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Abstract. Learning from data streams is a challenge faced by data
science professionals from multiple industries. Most of them struggle
hardly on applying traditional Machine Learning algorithms to solve
these problems. It happens so due to their high availability on ready-
to-use software libraries on big data technologies (e.g. SparkML). Nev-
ertheless, most of them cannot cope with the key characteristics of this
type of data such as high arrival rate and/or non-stationary distribu-
tions. In this paper, we introduce a generic and yet simplistic framework
to fill this gap denominated Concept Neurons. It leverages on a com-
bination of continuous inspection schemas and residual-based updates
over the model parameters and/or the model output. Such framework
can empower the resistance of most of induction learning algorithms to
concept drifts. Two distinct and hence closely related flavors are intro-
duced to handle different drift types. Experimental results on successful
distinct applications on different domains along transportation industry
are presented to uncover the hidden potential of this methodology.

Keywords: Supervised learning + Online learning - Concept drift -
Perceptron - Stochastic gradient descent - Regression - Residuals -
Transportation

1 Introduction

Today’s hype around big data technologies floods the market of professionals
with distinct backgrounds and yet a common job role: data scientist. Typically,
they are actually very experienced on one of data science related fields (e.g. soft-
ware engineering). However, they also commonly lack on the theoretical back-
ground required to adequately use more than off the shelf Machine Learning
techniques and/or methodologies on their daily tasks.

The requirements for a more advanced framework varies naturally from task
to task. Hitherto, this issue is more evident when a data mining (DM) task
requires real-time learning. There are two key issues that empower such fact
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on these problems: (i) the high sample arrival rate and the constant and/or (ii)
bursty drifts on the underlying probability distributions. These characteristics
typically disallow the application of most of the traditional Machine Learning
techniques (which assume finite training sets and/or stationary distributions) [1].

Recently, some simple approaches to handle this phenomenon have been scat-
terly introduced on different industries. Two of the most common ones are (i)
windowing [2] and (ii) weight-based model selection [3]. The first approach con-
sists into updating our model constantly based on every single arrived sample
(i.e. incremental learning) or bunch of the most recent ones. The second one con-
sists on combining multiple models through an weighted average of their outputs
based on their recent performance. Although there is a growing interest for this
type of methods followed by successful examples of their inclusion on modern
large-scale Machine Learning libraries such as Mahout and SparkML (e.g. alter-
nating least squares using stochastic gradient descent) — this movement is not
certainly keeping up with the explosively increasing speed of industries needs
to answer this particular problem. The most well-known exception is from the
recommender systems area and, namely, the winning approach of NetFlix com-
petition: Koren [4] pointed the temporal dynamics and concept drift as one key
core ideas of their solution.

This paper intends to fill this gap by promoting a simplistic and yet effec-
tive framework that can handle drift on regression problems. Hereby, it is named
Concept Neurons. The intuition behind its name comes from the need of a learn-
ing schema that can resist to concept drift and/or, in extremis, to a total absence
of concept (i.e. bursty changes). In the context of predictive modeling in data
streams, we have a two-stage (i.e. predict and correct) context-aware model [5]:
firstly, a predition is made using a given offline/online learner. Secondly, the
residuals distribution is monitored with a continuous inspection schema of inter-
est. If a drift alarm is triggered, the prediction’s residual is used to update the
model whenever possible. Alternatively, we can also update directly the model
output for a more bursty reaction to drift.

This schema can cope with most of traditional Machine Learning and/or time
series forecasting methods. It was purposely designed on a simple fashion, target-
ing professionals who have not a strong background on fundamental statistical
learning and /or optimization theory. By doing so, we aim to enlarge the pool of
practitioners, increase the level of the results of their work as well as the quality
of industrial DM pratices in general. Although not bringing a fundamental theo-
retical contribution, this paper proposes a fully functional idea, simple to under-
stand, to use and with a tremendous applicational potential across industries.
Besides the formal description of the present framework, this paper includes two
concrete successful examples of their application on the transportation industry
a field where the drift issues are classical problems — including operational control
of taxis [6,7] and of highway networks [8]. Consequently, our contributions are
two-fold: (1) to uncover applications of Supervised Learning with drift-handling
mechanisms with real-world impact while (2) generalizing a framework that can
be adopted by any practitioner on similar problems (from a fundamental point
of view), regardless of his/her level of expertise or applicational domain.
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The remaining of the manuscript is structured as follows: Sect.2 depicts a
problem illustration, as well as a brief overview on the related work. The third
section formally describes our approach while Sect. 4 describe the two approach
real-world case studies with distinct concept drift natures. Fifth Section describes
our experimental test-bed and the obtained results on the abovementioned prob-
lems. Finally, conclusions are drawn.

2 Issues on Learning from Non-Stationary Distributions

Real-time DM involves to learn with one (or more) data sources providing sam-
ples in a sequential fashion. Typically, this type of data possesses unique and
complex characteristics to deal with on carrying out Supervised Learning tasks.
Some classical examples are high arrival rate, high labeling cost (e.g. [9]) and
particularly, non-stationary distributions.

The non-stationarity phenomena can be translated in multiple ways. A com-
mon scenario is on dealing with datasets containing samples generated from
multiple single/joint distributions. Although it is an issue for a vast majority
of real-world DM problems (and datasets), it can also be neglected on most of
the times to simplify potential paths to their solutions. On the top of the tra-
ditional stationarity assumption, many learning algorithms go one step further
by assuming a functional form of the dependences and/or a particular residual’s
distribution (e.g. Gaussian Mixture Models with Expectation-Maximization for
clustering; Ordinary Least Squares for regression). Albeit these facts, industrial
practitioners rarely test the validity of these assumptions before applying these
off-the-shelf Supervised Learning methods. It happens so because this approx-
imation is fairly good for most of the traditional DM problems. Moreover, the
trade-off between the time invested on getting alternative solutions and the per-
formance gains often does not pay the effort back. Consequently, a question
arises: why should we care about non-stationarity on real-time DM problems?

The main reason to focus on this issue lies on its timewise definition.
Gama et al. [1] characterizes concept drift into four categories: (i) abrupt, (ii)
incremental, (iii) gradual and (iv) recurrent. Fig. 1 illustrates a clear example
of the latter one using time series data of integers (i.e. highway flow counts).
In this particular example, it is somehow safe to assume that the underlying
distribution, i.e. p(y|x) is gaussian but for particular days/timespans (e.g. peak
hours). This phenomenon is triggered by some sort of exogenous event (e.g. (iv)
excessive demand load, (ii) car breakdown or (i) fast weather change) which
is unexpected, absent of our data or somehow difficult to model and/or detect
beforehand. In many applications, these time periods are actually the critical
ones from a business perspective (e.g. peak-hours on transportation, prime time
on media, happy hour/discounts on sales/retail).

Three of the most traditional techniques to deal with drift on DM tasks
can be enumerated as follows: (1) dynamic model selection (i.e. meta-learning),
(2) windowing and (3) re-training. In (1) model selection, we basically have a
bucket of models which are combined dynamically along the time. Two com-
mon approaches of this type are weighting models [3] or categorizing samples
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using a meta-classifier [5]. The first one is simple to understand and to imple-
ment as well, being a good answer to (ii) incremental drifts. However, it can
arguably deal with (i) abrupt drifts because, typically, the models in the bucket
are only periodically updated. A meta-classifer one can handle either (i) abrupt
or (iv) recurrent drifts by modeling samples into categories (which have asso-
ciated labels). Nevertheless, an high level of expertise is required to put such
learner in place. On the other hand, (2) windowing can help on dealing either
with (i) incremental and/or (iii) gradual drifts. It consists on considering one
or just a bunch of the most recent samples to learn the models [2]. Although
being quite simple, this approach is pointed by Gama et al. [1] to be slow on
detecting (i) abrupt drifts. Model re-training (3) is the most simplistic approach
to this problem and one of the most used among industry (e.g. wind power
forecasting [10]). Often, it is combined with windowing for engineering-related
purposes (e.g., see [11]). Although being pratical and require almost no tuning
effort besides the window size, its blind reaction to drift — as the model update
occurs independently on the samples content — represents a major drawback,
thus resulting in a considerable probability of under/overfitting issues.

Our learning schema aims to combine the best of the abovementioned prat-
ices on a simple fashion. The intuition behind it is to provide a very practical
mechanism that can be build upon existing and somehow reliable Knowledge
Discovery pipelines with proven results to improve their performance even fur-
ther. The first big advantage on doing so is to re-use the existing DM frame-
works (proprietary or not), avoiding costly re-engeneering tasks. By leveraging
on the existing infrastructure (both physical and intellectual), this framework
is easily adoptable by any industrial practitioners facing problems with similar
drift-related issues.

3 Concept Neurons

From a high-level perspective, our algorithm operates in two stages: firstly, the
residuals distribution produced by a given predictor is monitored by a continu-
ous inspection schema of interest for drift detection purposes. This step aims to
assess if the assumptions (here denominated as Concept) used to learn it (e.g.
stationarity) are being violated. Secondly, a residual-based version of the para-
meter’s inverse gradient is used to update the model whenever possible and/or
directly its output. The second stage is only performed whenever an alarm is trig-
gered on the first one, thus activating these updates (here conceptually denoted
as Neuron).

The present methodology comes in two flavors: (I) asynchronous and (II)
synchronous. The first aims on (I-2) (re-)training offline a near-optimal explana-
tory model at regular time intervals and (I-2) keep updating it incrementally in
a stochastic fashion using the produced residuals. By extending the offline learn-
ing process through an incremental one, we purposely skip the monitoring stage
by blindly assuming that the drift is constantly happening. It aims to handle
(ii) incremental and (iii) gradual drifts. The second one consists on assuming
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(II-1) an explanatory learning model (learned either offline or online) to be in
place. Then, (II-2) a continuous inspection schema is used to monitor the recent
residual’s distribution (i.e. windowing) and trigger alarms. Whenever an alarm
is triggered, a corrective neuron is activated to start adding up small percentages
(i.e. learning rate) of the prediction’s residuals to our model’s output. This rate
can be increased as novel alarms are triggered or deactivated instead in absence
of an alarm for a long period (i.e. here denoted activation period). This mecha-
nism aims to handle (iv) recurrent drifts which are limited in time or even bursty
ones (when coping with an online learning model). This section describes this
methodology fundamentally, departing from its roots in optimization theory till
its practical application to Supervised Learning problems.
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Fig. 1. Timewise drift illustration on a highway flow count data using kernel density
estimation (KDE). Globally, the samples approximate a theoretical gaussian density
curve. However, this is not true for some day periods due to drifts.

3.1 Stochastic Learning from Gradients

Let y1,...,y: : i € R, Vi € {1..t} denote the values of target variable of interest
Y observed till current time ¢, e.g. train passenger load, and zi,...,x; : x; €
R", Vi € {1..t} be the values of an n-dimensional feature matrix X € R"*!.
Regression problems aim to infer the following function:

f:x;,0 — R such that f(z,0) = f(z;) =y, Vo, € X,y €Y (1)

where f(x;) denotes the true unknown function which is generating the samples’
target variable and f (zi,0) = g; be an approximation dependent on the feature
vector z; and an unknown parameter vector § € R™ (given by some induction
model M). Typically, M determines the functional form of f (z,0) as well as
the values of 6 by formulating a data-driven optimization problem as

f(wia 9) = argAmin Zz:l J(e? f7 L, yl) (2)
7,0

where J denotes a cost function of interest and ¢ the number of samples in the
dataset. Standard gradient descent is a classical solver. Lets assume that we
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depart from a given (e.g. random) initialization of our parameter set, i.e. 6y.
The method updates 6 iteratively until a certain stopping convergence criteria
is met (e.g. € where /g > €) as follows

0=0-noE[JO, f,X,Y) (3)

where the above expectation is computed with respect to the abovementioned
cost and 7 denotes our constant learning rate (i.e. an user-defined parameter).

By doing so, we expect to converge to a local minima close enough to our
global optimum. Obviously, this does not cope well with an infinite stream of
data as our own (i.e. t is being constantly increased — t = +00). A common way
to handle this issue is with a stochastic learning (as known as SGD - Stochastic
Gradient Descent) of 6. Instead of computing the expectation iteratively, we
compute the inverse gradient, i.e. 7y with respect to the most recent labeled
sample (x¢_1,y+—1), thus redefining recursively the Eq. 3 as follows

0; =01 —nVo,_, J(Oi—1, fowio1,i-1) (4)

The cost function most commonly used for regression problems is the well-known
I5 loss. If it is assumed to be in place and for a linear! f, we obtain:

. . . 1 .
J(O0s, frwi,y:) = La(0s, f,2i,9:) = La(9i,v:) = i(yi —4;)? (5)

0; =0;—1 —(yi—1 — Gi—1)2x" 0;-1 = 0;_1 - (L = n(ri—1) - 27) (6)

where r; denotes the prediction’s residual for sample (z;,y;) at time 7.

3.2 Asynchronous Concept Neurons

In a real-time context, the simple computation of the 7y, can be problematic
(e.g.: missing feature values, noise, n >> 0). Therefore, we propose a more naive
approach by putting in place the following assumption:

Assumption 1. Convergence is still possible at a smaller rate when done inde-
pendently of X for a sufficiently small value of n and an adequate M.

By doing so, we assume that most of the error is somehow proportional to the
values of the parameter set. Formally, we transform Eq. 6 as follows:

0; = 0;i—1(1 —n(ri-1)) (7)

One of the assumptions of SGD is that samples are drawn independently and are
identically distributed (i.i.d.). From a theoretical point of view, drift is a violation
of it. One way of circunventing this issue is to not keep a static learning rate
but rather a time-variant one (i.e., n(t);, e.g. [12]). The main intuition behind

! Despite the linear assumption (introduced for demonstrative purposes), SGD can
also work on non-linear problems departing from a convex loss.
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this idea is that the distribution is stationary through a limited period of time.
Therefore, we can speed up/slow down convergence momentum according to our
present learning context.

Departing from this intuition, we introduce a very simple idea in the
Algorithm 1 based on three simple stages: (1) firstly, learn offline (using M)
a model f (0, X) based on the samples obtained on recent window of time T
(2) Update 6 incrementally using the model residuals; (3) re-compute f(6, X)
after T, periods. T', T;, and n are user-defined parameters and must be tuned
for each particular application. Naturally, this approach is expected to handle
poorly recurrent and/or bursty drifts as there is no drift detection mechanism
embedded.

3.3 Synchronous Concept Neurons

To handle recurrent and/or abrupt drifts, we propose a slight change of the pre-
sented learning schema. Intuitively, the idea is that if the concept is dramatically
different, we do not have time to learn it yet (and consequently, our current model
approximation to the target function is quite poor). Let A(R, ¢, 5, t) € {0,1} be
a drift detection algorithm of interest where R = ry, ..., denotes the set of
residuals, ¢ denotes a sliding window size, 5 stands for generic user parameter
set of interest specific for each possible type of A and ¢ the current timestamp.
Whenever A = 1, the model’s output is corrected by re-engineering Eq. 7 as

Ui = f(24,0;) —ni(ri-1) (8)

where 7 is time-dependent from now on, i.e. 7;. If a; = 1, then the learning rate
is initialized as 7; = mp where 79 is an initial learning rate set by the user. At
this point, we are not fully trusting on what f is producing as outputs. For most
of applications, it is recommended a conservative approach on the definition of
n;, 1e. m; << 0.

Input: M - offline induction method, T - training window size, T, - statonarity
cyclic period; 7 - learning rate, X, Y - dataset;
Output: f - approximation function, 6; - parameter vector
W «— @; //Initialization
foreach i — 1..t do
W «— W U (x4,y:); // builds offline training set
if (T, mod i ==0) then
| f,0: — M(W); // learns f and the parameter set 6; from data
end
if (Tw >=tAT, modi>0) then
0; = 0;—1 — n(ri—1)0i—1; //update parameter set
drop an element from the tail of W; //forgets outdated samples
end
end
Algorithm 1. Pseudocode for Asynchronous Concept Neurons (ACN).
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Whenever a novel drift occurs, 7; is updated exponentially as n; = n;_1(1+7)
where v € [0, 1] denotes a reactivability rate defined by the user. This methodol-
ogy is not designed to update our models with respect to the observed drift - but
rather to handle it instead. Intuitevely, in real-time DM problems, if we are facing
a recurrent drift, M will be likely to still be useful in the future (as the validity
of our current underlying distribution is limited in time). If facing an abrupt
drift, this schema will slow down the performance deterioration of the model
produced by M but it will not avoid standalone a further (re-)training stage.
Consequently, we assume these drifts as time-limited phenomenons. Therefore,
the decrease of 7; is operated abruptly as:

t

Zi:t_ﬁ A(R,¢,0,i) =0 (9)

In the present context, M can either be an offline or an online induction model.
Algorithm (2) depicts the entire schema.

4 Case Studies

Hereby, we approach two different case studies in transportation industry: (A)
demand prediction for taxi networks and (B) road traffic congestion prediction
in highway networks. The target clients of the (A) are taxi dispatcher’s and/or
self-organized operators in the sector while (B) targets transit authorities and
their road traffic management centers.

Case Study A is focused on predicting taxi-passenger demand for short-term
horizons of P—minutes in a real-time setting [6,7]. The key idea is to improve
the taxi driver’s mobility intelligence through a live decision support system
advising on best passenger-finding strategy to adopt in each moment (e.g. which
is the stand/street/city area that he/she should head to in order to pick up the
next passenger).

Case Study B is focused on predicting road Traffic congestion (i.e. incidents).
It is possible to divide congestion in two types [8]: (i) recurrent, which happens
on a regular basis within a given periodicity, e.g. peak hours on every Friday’s
evening, and a (ii) stochastic one, which is provoked by an external event, e.g.:
car accidents. The problem is to predict the flow count (number of vehicles that
traversed a sensor per unit of time) and occupancy rate (percentage of the time
period that a car is over a sensor) on a short-term horizon of P—minutes. Then,
a scenario-based threshold is considered to transform those discrete signals into
binary ones (i.e. congestion/no congestion).

Brief summaries of the datasets are provided below. Additional details about
preprocessing tasks conducted over these datasets can be found in Sects. 3.2 and
4 of [6,8] for case studies A and B, respectively.

4.1 (A) Taxi-Passenger Demand Prediction

Our data samples are a stream of timespamped location of events (e.g. pick-up,
drop-off) obtained from taxi company (which runs 441 vehicles) operating in
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Input: f - approximation function, 6 - parameter set, ¢ - monitoring window
size, 1o - initial learning rate, v - constant reactivability rate, § -
activation period, A - drift detection algorithm; X, Y-dataset

Output: g - corrected predicted outputs

W «— () and 11 « 0;

foreach i — 1..t do

i <= Mi—1;

if (A(R,T,d,i) ==1) then

if (n; > 0) then

| mi — mi—1(1+7); //increase the learning rate
else

| m: < no; // activate the prediction corrections
end

end

Ui — f(acl, 0;) —mi(ri—1); // correct our prediction output

W «— W U (r;—1); // add elements to the head of W

if ((W|==1T) then

| drop an element from the tail of W;
end
if (3i_,_5A(R,¢,8,j) ==0) then

| m: < 0; // deactivate the prediction corrections
end

end
Algorithm 2. Pseudocode for Synchronous Concept Neurons (SCN).

Porto, Portugal between August 2011 and April 2012. This city is the center of
a medium size urban area with 1.3 million habitants (see Fig.2).

The drivers operate in 8 h shifts: midnight to 8am, 8am—4pm and 4pm to
midnight. Each sample arrives has six attributes: (1) TYPE relative to the type
of event reported and has four possible values: busy - the driver picked-up a
passenger; assign the dispatch central assigned a service previously demanded;
free the driver dropped-off a passenger and park - the driver parked at a taxi
stand. The (2) STOP attribute is an integer with the ID of the related taxi
stand. The (3) TIMESTAMP attribute is the date/time in seconds of the event
and the (4) TAXI attribute is the driver code; attributes (5) and (6) refer to the
LATITUDE and LONGITUDE corresponding to the acquired GPS position.

Table 1 details the number of taxi services demanded per daily shift and day
type. Additionally, we can state that the central service assignment is 24 % of
the total service (versus the 76 % of the one demanded directly in the street),
while 77 % of the service demanded directly is dispatched in a stand (and 23 % is
assigned in cruising time). The average driver waiting time in a stand is 42 min
while the average cruising time for a service is only ~ 12 min.

4.2 (B) Highway Congestion Prediction

This dataset was collected through a traffic monitoring system of a major free-
way deployed in an Asian country. The studied system broadcasts a stream of
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Fig. 2. The spatial distribution of the 63 taxi stands used by this fleet in Porto.

Table 1. Taxi services volume (Per Daytype/Daily Shift)

Daytype Group | Total Services Emerged | Averaged Service Demand per Daily Shift

Oam to 8am | 8am to 4pm | 4pm to Oam
Workdays 957265 935 2055 1422
Weekends 226504 947 2411 1909
All Daytypes 1380153 1029 2023 1503

traffic-based measurements in real-time with distinct temporal granularities
(depending on the type of sensor’s installed on each lane). Each sensor mea-
sures traffic flow, lane occupancy rate and instantaneous vehicle’s speed. The
largest time granularity (p = 5min) was used to normalize all the collected time
series into a standard granularity level.

This network is composed by 106 sensors including both freeway’s traffic
directions. The covered segment’s length is ~ 20 km while the sensor’s sections
are deployed each 500 m. Data was collected through 3 non-consecutive weeks.

Figure 3 depicts an illustration of the dataset. The (B)-figure contains one
day of data from a particular section. Conversely, the other chart displays five
sample-based p.d.f. obtained using a (gaussian) kernel density estimator over all
the flow measurements available — one global and four specific for each of the
considered timespans (divided by Periods I-1V, identified by the same display
order as Fig. 3 legend). Table 2 details descriptive statistics. The top 10 sensors
regarding the number of observed incidents are highlighted. As it is observable,
the occupancy rate is higher in these sensors. Not surprisingly. the most critical
period is the morning peak (P. IT), comprised between 6:40 and 13:20.
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Fig. 3. Illustration of the dataset. The B-figure illustrates data from one-section on
one particular day, while the other one depicts a flow-based p.d.f. estimation using all
available data.

Table 2. Descriptive Statistics on all sensors vs. top-10 incindent ones.

Quantity Flow Occupancy

Mean | SD Min. | Max. Mean | SD Min. | Max.
All day 9.9486 | 3.6514 | 0.1811 | 24.4104 | 2.1409 | 1.3276 | 0.0726 | 13.9967
Top 10, all day | 8.2397 | 3.7001 | 0.1600 | 36.7667 | 3.4303 | 4.0282 | 0.0700 | 23.5567

5 Experiments

On both case studies, we assumed statistical independence among different taxi
stands and road sections, respectively. Problem A consists into forecasting one
term ahead (i.e. passenger demand count on a specific stand during the next
P-minutes). To do it so, we chose a classical method M: Auto Regressive Inte-
grated Moving Averages (ARIMA). For each stand, the ARIMA model was firstly
set (and updated each 24 h) by detecting the underlying model in place from the
time series of each stand during the recent T' = 15 days (i.e. namely, the cor-
responding 15 x 2 x 24 = 1440 periods). For that purpose, an automatic time
series function was employed, i.e. auto-arima [13].

The parameters for each model are generally fit for each period/prediction
using a generalized least squares (GLS) solver. Even considering that ARIMA
use just a few bunch of recent samples T and low-dimensionality models (i.e.
small n), the optimal fitting of its parameters can represent an unnecessary
time-consuming process, i.e. O(N?). In problem A, we can be handling with
hundreds of requests on a short amount of time (e.g. 4 different drivers dropping-
off a passenger in an interval of two minutes will generate requests to process a
total of 252 predictions/GLS — which is equivalent of doing roughly 2,1 model
fittings per second on a single CPU) — which will raise undesired scalalibility
issues. On the top of such computation issues, as the time series are bounded
to the granularity of our forecasting horizon, we have to adapt them in order to
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obtain the right aggregation level for each on-demand prediction. One way to
do it so is to maintain a newly calculated discrete time series each T-minutes
where 7 << P. By doing so, we can leverage on the additive properties of the
series bins (similar to the ones exhibitted by histograms, e.g. [14]) to roll our
time series into the desired bin positions (e.g. switch from 9:00, 9:30, 10:00, ...
to 9:10, 9:40, 10:10, ...)—, e.g. as proposed by Moreira-Matias et al. [6].

To reduce the pratical computational time, we propose to replace GLS by
Asynchronous Concept Neurons (ACN). The optimal parameter set 6 is fit
together with the model estimation stage (i.e. each T,, = 96 periods). Then,
it is updated as depicted in Algorithm 1. The n value was tuned throughout a
grid search procedure in {0.01k,Vk € {1..20}} using a validation set with data
collected on a previous time period.

To approach problem B, we departed from an online learning model which
was composed of three main components: (a) an ARIMA-based model, (b) an
Exponential Smoothing (ETS) model and (c) an online weighting model to com-
bine both (i.e. ensemble). Similarly to the previous case study, the ARIMA pre-
diction is also performed using a auto-arima+GLS+ACN procedure using 7' = 2
days. However, we are assuming here this schema as a fully incremental method
for sake of simplicity. In this case, we decided to test the application of SCN to
face the bursty nature of the non-recurrent traffic incidents (e.g. car accidents).

The parameter set 6 is composed by both the ARIMA and the ETS model
weights, as well as the two ensemble weights of each model. The online weighting
ensemble is monitoring their performance over a sliding window of H-periods.
The drift detection algorithm used was the Page-Hinkley (PH) test, an incre-
mental inspection schema to detect drift [1] (consequently, ¢ = co). The PH test
depends on two parameters (i.e. |§] = 2). In our case, as we are monitoring two
series of values (flow and occupancy), we have 4. Their values were set following
traffic expert’s suggestions. The remaining parameters of this framework 7q, 3, v
and also H were tuned using another grid search procedure conducted over six
of the 106 sensors of this case study. The full parameter setting employed in our
experiments is summarized in Table 3.

5.1 Evaluation

In case study A, we compared traditional ARIMA trained with GLS (ARIGLS)
with our ACN using the first as offline baseline (i.e. M). As test set, we considered
the last 4 weeks of our data set. Experiments aimed to compare the model’s error
on it as well the computational time. As evaluation metric, we used an laplacian
version of the Symmetric Mean Percentage Error averaged by all the taxi stands.
The resulting metric (ASMAPE) is obtained as follows:

st N ¢ s
1 Y5, — 9j.il
ASMAPE = — IR =Ny T =Yg (1
° 1 ZZ% Rji+Xji+1 v i=1 o j:lw] 1o

j=1i=1

where S denotes the total number of taxi stands.
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In problem B, we compared three distinct online predictive methods: ARIMA
(ARI), ETS and the hereby proposed SCN over an online weighted ensemble
of both. On the top of the abovementioned sensor selection, we also assumed
statistical independence between the data of each one of the three weeks (as they
are non-consecutive). Consequently, it resulted on a total of 300 experiments (i.e.
100 sensors x 3 weeks by excluding the 6 sensors used in hyperparameter tuning).

The evaluation of these experiments were performed on two distinct dimen-
sions: (1) numerical prediction and (2) event detection. In (1), we used Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE) as evaluation
metrics. On (2), we picked Precision (PRE) and Recall (REC). Similarly to A,
the results were aggregated using an weighted average of these metrics, where
each sensor’s weight is given by the total number of incidents occurred.

5.2 Results

The evaluation of two models in case study A are displayed in Table5. It is
possible to observe than, despite their fundamental differences, their performance
does not differ significantly. In terms of computational time, ARIGLS took 1.58 s
to process each individual prediction while ACN took solely 0.60s (in average).

The results for experiments in case B are presented in three distinct folds:
Table 4 presents the aggregated results. Left-hand side of Fig.4 introduces an
time-evolving evaluation in terms of RMSE produced by the three flow predic-
tion methods hereby presented. The drift detection (i.e. neuron activation) and
incident’s boolean states are also exhibited on this chart. It is possible to observe
that the SCN error is always lower than the one obtained from other methods.
On the other hand, we can also conclude than the drift detection is not always
necessarily correlated with an incident. The right-hand side of same Fig. 4 llus-
trates the prediction behavior along sensor with an increasing incident rate (on
x-axis). The recall values are averaged using a sliding window considering just
the recall values for the latest ten sensors with respect of the current one. By
doing so, it is possible to conclude that the our method performance increases
along with the number of incidents observed in each sensor.

5.3 Discussion

At a first glance, the high number of hyperparameters may appear a major
drawback of our methodology. However, as we could demonstrate, they can be
relatively easely tuned with the a validation set. From our experiments, we can
sustain that the parameters related with the learning rate (e.g. 7 in ACN; ng, 5,
in SCN) are the ones which provoke more variance on the target output. However,
it is difficult to assess the framework’s sensitivity to the parameter set without
a careful evaluation procedure.

In case study A, the results illustrate the computational savings obtained by
doing incremental approximations of the optimal model to deal with soft drift
pheonomenas. In B, the high recall rates are illustrative of the potential of this
framework on dealing with either bursty or recurrent drifts.
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A work closely related to this one are the Kalman Filters. They are focused on
signal processing problems, where our samples are simply a bunch of continuous
measurements over time. Conceptually, it also relies on some sort of uncertain
estimate/prediction of the series expected value and co-variance to then update
it using the residuals co-variance. Formally, we can say that f(z) = f(z,0) + v.
Commonly, Kalman Filters assume stationarity on the residuals as v ~ (0, 02).
Conversely, our approach is fully non-parametric as it makes no assumption
on the residual’s distribution.

In this work, we end up using only linear induction methods as baseline
learners for either ACN and SCN. However, the authors want to highlight
that this framework can be built upon non-linear learners as well - see,
for instance, the usage of SCN with decision trees for short-term bus travel time
prediction [15]. By being generic and simple to understand as well as to put in
pratice, this framework represents a pratical and yet inexpensive alternative to
deal with drift on real-world Supervised Learning problems.

Table 3. Parameter Setting used in the experiments.

Value Description

AP |30 forecasting horizon (in minutes)
T | 1440 training data size (i.e. 15 days)
Tu | 96 size of stationarity cycle period (i.e. 24h)
T |5 minimum aggregation level (i.e. minutes)
n | 0.01 learning rate
M | auto-arima + GLS |induction learner
0 | arima model weights | model’s parameter set
H |4 sliding window size to compute our ensemble

B | A | Page-Hinkley test drift inspection schema
P |15 forecasting horizon (in minutes)
¢ |0 drift monitoring window size
5{ 1.0 max. admissible flow prediction’s residual for PH
05 0.1 max. admissible occupancy prediction’s residual for PH
6§ 20 cumulative flow-based threshold to trigger PH alarm
03 | 4 cumulative occupancy-based threshold to trigger PH alarm
no | 0.3 initial learning rate
B |6 activation period
v 0.2 reactivitability rate
pyr| 10 flow-based min. threshold to trigger an incident
Yo | D occupancy-based max. threshold to trigger an incident

6 Final Remarks

Today, experience on Data Science is one of most requested disciplines on job
postings across different industries. The lack of qualified professionals on this
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Table 4. Results on comparing SCN with ARIMA and ETS in case B.

Method | Week | Flow Prediction | Occ. Prediction | Event Detection
RMSE | MAE |RMSE MAE |PREC |REC
ARI ALL |1.6875 |1.0743 |2.1088 |1.2939 |0.8002 |0.2823
ETS ALL |1.7280 |1.0765 |2.3111 |1.3057 |0.8116 |0.3000
SCN ALL |1.6389|1.0379|1.8151|1.0730|0.8199 | 0.3719

Table 5. Error Comparison on the two Learning Models in A using ASMAPE.

Method | Periods

00h—08h |08 h—16h | 16 h—00h | 24 h
ACN 28.47% [24.80% |25.60% |26.21%
ARIGLS | 28.23% |24.70% |24.93% |25.80%

5
100%

= ARIMA 2
ETS

A~ Drift3Flow Nr. Incident

= Nr. Incidents

Update Neuron 3 -~ Cum. Recall
Incidents

2

225
NEURON ACTIVATED

EVENT

175
0

Fig. 4. Illustration of SCN Results: on left-hand side, we have a time-evolving flow-
based evaluation on the top-event sensor using RMSE. The right-hand side depicts the
average recall for all sensors (on x-axis) ordered by their number of incidents. Note
SCN behavior.

area with respect to the number of vacancies is biasing companies towards hiring
experienced programmers. Then, they are incited to use off-the-shelf libraries
to do magic with little developping effort. Hitherto, the availability of drift-
aware tools for real-time DM tasks on modern Big Data platforms is scarse.
This scenario leads to the misusage of the available tools, poor performance
and, ultimately, to reduced business value propositions.

This paper proposes a simple method for handling drift on real-time regres-
sion learning problems. It is designed generically, to run on the top of the
Supervised Learning schemas popularly employed on modern industrial knowl-
edge discovery pipelines. This two stage framework operates continuousily by
inspecting the residual’s distributions without any predefined assumption on
their functional form. Results conducted on real-world trials from the trans-
portation domain demonstrated the potential of this method on reducing com-
putational effort as well as to increase the regressor’s generalization error.
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As future work, we propose to conduct a sensitivity analysis on the parameter
setting, as well as to generalize it even more this by introducing an inspection
schema able not only to detect drift, but also to categorize its nature.
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