wish to learn a function F(-) such that
Vg, t F(s?[1,t]) = df, where s7[1,¢] = (x¥,x%,...,x}). Experimental assessment

has been performed in the special case in which dj = x{_ . Different learn-
ing approaches have been considered for both linear and non-linear dynamical
systems, as described in the following.

2.2 Linear and Non-linear Models

The linear model we use is a discrete-state dynamical system defined as:
ht :AA)(t-i-:B}'1t,17 (1)

Oy = C ht7 (2)

where h, € R™ is the state of the system at time ¢, A € R™*" B € R™*™,
C**™ are respectively the input matrix, the state matrix and the output matrix.
In addition, we assume hg = 0, i.e. the null vector.

Associated with this dynamical system, we consider a linear autoencoder
obtained by substituting Eq. (2) with

[E‘;_J = Ch,, (3)

where C € R(™*™)*™ and m takes the smallest value satisfying Egs. (1) and
(3). Specifically, the smallest value of m can be found as proposed in [11], i.e.
by factorisation of the state matrix H collecting as rows the state vectors of the
linear system described by Eq. (1). For the sake of presentation, let illustrate

such factorisation for a single sequence s = (x1,X2,...,X;)
h! x] 0 0 -0 AI :
hJ x) x] 0 ---0 A'B .
hl| _ |x) xI xT---0 ATB?
T T T T T T
h; x] x| | X4 X ATBI-1
N—— -
H = O

where, 2 € RX™! is the data matrix which collects the (inverted) subsequences
s[1,i], Vi = 1,...,1, as rows, and € is the parameter matrix of the dynamical
system.

The smallest value of m preserving all information about s is obtained by
thin svd decomposition of 2 = VAUT. In fact, by imposing that UTQ =1, i.e.
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the identity matrix, the resulting state space preserves all information and it
is of the smallest possibile dimension m = rank(ZE), i.e. the number of nonzero
singular values of A. Matrices A and B satisfying such condition can be obtained
by exploiting the fact that UUT = I, which entails £ = U. This equality can
be met using matrices

Pn nel = |:I’I’L><7l } , and Rn nel = |:O'n,><n(l1) O’ﬂX’n
’ On(—1)xn ’ Log-1)xn-1) On-1)xn

to define A = UTPmn‘l and B = UTRmn‘lU. Moreover, since H = VA, the

original data 2 can be fully reconstructed by computing HUT = VAUT = &,
which can be achieved by running the dynamical system

Xt _ AT
AT
BT
considering a set of sequences. It is enough to stack all the data matrices cor-

responding to sequences in the set, and padding with zeros when needed. For
example, given the set S = {s1,s2} with length(s;) = 3 and length(ss) = 2, the

starting from h;, i.e. C = [ } The very same result can be obtained when

data matrix corresponding to the set is defined as Es = |= :'S L
—soUnxn

It’s crucial to notice that the above method works exactly only in the case
where m is equal to the rank of =. Due to this fact, applying this method in
real world scenarios could be difficult due to the fact that the rank of matrix =
is very large. For this reason, in [8] a procedure for approximate computation of
the truncated thin svd decomposition of = to a preset value of m < rank(E) is
proposed.

The considered non-linear model is obtained by adding nonlinear functions

f() and g() to Egs. (1) and (2), i.e.:
h, = f(Ax,+Bh_y), (4)
6, = g(Chy). (5)
We have considered two specific instances of the above model: (i) when using it
as an ESN, f() as been instantiated to tanh() and g() to the identity function;

(i) when using it as a simple RNN, both f() and g() have been instantiated to
tanh().

2.3 Training Approaches

For the linear model described by Egs. (1) and (2), we consider three different
training approaches:

L1: Randomly generate matrices A and B; compute the corresponding state
matrix H for the full set of training sequences; define C = DHT—F7 where
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= [d},d3,...,d}Y] is the matrix collecting all the target vectors, and

HT is the pseudo-inverse of HT. The use of pseudo-inverse leads to the
minimization of the Mean Squared Error between target and actual output.
This approach corresponds to a ESN-like training for linear systems.

Lo: Compute A and B according to the procedure proposed in [8] for the linear
auto-encoder; compute the corresponding state matrix H for the full set of
training sequences; define C = DH'".

L3: Perform stochastic gradient descent (SGD) with respect to the regularized
error function

lq

1 N
- Ly 24+ Ry + R,
NL q:ljzl

where L = Zf]\;l lq, and

m m

Ry = |ZZAW\+|ZZBUI+\ZZCUI
ZZA +ZZB +ZZCW

with starting point given by the result of approach Lo (pre-training).

Concerning approach L1, a relevant issue is how to generate matrices A and
B. This issue has already be addressed in ESN. Indeed, in order to avoid problems
in computing the system state and ensure good results, a set of rules to follow for
random matrix initialization has been proposed. This set of rules is called Echo
State Property [12], and in particular they prescribe to ensure that the random
initialized matrices have spectral radius p less than or equal to 1. Unfortunately
computing the spectral radius of large matrices is computationally demanding,
so we use a much faster approach where we require A and B to have norm ||-||
(either L1-norm or L2-norm) less than or equal to 1. Since for any matrix M,
p(M) < ||M|, in this way the Echo State Property is preserved.

For the non-linear model described by Egs. (4) and (5), we consider four
different training approaches:

Ni: Adopt the Echo State Network training procedure that randomly initializes
matrices A and B according to the Echo State Property and only trains
the output weights using pseudo-inverse of the hidden representations, i.e.
compute C = DH", where H = [h}, h},... h}Y ] is the matrix that collects
all the hidden representations obtained by running the system, with random
matrices A and B, over all sequences in the training set.

Na: Perform SGD with respect to the regularized error function E7, with stan-
dard random initialization for matrices A, B, and C. This corresponds to a
standard RNN training procedure.
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N3: Perform SGD with respect to the regularized error function E7, initializing
matrices A and B according to the procedure proposed in [8] for the linear
auto-encoder, and C with DH™, where H is obtained by first running Eq. (4)
with initialized matrices A and B. This approach corresponds to the pre-
training one proposed in [8].

Ny: Perform SGD with respect to the regularized error function E7, starting
from matrices A, B, and C obtained by the following pre-training approach:
(i) train a linear HMM over the training set 7; (ii) using the obtained HMM,
generate Np; sequences that will constitute the pre-training dataset 7,,; (iii )
perform SGD with respect to the regularized error function Ez, using 7,
and standard random initialization for matrices A, B, and C. This approach
corresponds to the pre-training one proposed in [9].

3 Experimental Assessment

In this section we are going to compare the capability of the different systems.
The task chosen for testing the various models is the prediction of polyphonic
music sequences. The learning task consists in predicting the notes played at time
t given the sequence of notes played till time ¢ — 1. This task turns out to be
really interesting because of the nature of the data. Indeed the music sequences
are complex, and follow a multi-modal complex distribution that makes difficult
to perform the training on them. Moreover prediction of these sequences requires
a good capability by the network in managing long-term temporal dependencies.
This task has been already tested on different models [8,9,13]. The models and
associated training approaches have been tested on two different datasets:

— Nottingham dataset, that contains over 1000 Folk tunes stored in a special
text format. These tunes have a simple structure and the set of notes and
chords used is quite small.

— Piano-midi.de dataset that contains classic music songs that present a complex
structure and that use a wide range of different cords and notes. The songs
are longer than the tunes contained in the Nottingham dataset.

We have decided to use these two datasets because they contain very different
type of data. Moreover, they allow to stress the models in order to understand the
strengths and weaknesses of them. The sequences contained in the dataset are
the midi representation of music songs. Each song in the dataset is represented by
using a sequence of binary vectors. Each binary vector is composed of 88 values
that represent each single note in the piano-roll that span the whole range from
A0 to C8. The i-th bit of j-th vector is set to one only if the i-th note is played
at j-th time step of the considered song. The average number of bits set to 1
(maximum polyphony) is 15 (average 3.9). The music sequences contained in the
datasets have variable length. In particular, in Piano-midi.de many sequences are
composed of thousands of time steps. Statistics on the dataset (largest sequence
length, number of sequences, etc.) are given in [9].
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As performance measure we adopted the accuracy measure used in [13] and
described in [14]. Each dataset is split in training set, validation set, and test
set.

We first discuss the experimental results obtained for approaches where unsu-
pervised linear or non-linear projections are used to define the current state, i.e.
there is no supervised learning of the hidden state mapping, while supervision
is used for the hidden to output mapping via pseudo-inverse. These approaches
are: LDS-L1, LDS-L5, and RNN-A. Because of the unsupervised projections, a
larger state space is supposedly needed for these approaches to get good perfor-
mances. Subsequently, we present experimental results obtained for SGD-based
approaches, i.e. LDS-L3, RNN-Ay, RNN-£L3, and RNN-A}, where a smaller state
space is required.

3.1 Results of Approaches Using Unsupervised Projections

As discussed before, approaches that use random or unsupervised projections,
in principle, require larger state spaces in order to get good performances. A
profitable size for the state space also depends on the complexity of the dataset.
We have explored this issue by performing experimental tests using 500, 1000,
1500 hidden units for the Nottingham dataset, and 500, 1000, 2000 hidden units
for the Piano-midi.de dataset. The use of 2000 units takes into account the higher
complexity of the Piano-midi.de dataset. The considered approaches are LDS-
L1, LDS-L5, and RNN-V;. Experimental results for the Notthingam dataset are
shown in Fig. 1, while the results for the Piano-midi.de dataset are shown in
Fig. 2.

In general, it seems that random projection-based approaches (i.e. LDS-£;
and RNN-N7) are insensitive to the size of the state space, while this seems not to
be the case for LDS-L,. In fact, the autoencoder-based training approach seems
to be sensitive to the state space size. This fact can be explained by consider-
ing the nature of the training technique. Indeed, the autoncoder-based method
exploits the SVD decomposition in order to extract the most relevant informa-
tion from input and previous states. What happens by increasing the state space
size is that those features that have lower variance will be added to the state
representation. This allows to collect more relevant information in the state. In
other words, by using this approach with increasing size of state space, it very
likely that some new relevant features enter the state representation. Therefore,
since the size of state space is < rank(Z), the approach will improve its perfor-
mance (at least on the training set). For both datasets it seems that a further
increase of the state space size would keep improving performances. Finally, it
can be noticed that on the Piano-midi.de dataset the RNN-N; approach seems
to show some overfitting with the increase of state space size.

3.2 Results of Approaches Using Supervision and Pre-training

Here we present the results obtained for approaches exploiting supervision and
pre-training, i.e. LDS-L3, RNN-L5, and RNN-Aj3, and RNN-N;. Actually, all
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LDS-£, Nottingham Dataset
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RNN-A/; Nottingham Dataset
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Fig. 1. Results achieved for the Nottingham dataset. Each chart shows the accuracy
achieved by training LDS-£;, LDS-£L2, and RNN-N; with different state space sizes.
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Fig. 2. Results achieved by LDS Piano-midi.de dataset. Each chart shows the accuracy
achieved by training LDS-£;, LDS-£L2, and RNN-N; with different state space sizes.
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approaches use a form of pre-training except for RNN-Ls, which uses random
inizialization for the weights. Since full supervision is used for all approaches,
much smaller state spaces are used. Figure 3 reports results, for both datasets,
obtained for approaches LDS-L3, RNN-L5, and RNN-A3 using the same settings
and model selection procedure described in [8], while Fig.4 reports results, for
both datasets, obtained for approaches RNN-A}, and RNN-AN>, where the last
one is considered for the sake of comparison, using the same settings and model
selection procedure described in [9].

From Fig. 3 it is clear that the use of pre-training exploiting the linear autoen-
coder allows to achieve better results in less epochs. Indeed, in both datasets the
pre-trained versions of the RNN obtain an higher accuracy regardless the num-
ber of hidden units. Moreover a very good level of accuracy can be reached
in a lower number of epochs. The LDS-L3 approach (i.e., LDS pre-trained via
linear autoncoder initialization and then fine-tuned via SGD) on Notthingham
dataset achieved results similar to a non-linear RNN model. However, the same
approach has a totally different behavior on Piano-midi.de. In that case, after a
few training epochs, the accuracy quickly decreases under the accuracy achieved
by randomly-initialized systems. This behavior is due to the high complexity of
sequences in Piano-midi.de.

Figure4 presents the results obtained when a Hidden Markov Model [15]
is used to pre-train the RNN. The curves, in this case, also consider the pre-
training time needed to create the HMM, to generate the artificial dataset, and
to train the RNN on this dataset. This is why curves for RNN-A}; do not start
from the origin. Obtained results are quite good, especially for the Notthingham
dataset. Even in this case the use of a linear (probabilistic) model to pre-train
the network allows to obtain significantly better results on both datasets, in less
time with respect to a standard RNN, i.e. RNN-A5. Unlike the previous case,
by using the HMM-based approach the pre-trained RNN, after the pre-training
phase, starts the fine-tuning phase from a significantly better level of accuracy
than RNN-A5. This behavior is due to the fact that the HMM-based pre-training
phase exploits a training phase on a different dataset, that allows to start the
optimization of the network parameters already during pre-training.

3.3 Discussion

In this section, we try to summarize the experimental results obtained for all
the different approaches. In Fig. 5 we report the performances, after model selec-
tion via the validation sets, of all the studied approaches on the two considered
datasets. The reported performances for RNN-A; is taken from [13], since those
values are better than the ones we where able to achieve.

The results obtained on the Nottingham dataset seem to show that bet-
ter performances can be obtained thanks to pre-training. In fact, both linear
and non-linear approaches with pre-training return good results, while all the
remaining approaches get more or less the same lower performance, regardless of
the linearity or non-linearity of the considered model. Among approaches that
exploit pre-training, non-linear models get a slighter better performance. It must
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Nottingham Test Set
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Fig. 3. Test curves on the two datasets by models LDS-L3, RNN-N2 and RNN-Aj;.
Curves are sampled at each epoch till epoch 100, and at steps of 100 epochs afterwards.

however be noticed that the computationally less demanding linear model with
pre-training already returns a quite good performance.

For the Piano-midi.de, the situation seems to be quite different, since the best
performers are based on random projections, independently from the linearity or
non-linearity of the model. Pre-training based approaches seem, for this dataset,
to be less effective. This may be due to the fact that the Piano-midi.de owns a
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Nottigham Test Set
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Fig. 4. Test curves obtained for the two datasets by using RNN-N2 and RNN-N; with
250 hidden units. Each curve starts at the time when the pre-training ends. The labels
associated with RNN-N; curves are composed by three identifiers nju ny n3, where n; is
the number of used hidden units, n, is the number of sequences generated by the HMM
with 10 states, and nsz is the length of such sequences. Curves that refer to RNN-N3
are identified by the number of used hidden units. The dotted vertical line is used to
mark the end of training of RNN-N2 after 5000 epochs.
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Fig. 5. Comparison of the performances obtained by all the studied approaches. For
each model the charts report the accuracy achieved on test set. The number reported in
brackets is the number of hidden units selected by model selection using the validation
set. The results for RNN-N> are taken from [13].
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higher complexity, and it is likely that far larger state spaces are needed to reach
better performances. In fact, it can be noted that approaches based on random
projections, either linear or non-linear, exploit a state space that is tenfold larger
than the ones used by SGD-based approaches.

Overall, it is clear that the adoption of a pre-training approach allows to
systematically improve over the standard RNN approach, i.e. RNN-A5.

From a computational point of view linear approaches are far more efficient
than non-linear ones, with the only exception of RNN-A/1, that does not require
training of the hidden state mapping.

4 Conclusion

In this paper, we have addressed a issue that is often disregarded when consid-
ering prediction tasks in sequential domains: the usefulness of linear dynamical
systems. We empirically studied the performances of three linear approaches and
four non-linear approaches for sequence learning on two significantly complex
datasets. Experimental results seem to show that directly or indirectly (as basis
for pre-training approaches) linear dynamical systems may play an important
role. In fact, when used directly they may by themselves return state-of-the-art
performance (see for example LDS-L3 for the Nottingham dataset) while requir-
ing a much lower computational effort with respect to their non-linear counter-
part. Moreover, even when linear models do not perform well, it is always possible
to successfully exploit them within pre-training approaches for non-linear sys-
tems. Thus, it is important, when facing a prediction task for sequences, to take
in full consideration the contribution that linear models can give.
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