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Abstract. We proposed a Hamiltonian Monte Carlo (HMC) method
with Laplace kinetic energy, and demonstrate the connection between
slice sampling and proposed HMC method in one-dimensional cases.
Based on this connection, one can perform slice sampling using a numeri-
cal integrator in an HMC fashion. We provide theoretical analysis on the
performance of such sampler in several univariate cases. Furthermore,
the proposed approach extends the standard HMC by enabling sam-
pling from discrete distributions. We compared our method with stan-
dard HMC on both synthetic and real data, and discuss its limitations
and potential improvements.

1 Introduction

One pivotal question in modern statistical computation is to efficiently sam-
ple from an unnormalized probability density function, where the normalization
constant (partition function) is intractable. Towards this end, many Markov
Chain Monte Carlo (MCMC) [22] methods have been developed. One of the
most influential algorithms is Metropolis-Hastings (MH) [15]. Despite its great
success, the random walk nature often delivers inefficient mixing of the Markov
chain [22]. An inappropriate setting of transition kernel would result in either
low acceptance ratio or slow moves. Such situation is exaggerated in high dimen-
sional cases, where the samples from the chain can be highly correlated. As a
consequence, the effective sample size is usually relatively small. A number of
adaptations have been proposed to mitigate these issues [12,20], however, achiev-
able improvements are limited if attempting maintaining the Markov property
and reversibility of the chain [1,10,18].

To mitigate the random walk behavior in MH, several approaches have been
proposed, such as Hamiltonian Monte Carlo (HMC) [9,20]. HMC augments a tar-
get distribution with auxiliary momentum variables, and uses gradient informa-
tion to propose distant samples, while maintaining ergodic property and detailed
balance. The ability of long-range movement with a high acceptance ratio signif-
icantly improves mixing performance. However, HMC is sensitive to parameter
settings and can only sample continuous distributions. Towards solving these
issues, methods were proposed to use adaptive leap-frog steps [13], or automatic
stepsize [16], and to relax the discrete distributions sampling tasks to continu-
ous distributions [21,26]. The improvement can be further boosted by leveraging
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geometric manifold information [10], by considering better numerical integrators
[6], or by relaxing the detailed balance constraint [24].

A different direction towards improving sampling performance is the slice
sampler [19]. The slice sampler is related to HMC in the sense that both use aux-
iliary variables for efficient moves. These moves can be automatically adapted
to match the relative scale of the local region being sampled [19]. The sam-
pling procedure alternates between uniformly drawing samples from the target
distribution and uniformly drawing the slice variables. Unlike HMC, slice sam-
pling does not require local gradient information. Instead, the primary effort is
to locate slice intervals, where the unnormalized density values are greater than
the slicing variable. This is typically hard to compute directly, thus requires local
search [19]. Further, it is generally less feasible in high-dimensional parameter
spaces, because the slice interval is difficult to approximate. For example, using
hyper-rectangle estimation may result in high rejection rates [19]. Elliptical slice
sampling [17] alleviate this issue by slicing on a high dimensional elliptical curve
parameterized by a single scalar. However it assumes the latent variable to be
Gaussian distributed.

In this paper, we leverage the Hamiltonian-Jacobi equation from classical
physics [11] to unveil a deeper connection between HMC with modified kinetics
and standard slice sampling in one-dimensional cases. We propose an equiva-
lent slice sampler, which exploits gradient information without evaluating the
slice interval. We formally show that, in several univariate scenarios where the-
oretical analysis is tractable, the proposed sampler yields lower autocorrelation
compared with standard HMC, thus potentially yielding higher effective sample
sizes. Finally, we discuss the scenario where our method is most desirable and
validate it with synthetic and real-world experiments.

2 Preliminaries

Hamiltonian Monte Carlo. Consider sampling from a probability density
function p(x) ∝ exp[−E(x)], where x ∈ R

d and E(x) is the potential energy.
One can augment the density with an auxiliary momentum random variable
p ∈ R

d. By Assumption, p is independent of x, and has a marginal Gaussian
distribution with zero-mean and covariance matrix M . The joint distribution
p(x,p) is defined as p(x,p) ∝ exp[−H(x,p)] = exp[−E(x) − K(p)], where
H(x,p) is the total energy or Hamiltonian, and K(p) = 1

2pT M−1p is the kinetic
energy. Hamiltonian Monte Carlo leverages Hamiltonian dynamics to propose
new samples for x, driven by the following ordinary differential equations (ODE):

dx

dt
= ∇pK(p) ,

dp

dt
= −∇xE(x) . (1)

The Hamiltonian is preserved under perfect simulation, i.e, it is constant over t.
However, closed-form dynamic updates are typically infeasible. As a result, one
typically employs numerical integrators, e.g., the leap-frog [20], to approximate
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the Hamiltonian flow. If the integrator is symplectic, by Liouville’s theorem, the
corresponding sampler is invariant to the target distribution [20].

Slice sampling. Slice sampling [19] was originally proposed as an approach to
overcome the need of manually selecting the proposal scale (or stepsize) in the
Metropolis-Hastings algorithm. Slice sampling leverages the fact that sampling
the unnormalized target distribution f(x) can be perceived as sampling a joint
distribution. Therefore, sampling from the points under the unnormalized den-
sity curve is the same as sampling from the target distribution. The iterative
procedure consists the following slicing and sampling steps:

Slicing : p(yt|xt) =
1

f(xt)
, s.t. 0 < yt < f(xt)

Sampling : q(xt+1|yt) =
1

Z2(yt)
, s.t. f(xt) > yt , (2)

where y is the augmented slicing variable. f(x) � e−E(x) is the unnormalized
density and Z2(y) =

∫
f(x)>y

1dx is the measure of regions that have functional
values greater than the slice variable y. The density function is given by

p(x, y) =
{

1
Z1

, 0 < y < f(x)
0 , otherwise

,

where Z1 =
∫

f(x)dx is the normalizing constant. The marginal distribution for
x exactly recovers the target distribution f(x)/Z1. The evaluation of slice interval
x : f(x) > y is typically non-trivial, where iterative procedures to adaptively
capture the boundaries of such slice interval are used [19].

3 Canonical Transformation

In this section we use the canonical transformation and the Hamilton-Jacobi
equation (HJE) [11] to reveal a connection between HMC with Laplace kinet-
ics and slice sampling. Without loss of generality to the multivariate cases, for
simplicity, here we detail our derivations for the univariate case.

Suppose the kinetic energy function K(p) in HMC can be defined as an arbi-
trary function of p, as long as the K(p) is convex and symmetric w.r.t. p. We
consider two particular kinetics forms. The standard HMC uses quadratic kinet-
ics K(p) = p2/m, where m is the mass parameter and the marginal distribution
of p is proportional to e−K(p), thus is Gaussian distributed with variance m.

We employ the canonical transformation from classical physics to transform
the original HMC system (H,x, p, t) in (1), into a new system space, termed as
canonical space [11]: (H ′, x′, p′, t). The transformation (H,x, p, t) → (H ′, x′, p′, t)
satisfies the Hamilton’s principle [11]:

λ(p · ẋ − H) = p′ · ẋ′ − H ′ +
δG

δt
, (3)
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where λ ∈ R is a constant, ẋ � dx/dt, δ denotes functional derivative and G
is a user-defined generating function [25]. Such a generating function can be of
several types; here we use a type-2 generating function defined as

G � −x′ · p′ + S(x, p′, t) .

The explicit form of S(x, p′, t) is defined below. By substituting G into (3), one
can establish the following equations:

p =
∂S

∂x
, x′ =

∂S

∂p′ , H ′(x′, p′) = H(x, p) +
∂S

∂t
. (4)

In the HJE, we let the new Hamiltonian H ′ to be zero, i.e.,

H(x, p) +
∂S

∂t
= H ′(x′, p′) = 0 . (5)

The Hamilton-Jacobi equation states that after this transformation, the motion
of particles collapse into a point in the new space, i.e., (x′, p′) are constant over
time [25].

Consider setting the Hamilton’s principal function as S(x, p′, t) = W (x)−p′t,
where W (x) is an unknown function of x that needs to be solved. Thereby, (5)
becomes

H(x, p) +
∂S

∂t
= H(x, p) − p′ = 0 . (6)

The implication from (6) is that p′ = H; i.e., the generalized momentum in the
new phase space, (x′, p′), represents the total Hamiltonian in the original space.
We consider the standard Gaussian kinetic function K(p) = |p|2/m. From (4)
and (5), we can solve the functional equation in (6) to obtain,

W (x) =
∫ x(t)

xmin

f(z)dz + C , (7)

where f(z) = H − E(z) if z ∈ X � {x : H − E(x) ≥ 0}, and 0 otherwise, and
xmin = min{x : x ∈ X}. From (4), (6) and (7),

x′ =
∂S

∂p′ =
∂W

∂H
− t =

1
2

∫ x(t)

xmin

f(z)−1/2dz − t . (8)

Note that x′ is a constant. In (8),
∫ x(t)

xmin
f(z)−1/2dz ∈ [0,

∫
X
[H − E(z)]−1/2dz].

Our objective is to mimic the Hamiltonian dynamics evolving with a random
evolution time, t. If we assume a closed contour, the Hamiltonian dynamics has
period T �

∫
X
[H −E(z)]−1/2dz. To sample a new point x(t) on the contour, one

can first sample the time, t, constrained to a single period of movement, i.e,

t ∼ uniform
(

−x′,−x′ +
∫

X

[H − E(z)]−1/2dz

)

. (9)



102 Y. Zhang et al.

where x′ can be understood as the “initial” timestamp of x. With a sampled
time t from (9), one could solve the Eq. (8) for x∗ � x(t), i.e., the value of x at
time t.

However, the integral in (8) is not always tractable. Note that the integral
in (8) can be interpreted as (up to normalization) a cumulative density function
(CDF) of x. As a result, one can circumvent uniformly sampling t from (9), by
directly sampling x∗ from the following density function

p(x∗|H) ∝ [H − E(x∗)]−1/2 , s.t., H − E(x∗) ≥ 0 . (10)

Note that p∗ is not of interest because it is discard after each dynamic update.
This transformation provides the basic setup to reveal the equivalence

between the slice sampler and HMC, which is discussed in Sect. 4.

4 Laplacian HMC

Let L(·;m) denote the Laplace distribution with scale parameter m, the proba-
bility density function is given by

L(p;m) ∝ exp(−|p|/m)

We denote the non-standard HMC with Laplace distribution for the momentum
variable as Laplacian HMC (L-HMC). Suppose we assume the momentum vari-
able have Laplace kinetics, i.e. employing an �1 norm for the kinetic function,
similar to the derivation in (10), we have

p(x∗|H) ∝ 1 , s.t., H − E(x∗) ≥ 0 . (11)

In light of the above observation, we propose to perform standard HMC and
L-HMC with the procedure described in Algorithm 1.

Algorithm 1. HMC/L-HMC in canonical space.
Input: Sample size T , energies E(x) and K(p; m).
Output: Sample results, {x0, . . . , xT }.
Initialization: Choose initial sample point, x0.
for t ∈ {1, . . . , T} do

Sample pt ∼ N (p; m) (standard HMC) or L(p; m) (L-HMC).
Compute Hamiltonian: Ht = E(xt) + K(pt).
Compute X � {x : x ∈ R; E(x) ≤ Ht}.
Sample q(xt+1|Ht) ∝ [Ht − E(xt+1)]

−1/2(standard HMC) or q(xt+1|Ht) ∝ 1 (L-
HMC), with xt+1 ∈ X.

end for

Denote yt = e−Ht , the conditional updates for the L-HMC sampling proce-
dure in Algorithm 1 share the same formulas as standard slice sampling in (2)
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Note that the mass parameter m (scale parameter of the Laplace distribution)
is cancelled out.

Accordingly, the equivalent non-standard slice sampling that corresponds to
standard HMC can be written as

p(yt|xt) =
1

f(xt)
[log f(xt) − log yt]−

1
2 , s.t. 0 < yt < f(xt) (12)

q(xt+1|yt) =
1

Z2(yt)
[log f(xt+1) − log yt]−

1
2 .s.t. f(xt+1) > yt (13)

We denote this slice sampler as HMC-SS (the slice sampler corresponding to
standard HMC). This iterative procedure yields an invariant joint distribution

p(x, y) =

{
1√
πZ1

[log f(x) − log y]
1
2 , 0 < y < f(x)

0 , otherwise
,

leaving the marginal distribution for x as the desired target distribution, while
the marginal distribution of y is given by

p(y) = Z2(y)/(
√

πZ1) . (14)

The equivalent slice sampler for standard HMC and L-HMC is illustrated in
Fig. 1. For HMC-SS, the conditional distribution of q(xt+1|yt) is skewed, so that
points that are close to the boundary of the slice interval are more likely to be
drawn. In addition, from (12) the conditional draw of slice variable yt given xt

tends to take values close to f(xt).
Intuitively, in contrast with the standard slice sampling, the auxiliary variable

yt in HMC-SS tend to stay close with f(xt), rendering xt+1 to be close to xt.
Thus the standard slice sampler with a larger a is expected to be more efficient.
Based on the connection between HMC-SS and HMC, as well as standard SS
with L-HMC, this seems suggest L-HMC is more efficient that standard HMC.
We elaborate more about the mixing performance in Sect. 6.

Fig. 1. Standard slice sampling (Left). The equivalent slice sampler of standard HMC,
HMC-SS (Middle). Mapping between HMC space and canonical space (Right). yt|xt is
sampled from (12) (red line) and xt+1|yt from (13) (blue line). L-HMC is essentially
the same but with yt|xt and xt+1|yt sampled from uniform distributions. (Color figure
online)
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5 Performing L-HMC with Numerical Integrators

Section 4 shows that performing L-HMC in the canonical space can be viewed as
performing standard slice sampling. In practice, however, analytically solving the
slice interval, X, is typically infeasible. By leveraging the connection between L-
HMC and standard slice sampling, one can perform the standard slice sampling
in the original space using a numerical integrator, as done in standard HMC.
Here we consider the second order Störmer-Verlet integration [20]. The updates
for L-HMC1 are thus given as the following leap-frog steps

pt+1/2 = pt − 1
2ε∇E(xt) , (15)

xt+1 = xt + εsign(p)/m , (16)

pt+1 = pt+1/2 − 1
2ε∇E(xt+1) , (17)

Note that the mass matrix in our specification is M = mI. Here we use a
random step size, ε, drawn from a uniform distribution with user-defined width,
as suggested in [20]. Note that this specification is necessary for L-HMC to avoid
moving on a fixed grid determined by ε.

Reflection. Another practical issue that comes with the fact that each contour
in the phase space (x, p) has at least 2D stiff (non-differentiable) points due to
the non-differentiable kinetic function K(p). The stiff points occur whenever the
contour intersect with hyperplanes pd = 0, for d ∈ {1 · · · D}; D denotes the total
dimension.

The naive leap-frog approach of L-HMC in (15)–(17) would lead to high inte-
gration errors, comparing with standard HMC, especially when the dimension-
ality is high. To alleviate this issue, we take a “reflection” action when encoun-
tering these stiff points, which shares some similarities with the “bouncing ball”
strategy mentioned by [20]. Specifically, in (15) and (17), whenever the d-th
component of momentum p(d) changes sign, we set x

(d)
t+1 and p

(d)
t+1 back to x

(d)
t

and p
(d)
t , and flip p

(d)
t = −p

(d)
t . A caveat of such a simple remedy lies in the fact

that it may not guarantee the conservation of volume in phase space, thus may
not leave the distribution invariant. Also, one will probably face “stickiness” in
the high dimensional case [20]. This is because when negating the momentum in
certain dimension(s), the next sample xt may stay at the previous position, for
those dimension(s). In high dimensions, this problem becomes more prominent
since the chance of “reflection” for each update is considerably higher, yielding
the whole sampler to perform less efficiently. Besides, this reflection strategy
may render the sampler to be less sensitive on tail region of the target distribu-
tion. We note that this strategy may violate the invariance property. We hope to
remark that the reflection is a first-remedy to ameliorate numerical difficulties.
Nevertheless, this approach preserves the total Hamiltonian, and performs well
in practice for low-dimensional cases.

1 In the following, we denote L-HMC as the one in the original space, except otherwise
explicitly stated.
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Sample with constrained domain. As mentioned by [20], one could split the
total Hamiltonian, to approach sampling from a bounded domain. An imaginary
infinite potential energy can be imposed on regions that violate the constraints,
which will give such points zero probability. Whenever the new proposed sample
exceeds the constraint, we bounce the sample back. For example, when sampling
from a truncated distribution with constraint x(d) > m, if at time t the proposed
x
(d)
t < m, the value 2m − x

(d)
t would be used instead, while the corresponding

moment, p
(d)
t , changes sign.

Partial momentum refreshment. Using fewer number of leap-frog steps
would reduce the computational cost of L-HMC, however rendering the algo-
rithm less likely to adequately explore the contour and move to a distant point.
[20] described a strategy to partially update the momentum variable, as an app-
roach to further suppress the random-walk behavior when only a small number
of leap-frog steps are taken, in which the distribution of the momentum would
still be invariant. For the double-exponential kinetic energy form, one could con-
sider a similar strategy to partially refresh the momentum. For the univariate
case, without loss of generality to high dimensions, the update for momentum is
given by

p̃ = min(p/α, η/(1 − α))sign(p) , (18)

where α ∈ (0, 1) is a tuning parameter and η is an exponential random variable
with mean 1/m. It can be shown that p̃ has the same distribution as p. When
α is close to 1, the generated new momentum p̃ would be similar to p. When α
is close to zero, the absolute value of the new momentum becomes independent
of its previous value. Similar to partial refreshment in standard HMC [20], one
iteration applying the modification in (18) consists of three steps: (1) Updating
momentum using (18), (2) performing a leap-frog discretization and Metropolis
step, and (3) negating the momentum. In practice, the value of α has to be
manually selected to achieve good performance.

Sampling discrete distributions. Sampling from discrete distributions such
as Poisson, multinomial, Bernoulli, etc., is generally infeasible for standard HMC,
primarily due to the lack of gradient information. Recently proposed techniques
tackle the discrete case by transforming it into sampling from a continuous dis-
tribution [21,26]. We show here that one can directly sample from a discrete
distribution with L-HMC.

Notice from Eq. (16) that the update of x for each leap-frog discretization
step depend only on the sign of the momentum variable p. Based on this observa-
tion, one can sample a discrete distribution exactly, in an HMC manner. Consider
a scenario, where a multivariate distribution with D dimensions is defined on
an infinite grid with equidistant step m. Equation (16) allows the Hamiltonian
dynamics to move in such a way, that each update in x moves with multi-
ples of m, so as to stay on the grid. Meanwhile, the gradients in (15) and (17)
are substituted with the difference vector 	E(x), where its d-th component is
	(d)E(xt−1/2) � E(xt) − E(x(d)

t−1,x
(−d)
t ), x(d) denotes the d-th component of
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x and x
(−d)
t denotes the remaining D − 1 components. The iterative updates

become

xt = xt−1 + ε ◦ sign(p)/m , pt = pt−1 − ε ◦ 	E(xt−1/2) ,

where the stepsize ε is constrained to ZD and ◦ is the element-wise product.
The reason that this strategy can not be applied to standard HMC is because
in L-HMC, each increment xt+1 − xt is a constant that does not depend on
the absolute value of momentum p, while in standard HMC, different value of
p will yield different increment xt+1 − xt. As a result, the sampler may not
move on a uniform grid. In practice, one could sample ε ∈ RD and round
it to the closest integer vector. It can be shown that the Hamiltonian is pre-
served under such procedure in univariate cases. For multivariate cases, the dif-
ference vector can be normalized to enforce the conservation of Hamiltonian,
i.e.

∑ 	E(xt−1/2) = E(xt) − E(xt−1). Note that when the Hamiltonian is
preserved, the Metropolis-Hasting step can be omitted. As in the continuous
scenario, the momentum is negated whenever it would change sign in the next
iteration. This specification works well in practice for our tested cases when
the dimensionality is low (D < 5), however, we remark that this specification
would violate the volume preservation and is not the principled way to perform
high-dimensional discrete sampling (when the dimensionality increase, the error
between E(xt+1) − E(xt) and 	E(xt would inevitably become larger). How to
perform a high dimensional discrete sampling remain as a interesting topic for
future investigation. If E(x) has well-defined gradient information over the real
domain that covers the grid, one can relax the calculation to the continuous
space, where the gradient ∇E(x) is computed, instead of D evaluations of the
potential energy, E(x).

Adaptive search. The fact that updating x does not explicitly involve p may
have additional implications. Following [23], this observation enables applying
adaptive search for appropriate scale of stepsize, ε, based on the sufficient statis-
tics from previous samples. For example, one could set the relative scale of the
stepsize for each coordinate to match the diagonal elements from the empirical
covariance matrix. Note that this strategy is particularly suitable to be applied
to L-HMC, due to the fact that the update of the dynamics in L-HMC is moving
exactly in the direction of the stepsize, ε. This strategy would be expected to
perform better than choosing a common stepsize for each dimension, when the
landscape has different scales for each dimension. The convergence of adaptive
parameters requires establishing regularity conditions [12]. Though it works well
in many cases, it is known that this strategy results in a chain that is no longer
Markovian, thus it will not always leave the target distribution invariant [23].
Besides, when the distribution has more than one mode, applying this method
may render the sampler prone to get trapped into one of the modes.
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6 Efficiency Analysis

We note that most of previous work of analyzing the mixing performance of HMC
is based on empirical studies. Little work has been done on theoretical analysis
[10,20]. Interestingly, we can leverage the implicit connection between HMC
and slice sampling, to briefly touch on the analysis of the mixing performance
for HMC and L-HMC from examining their corresponding slice samplers. We
use the autocorrelation function and effective sample size to monitor mixing
performance. We consider sampling from a univariate distribution p(x) ∝ e−E(x)

for the analysis. The one-time-lag autocorrelation for HMC and L-HMC, ρ(1),
is given by

ρ(1) = (E[xtxt+1] − E[x]2)/Var(x) . (19)

= ( Ep(yt)[Eq(xt+1|yt)[xt+1]]2 − E[x]2)/Var(x) (20)

From (12) and stationary assumption, for standard HMC

q(xt|yt) ∝ p(yt|xt)p(xt) ∝ [log f(xt) − log yt]−1/2, s.t. f(xt) > yt

For L-HMC, q(xt|yt) ∝ 1, s.t. f(xt) > yt

Given the potential energy form E(x), ρ(1) can be computed from (14), (20)
and (2). The h-time-lag autocorrelation function can be obtained as

ρ(h) = (Ep(x)[Eκh(x′|x)[x′x]] − E[x]2)/Var(x) ,

where, κh(xt+h|xt) represents the h-order transition kernel, and can be calcu-
lated recursively as

κ1(xt+1|xt) =
∫

q(xt+1|yt)p(yt|xt)dyt ,

κh(xt+h|xt) =
∫

κh−1(x′|xt)κ1(xt+h|x′)dx′ .

Finally, the resulting Effective Sample Size (ESS) [5] is given by ESS = N/(1+2×∑∞
h=1 ρ(h)). Analyzing the efficiency of L-HMC for the general case is difficult,

however, we can specify a special case where the ESS can be explicitly calculated.
We consider a simple case to assess the efficiency of standard HMC and L-

HMC. We aim to sample from a univariate exponential distribution, Exp(x; θ),
with energy function, E(x) = θx, for x > 0. From the above analysis, for stan-
dard HMC

ρ(1) =
2
3

, ρ(h) = (
2
3
)h , ESS =

N

5
,

For L-HMC, we have

ρ(1) =
1
2

, ρ(h) = (
1
2
)h , ESS =

N

3
,
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We observe that the ESS becomes larger with L-HMC. As a result, under these
conditions, and many other univariate cases discussed in the experiments, L-
HMC has a theoretical advantage of the mixing rate in stationary period over
standard HMC. This observation is consistent with the intuition discussed in
Sect. 4.

7 Experiments

7.1 Synthetic Toy Examples

We conduct several experiments to validate the theoretical results, as well as the
performance of standard HMC and L-HMC.

Synthetic 1D problems. We first perform our experiments on several univari-
ate distributions, where evaluation of theoretical mixing performance is possible.
Our primary objective for this simulation study is to validate that the theoret-
ical results are consistent with the empirical results. Each density is given by
p(x) = 1

Z1
exp(−E(x)), s.t x ≥ 0 and

– Exponential distribution: Exp(x; θ), where E(x) = θx.
– Truncated Gaussian: N+(x; 0, θ), where E(x) = θx2.

We truncate the Gaussian distribution to the positive side, because for a
symmetric distribution the theoretical autocorrelation is always 0, thus rendering
the comparison less interesting. Note that for each case, as long as the parameter
θ > 0, the performance of the sampler does not depend on θ.

We perform standard HMC and L-HMC, as well as “analytic” slice sampling2

when available. We collected 30,000 Monte Carlo samples, with 10,000 burn-in
samples. The leap-frog steps are set to 100 for each experiment. The mass para-
meter m and stepsize ε are selected manually to achieve around 0.9 acceptance
ratio. We observed that applying the partial momentum refreshment can pro-
vided additional help, especially when taking fewer leap-frog steps. However, the
improvements are not significant when the number of leap-frog steps is adequate
for the tested cases.

As shown in Table 1, in the tested cases, theoretical autocorrelations and ESS
match well with empirical performance of standard HMC, L-HMC and analytic
slice samplers. In every case, L-HMC obtained better empirical results, which is
consistent with our theoretical analysis.

Sampling from a discrete distribution. To demonstrate that the L-HMC
can perform sampling of distributions with discrete support, we consider sam-
pling from a univariate Poisson distribution, P(λ), with fixed rate parame-
ter λ (we use λ = 10 in our experiment). The potential energy is given by

2 Analytic slice sampling is achieved by analytically solving the slice interval and
computing the expectation in (20), and is only available for exponential and positive-
truncated Gaussian cases.
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Table 1. 1D theoretical (Th.) and empirical ρ(1) and ESS. SS denotes the analytical
slice sampler corresponding to standard HMC or L-HMC.

Th. ρ(1) Th. ESS SS ρ(1) SS ESS (L-)HMC ρ(1) (L-)HMC ESS

standard HMC (Exp) 0.6667 6000 0.6620 6204 0.6711 6069

L-HMC (Exp) 0.5 10000 0.4868 10227 0.5218 9773

standard HMC (N+) 0.4787 10576 0.4736 10705 0.4802 10510

L-HMC (N+) 0.3120 15732 0.3040 15457 0.3061 15595

E(x) = −x log λ + log x!. We apply the update scheme described in Sect. 5,
and run 10,000 iterations with 3,000 burn-in samples. The number of iterative
dynamic updates, stepsize, and mass parameter m were set to 15, 2, and 1,
respectively. Results are shown in Fig. 2. The empirical results match well with
the probability mass function of P(λ) with λ = 10. The acceptance ratio is always
one, as during the iterative process, the Hamiltonian is exactly conserved. As a
consequence, the Metropolis step can be omitted. The empirical ρ(1) and ESS
are 0.024 and 9, 984, respectively.

Fig. 2. Histogram of samples for a Poisson distribution, x ∼ P(λ) with λ = 10.

We also apply our methods to sample from a bivariate Poisson distribution
[14]. The bivariate Poisson with random covariates (z1, z2) can be constructed
as z1 = y1 + y3, z2 = y1 + y2, where (y1, y2, y3) are three independent Poisson
variables with mean parameters (λ1, λ2, λ3). The probability function can be
written as

Pr(z1 = k1, z2 = k2) = exp(−λ1 − λ2 − λ3)
λk1
1

k1!
λk2
2

k2!

k1∧k2∑

k=0

(
k1
k

)(
k2
k

)

k!(
λ3

λ1λ2
)k ,

We set the ground truth model parameters to (λ1, λ2, λ3) = (1, 2, 3). The
dynamic update step, stepsize and mass parameter m are set to be 10, 1 and 1,
respectively. When performing the discrete sampling, we normalized the differ-
ence vector to enforce the total Hamiltonian to be conserved. We collect 10,000
Monte Carlo samples after 3,000 burn-in samples. The sampled distribution
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is shown in Fig. 3. The theoretical Pearson correlation for the target bivariate
Poisson distribution is given by λ3√

λ1+λ3
√

λ2+λ3
= 0.6708. We observed that the

empirical Pearson correlation is 0.6983, which matches well with the theoretical
value. We also observed that when the dimensionality increases, the discrepancy
between target distribution and empirical estimated distribution becomes larger.
For this reason, we suggest to consider our method only for low dimensional sam-
pling tasks. How to use HMC to sample from high-dimensional distributions is
left for interesting future work.

Fig. 3. Histogram of samples for bivariate Poisson distribution parameterized by
(λ1, λ2, λ3) = (1, 2, 3). Left: theoretical sample frequency for target distribution. Right:
samples from discrete L-HMC.

High-dimensional synthetic problems. We test the performance of standard
HMC and L-HMC when sampling a high-dimensional Gaussian distribution. We
consider a 100-dimensional Gaussian distribution with zero-mean and diagonal
covariance matrix, with its diagonal elements uniformly drawn from (0, 10]. We
ran 5,000 MC iterations, after 2,500 burn-in samples. For both standard HMC
and L-HMC, we use 5 different leap-frog stepsizes, εt, t = {1, . . . , 5}, where
εt+1 = 0.8εt. This scheme allows us to find the elbow points where performance
is optimal. The ε1 and m for standard HMC and L-HMC are set to (0.025, 2)
and (0.015, 1), respectively. The sampler was initialized at MLE (estimated by
gradient descent) to accelerate burn-in period.

We also compared with the adaptive scheme described in Sect. 5, where
the stepsize is automatically tuned at each 500 interactions during the burn-
in rounds using an empirically estimated covariance. The adaptation is stopped
after burn-in, as suggested by [22]. Both L-HMC and adaptive L-HMC achieved
median effective sample size near to the full sample size, and obtained a lower
discrepancy between the empirically estimated covariance and the ground truth
than standard HMC, see Fig. 4 (left). Employing the adaptive scheme improved
the median ESS, probably due to the fact that the stepsize learned from the
samples can automatically match the scale of each dimension, Fig. 4 (right).
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Fig. 4. Standard HMC and L-HMC performance on a 100-dimensional simulated
Gaussian distribution. Left: Mean Squared Error (MSE) of estimated Σ vs. median
ESS. Labels denote the stepsize index. Right: Elements of diag(Σ) vs. the adapted
stepsize after 2,500 burn-in rounds.

7.2 Real Data Analysis

We perform an empirical comparison on two real-world probabilistic model-
ing tasks: Bayesian Logistic Regression (BLR) and Latent Dirichlet Allocation
(LDA).

Bayesian logistic regression. We evaluated the mixing performance of stan-
dard HMC and L-HMC on 5 Bayesian logistic regression datasets from the UCI
repository [2]. For data X ∈ R

d×N , response variable t ∈ {0, 1}N and tar-
get parameters β ∈ R

d, suppose a Gaussian prior is imposed N (0, αI) (where
α > 0) on β, the log posterior is given by [10],

L(β) = βT Xt −
N∑

n=1

log(1 + exp(βT XT
n,·)) − βT β

2α

Feature dimensions range from 7 to 15 and the number of data instances are
between 250 and 1, 000. All datasets are normalized to have zero mean and unit
variance. The sampler was initialized at gradient estimated MLE as in above
experiments.

The mass matrix for kinetic function is defined as M = m × I, where m
is mass parameter. Gaussian priors N (0, 100I) were imposed on the regression
coefficients. The leap-frog steps were set to be uniformly drawn from [1, 100],
as suggested by [20]. We manually select the stepsize and mass parameter m,
so that the acceptance ratios fall in [0.6, 0.9] [3]. On each dataset, the running
time for each method is roughly identical, due to the fact that each method took
approximately the same number of leap-frog steps. All experiments are based on
5,000 samples, with 1,000 burn-in samples.

Since the MCMC methods that we compared are asymptotically exact to the
true posterior, the sample-based estimator is guaranteed to converge to the true
expectation over the posterior. ESS indicates the variance of sample based esti-
mator, thus is a good metric for comparison. For this reason, following [6,10,21],
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Table 2. The minimum effective sample size, as well as the AUROC (in parenthesis)
for each method. Dimensionality of each dataset is indicated in parenthesis after the
name of each dataset.

Dataset (D) Australian (15) German (25) Heart (14) Pima (8) Ripley (7)

Standard HMC 3124 (0.92) 3447 (0.78) 3524 (0.92) 3434 (0.90) 3317 (0.99)

L-HMC 4308 (0.93) 4353 (0.79) 4591 (0.93) 4664 (0.88) 4226 (0.99)

Table 3. MNIST results. D = 101, N = 12, 214. Total sample size is 4,000. AR denotes
acceptance ratio.

ESS min Median Max Time (s) AR

Standard HMC 2812 3441 3807 287.8 0.978

L-HMC 3198 3808 4000 291.0 0.968

we primarily compare on each method in terms of minimum ESS. We also
evaluate the average predictive AUROC based on 10 fold cross-validation, the
results showed no significant differences between standard HMC and L-HMC.
The results are summarized in Table 2. L-HMC outperforms standard HMC in
all datasets.

To further assess the scalability to high-dimensional problems, we also con-
duct an experiment on the MNIST dataset restricted to digits 7 and 9. We
use 12,214 training instances, where the first 100 components from PCA were
employed as regression features [6]. We ran 4, 000 MC iterations with 1, 000 burn-
in samples, the results are shown in Table 3. L-HMC scales well, and achieved
better mixing performance than standard HMC, while taking roughly the same
running time. The acceptance ratio of L-HMC decreased by 0.01 w.r.t. standard
HMC, presumably because the contours for L-HMC are slightly stiffer than those
for standard HMC.

Topic modeling. We also evaluate our methods with LDA [4]. LDA models a
document as a mixture of multinomial distributions over a vocabulary of size V .
The multinomial distributions are parametrized by φk ∈ ΔV for k = 1, . . . , K,
where ΔV denotes the V -dimensional simplex. Each φk is associated with a
symmetric Dirichlet prior with parameter β. Specifically, the generative process
for a document is as follows:

– For each topic k, sample a topic-word distribution: φk|β ∼ Dirichlet(β).
– For each document d, sample a topic distribution: θd|α ∼ Dirichlet(α).

- For each word i, sample a topic indicator: zdi|θd ∼ Discrete(θd).
- Sample an observed word: wdi|φzdi

∼ Discrete(φzdii).

To apply the L-HMC and standard HMC, following [8], we re-parametrize φk

with φ̃k as φki = eφ̃ki/(
∑

j eφ̃kj ). Similar to [8], a semi-collapsed LDA formu-
lation is used for sampling, where the distribution over topics for each docu-
ment is integrated out. We use the ICML dataset [7] for the experiment, which
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Fig. 5. Empirical distribution of coordinate-wise effective sample size of standard HMC
and L-HMC, over 57,540 dimensions.

contains 765 documents corresponding to abstracts of ICML proceedings from
2007 to 2011. After stopword removal, we obtain a vocabulary size of 1,918 and
total words of about 44K. We used 80 % of the documents for training and the
remaining 20 % for testing. The number of topics is set to 30, resulting in 57,540
parameters. We use a symmetric Dirichlet prior (i.e., all of the elements of para-
meter vector β have the same value) with parameter β = 0.1. All experiments are
based on 800 MCMC samples with 200 burn-in rounds. We set the stepsizes to
be 2.0 for both L-HMC and standard HMC, to obtain acceptance ratios around
0.68. For each iteration we set 20 leap-frog steps. L-HMC has best mixing perfor-
mance as seen in Fig. 5, and the perplexity is comparable with standard HMC.
The perplexities for L-HMC and standard HMC is 958 and 963, respectively.

8 Conclusion

We demonstrated the equivalency between the slice sampler and HMC with a
Laplace kinetic energy. This enables us to perform the leap-frog numerical inte-
grator for standard slice sampling in high-dimensional space. We further demon-
strated that the resulting sampler can be applied to sampling from discrete
distributions, e.g., Poisson. Our method can be seen as a drop-in replacement
for scenarios where standard HMC applies, and thus it has many potential exten-
sions. However, our method has its limitations. For high dimensional problems,
the numerical issues associated with the sampler are less negligible, and requires
carefully selecting the sampler parameters. Future directions include (1) employ-
ing more sophisticated numerical methods to reduce the numerical error of our
L-HMC approach (2) formal study of the ESS of the proposed L-HMC compared
to standard HMC, and (3) exploiting geometric information [10] in the leap-frog
updates to further improve the sampling efficiency.
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