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Abstract. In software project planning project managers have to keep
track of several things simultaneously including the estimation of the
consequences of decisions about, e.g., the team constellation. The appli-
cation of machine learning techniques to predict possible outcomes is
a widespread research topic in software engineering. In this paper, we
summarize our work in the field of learning from project history.

1 Introduction

The use of software repository data to investigate software evolution and for pre-
dictive studies is a wide-spread research topic, that spawned whole conferences
like the MSR! in the software engineering community. The general approach
depicted in Fig. 1 is similar for all application scenarios. First, the different data
sources, i.e., repositories, are selected and the required data for the purpose of the
investigation are combined. Researchers make use of the version control systems,
issue tracking systems, mailing lists and similar systems as repositories. Second,
a mental model of the software system is build which is filled with informa-
tion from the repositories. These two steps can be summarized as data retrieval
and modeling. Then, the usage of applicable tools for analysis accomplishes the
mining process.

For almost a decade, our research group is interested in the application of
theoretical methods to address problems from software repository mining.

— We applied a generalization of Probably Approximately Correct (PAC) learn-
ing to optimize metric sets [5].

— We worked on defect prediction in a cross-project context which leads to trans-
fer learning problems [3,4].

— We developed an agent-based simulation model for software processes with
automated parameter estimation [7,8].

— We created a model of the developer contribution behavior based on Hidden
Markov Models (HMMs) [6].

— We implemented a smart data platform which can combine data collection
and analysis through machine learning [9].

! http://msrconf.org)/.
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Fig. 1. Mining software repositories (adopted from D’Ambros et al. [2]).

2 Optimization of Metric Sets with Thresholds

Our first contribution is an approach to optimize metric sets for classification
using a threshold-based approach. Threshold-based classifications are an impor-
tant tool for software engineering as they are easy to interpret by both developers
and project managers and can be used to, e.g., define coding guidelines. In our
work [5], we demonstrate that very few metrics are sufficient to apply threshold
based approaches, if the metrics are selected carefully and the thresholds are
optimized for the smaller metric set. To achieve this, we use a combination of a
brute force search of the potential metric sets combined with a generalized PAC
learning approach [1] to determine optimal thresholds.

3 Cross-Project Defect Prediction

Accurate defect prediction can be used to focus the effort of quality assurance
and, thereby, ultimately reduce the costs of a project while still ensuring a high
quality product. Cross-project defect prediction deals with the problem of using
data from outside of the project scope where the prediction is applied to, i.e.,
across project context. Hence, cross-project defect prediction is a transfer learn-
ing challenge. Within our work, we proposed an approach for improving predic-
tion models based on selecting a subset of the training data through relevancy
filtering [3]. Using the filtered training data, standard classification models, e.g.,
Support Vector Machine (SVM), Naive Bayes, and Logistic Regression were used
to predict defects. Moreover, we provided the research community with a tool
to benchmark prediction results [4].

4 Software Process Simulation

For the simulation of software processes we consider several facets of software
processes over time and their impact on software quality. The general idea for
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building software process simulation models is to investigate repositories with
the aim to find patterns which can describe evolutionary phenomena. For this,
we applied statistical learning and machine learning, e.g., for the regression of
growth trends. Our approach is agent-based, with the developers as active agents
working on the software artifacts as passive agents. With our model, we simu-
lated system growth, bugs lifespan, developer collaboration [7], and software
dependencies [8].

5 Developer Contribution Behavior

Developers act in different roles in development projects, e.g., as core developer,
maintainer, major developer or minor developer. We use of HMMs to describe
involvement dynamics and the workload for the different developer types switch-
ing between different states (low, medium, and high) [6]. We take several actions
of developers into account to model their workload: the monthly number of
commits, bugfixes, bug comments, and mailing list posts. Figure2 illustrates
the learning process. We start with a sequence of monthly activity vectors as
observations. We use the threshold learner described in Sect.2 to classify the
observations into low, medium, and high for each metric and with a majority
vote for each observation. With the Baum-Welch and the Viterbi algorithm we
calculate the transitions between the involvement states (e.g., low involvement
to medium involvement) and the emissions for all states (i.e., the workloads).
We build a HMMs for each developer of a project, as well as one general model
for all developers. This way, we can describe the activity and workload of devel-
opers dynamically, which we will use to extend our simulation model to allow
for changes in the project team during the simulation.
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Fig. 2. Learning of developer’s involvement state sequence.

6 Mining and Analysis Platform

A current problem in the state of practice of mining software repositories is
the replicability and comparability of studies, which is a threat to the external
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validity of results. To address this, we created the prototype SmartSHARK [9].
SmartSHARK mines data from repositories automatically and provides users
with the ability to analyze the data with Apache Spark, a big data framework.
Through the MLIib of Apache Spark, we enable users to perform machine learn-
ing tasks on the collected data. Current examples on how to use the platform
are, e.g., different models for defect prediction as well as a simple approach for
effort prediction. SmartSHARK is available as a scalable Cloud platform that
will provide a constantly growing amount of project data and, thereby, enable
large scale experiments. By sharing Apache Spark jobs, the research become
replicable and comparable.

7 Conclusion

Within our research, we show the manifold possibilities to apply machine learning
techniques to problems from software engineering, ranging from PAC learning
to determine thresholds over the transfer learning challenge cross-project defect
prediction to simulation parameter estimation and modeling developers through
HMDMs, culminating in a smart data platform for software mining. We invite
machine learning researchers to use their expertise to advance the state of the
art of software engineering.
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