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Abstract. In machine learning, hyperparameter optimization is a chal-
lenging but necessary task that is usually approached in a computation-
ally expensive manner such as grid-search. Out of this reason, surrogate
based black-box optimization techniques such as sequential model-based
optimization have been proposed which allow for a faster hyperparameter
optimization. Recent research proposes to also integrate hyperparameter
performances on past data sets to allow for a faster and more efficient
hyperparameter optimization.

In this paper, we use products of Gaussian process experts as surrogate
models for hyperparameter optimization. Naturally, Gaussian processes
are a decent choice as they offer good prediction accuracy as well as esti-
mations about their uncertainty. Additionally, their hyperparameters can
be tuned very effectively. However, in the light of large meta data sets,
learning a single Gaussian process is not feasible as it involves inversion
of a large kernel matrix. This directly limits their usefulness for hyper-
parameter optimization if large scale hyperparameter performances on
past data sets are given.

By using products of Gaussian process experts the scalability issues
can be circumvened, however, this usually comes with the price of hav-
ing less predictive accuracy. In our experiments, we show empirically that
products of experts nevertheless perform very well compared to a variety
of published surrogate models. Thus, we propose a surrogate model that
performs as well as the current state of the art, is scalable to large scale
meta knowledge, does not include hyperparameters itself and finally is
even very easy to parallelize. The software related to this paper is avail-
able at https://github.com/nicoschilling/ECML2016.

Keywords: Hyperparameter optimization · Sequential model-based
optimization · Product of experts

1 Introduction

In recent years, machine learning and data mining has been gaining more and
more attention by showing very good prediction performance in areas such as
recommender systems, pattern, speech and visual object recognition and many
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more. The lift in prediction performance is usually due to the development of
more complex models as we see for example in the area of deep learning. However,
developing more complex models usually has drawbacks, which is the increas-
ing time that is spent for learning the model plus the increasing dimensionality
of the hyperparameter space of the associated model. By hyperparameters we
denote parameters of a model that can not explicitly be learned from the data
by a well-defined optimization criterion such as the minimization of a regular-
ized loss functional. These hyperparameters can be continuous, the reader might
consider a positive learning rate of a gradient descent optimization approach,
or a regularization constant of a Tikhonov regularization term. However, by
hyperparameters we also consider discrete choices, such as the dimensionality of
a low-rank factorization or the number of nodes and layers in a deep feedfor-
ward neural network. Additionally, hyperparameters can also be categorical, for
instance the choice of kernel function in a support vector machine, or even the
choice of loss function to optimize within the optimization criterion. Finally, even
model choice as well as preprocessing of the data can be understood as hyperpa-
rameters of a general learner. What all of these parameters have in common is
that they cannot be optimized in a straightforward fashion, but usually their cor-
rect setting renders methods from producing weak predictions to state-of-the-art
predictions. Due to this impact, practicioners that do not know the underlying
techniques very well usually have a hard time optimizing hyperparameters and
therefore rely on either choosing standard hyperparameters or on performing a
grid-search, which tries many hyperparameters and in the end chooses the one
that performs best. In this way, a lot of unnecessary computations are created.

Out of this reason, recent research proposes to use black-box optimization
techniques such as sequential model-based optimization (SMBO) to allow for
a more directed search in the hyperparameter space. Essentially, SMBO treats
the hyperparameter configuration as input for a black box function and uses a
surrogate model to learn on a few observed performances to then predict the
performance of any arbitrary hyperparameter configuration. The predicted per-
formance as well as the uncertainty of the surrogate model are then used within
the context of an acquisition function to finally predict a hyperparameter con-
figuration that likely performs better, while keeping a good balance between
exploitation and exploration. On the one hand, exploitation is attained when-
ever the acquisition function chooses hyperparameter configurations that are
very close to already observed well-performing configurations and therefore the
surrogate model is quite certain about its estimation. On the other hand, explo-
ration is met if the acquisition function chooses configurations that are very
distant to all observed configurations, i.e. explores new areas of the hyperpara-
meter space, where the surrogate model is quite uncertain about its prediction.
Given that usually only a few initial observations are present and the amount
of overall queries for hyperparameter configurations is limited, a decent tradeoff
between both exploration and exploitation is desired.

More recent work is inspired by the area of meta learning, where the goal
is to transfer knowledge for parameters of a given model from having learned
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this model already on other data sets [4]. Thus, these methods propose to also
take into account the knowledge of hyperparameter performances on different
(past) data sets, where hyperparameter opimization has already been done. This
is quite intuitive, as every experienced practitioner, who has already learned a
model many times on different data sets probably comes up with better hyperpa-
rameter configurations for the target data set to test initially. In many works, the
surrogate model is then learned on the hyperparameter performances of past data
sets and therefore has a better knowledge of well-performing hyperparameters
to choose. In order for the surrogate model to not confuse performances of the
same hyperparameter configuration on different data sets, the meta knowledge
is usually augmented by additional meta features that describe characteristics
of a data set.

Many surrogate models have been proposed, but one of the simplest surro-
gates is probably a Gaussian process (GP), as it is relatively simple to learn,
delivers good predictions and furthermore, due to its probabilistic nature, allows
for a direct estimation of uncertainties, which is a key ingredient for SMBO.
Another advantage of using Gaussian processes compared to other surrogate
models is that they are basically hyperparameter free, as all the parameters
that we have to specify for the kernel can be learned by optimizing their mar-
ginal log likelihood. However, Gaussian processes have one huge drawback which
lies in their scalability. In order to learn a Gaussian process, the kernel matrix
computed over all observed instances has to be inverted which is an operation
with cubic expense in the number of observations. Thus, if we seek to include
meta knowledge of many past data sets into the training data of the Gaussian
process, learning the Gaussian process might even take more time and memory
than learning the model we seek to optimize the hyperparameters for, which
then renders a Gaussian process infeasible, despite its advantages.

In this paper, we propose to use a product of Gaussian process experts as
surrogate model, where basically an independent GP is learned for all the obser-
vation of one past data set and in the end all the predictions of the individual
experts are assembled to predict hyperparameter performances of the target data
set. Following this approach, our work has four main contributions:

� We learn a product of GP experts, which allows for the inclusion of a large
amount of meta information,

� by using GPs as base surrogate model, we employ surrogates that are very
easy and fast to learn, and do not require much memory

� additionally, by using GPs, we do not introduce additional
surrogate-hyperparameters in opposition to many state of the art methods,

� finally, we show empirically that products of GP experts perform very compet-
itively for hyperparameter optimization against a variety of published com-
petitors, as well as make both the implementation and the meta data publicly
available.
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2 Related Work

As already mentioned, in the recent years there has been a growing interest
in research regarding hyperparameter optimization. Random search has been
proposed as an alternative to grid-search and works well in cases of low effective
dimensionality, where a subspace of the hyperparameter space does not influence
the results as much as the remaining hyperparameter dimensions [3].

In the context of SMBO, many different surrogate models have been proposed
in a variety of papers. At first, an independent Gaussian process [17] was used.
We denote it as independent as it does not learn across data [20]. Secondly,
random forests have been proposed as surrogates and inherit the ability to work
well with non numerical as well as hierarchical hyperparameters [13]. Regarding
hyperparameter optimization using meta knowledge, a stacking of a GP on top of
a ranking SVM was proposed [2], as well as a Gaussian process with a multi task
kernel in two closely related works [21,26]. Furthermore, a mixture of a multilayer
perceptron and a factorization machine has been employed as surrogate model
[18], which automatically learns data set representations and therefore does not
necessarily need meta features.

A different aspect of using meta knowledge is conducted through learning an
initialization of well-performing hyperparameters. The first work in this context
is [8] where the initial hyperparameters are chosen based on data sets that are
closest with respect to the Euclidean distance evaluated on the meta features of
the respective data sets. This intuition has been extended by [24] which uses a
differentiable plug in estimator to compute initial hyperparameters. Finally, [25]
employs a static sequence of hyperparameters that is learned using meta knowl-
edge and does not need a surrogate model at all, however, it has the drawback
that it needs meta information over different data sets evaluated on the same
hyperparameter grids.

There is a plethora of other approaches that are either model specific [1] or
use genetic algorithms [7,15], or do both in conjunction [9]. As these approaches
are not embedded in the context of SMBO, we will leave them out of further
discussions.

Since we are seeking to employ product of experts models in the framework
of SMBO-based hyperparameter optimization, we also review the related work
in this field as well as various techniques to speed up Gaussian process learning.
Initially, product of experts models have been proposed by [11] alongside with a
learning algorithm [12] to train the parameters of such a model. The generalized
product of experts [5] introduces additional weighting factors within the product
in order to reduce the overconfidence of the product of experts in unknown areas.
Another model that also estimates a joint probability density given by a set of
experts is the Bayesian committee machine [22], which includes the prior in its
predictions. Finally, the work by [6] combines both the idea of the generalized
POE with its weighting factors with the Bayesian committee machine. We do
want to highlight that all of this work is not specifically tailored to Gaussian
processes, however, [6] argues that using products of experts is an easy way to
make Gaussian processes more scalable to larger training data sets.
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Additionally, many efforts have been made by the means of sparse GPs,
namely Gaussian processes learned on subsets of the original training data such
as [19] which employs kd-trees for subsampling. There are many more works in
this area such as [10,23] or [16], however, as we want to make use of the rich
meta information of hyperparameter performance on other data sets using only
a subset of the meta information seems counterintuitive. Due to this reason,
we do not intend to use sparse GPs as surrogates for Bayesian hyperparameter
optimization.

3 Background

In this section we first review hyperparameter optimization and sequential
model-based optimization in general, secondly, we discuss Gaussian processes
shortly and lastly we give a review of product of experts models which we ulti-
mately seek to employ as surrogate models.

3.1 Problem Setting

Let D denote by the space of all data sets, following the notation by [3], we denote
a learning algorithm for a fixed model class M by a mapping A : Λ×D −→ M.
Thus, an algorithm A is essentially a mapping from a given hyperparameter
configuration and training data to a model which is learned by minimizing a loss
functional. In many cases, the hyperparameter space Λ is the cartesian product
of lower dimensional spaces. Now we can define the problem of hyperparameter
optimization as choosing the hyperparameter configuration λ� which minimizes
the loss of a learned model on given validation data:

λ� := arg min
λ∈Λ

L(A(λ,Dtrain),Dval) =: arg min
λ∈Λ

b(λ,D). (1)

Please note that we use the short b as notation for the process of learning a model
on training data with given hyperparameters and evaluating it on validation
data. Clearly, b is the black box function that we seek to optimize using Bayesian
optimization.

3.2 Sequential Model-Based Optimization

The SMBO framework is depicted in Algorithm1. It starts by learning a sur-
rogate model denoted by Ψ such that Ψ ≈ b on a set of given hyperparameter
performances which are stored in the observation history H. Secondly, the surro-
gate model will be used to predict the hyperparameter performance of unknown
hyperparameters, these predictions as well as the uncertainties will be forwarded
to the acquisition function a, which then picks a hyperparameter configuration
to test. The most commonly used acquisition function is Expected Improve-
ment (EI) and can be computed analytically if one assumes the probability of
improvement to be Gaussian [14]. Having chosen a candidate configuration, b
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Algorithm 1. Sequential model-based optimization across data sets
Input: Hyperparameter space Λ, observation history H, target data set D, number of

iterations T , acquisition function a, surrogate model Ψ , initial best hyperparameter
configuration λbest.

Output: Best hyperparameter configuration λbest for D
1: for t = 1 to T do
2: Fit Ψ to H
3: λnew = arg max

λ∈Λ
a (Ψ(λ, D), H)

4: Evaluate b (λnew, D)
5: if b(λnew, D) < b(λbest, D) then
6: λbest = λnew

7: H = H ∪ (λnew, b (λnew, D))
8: return λbest

will be evaluated for the proposed hyperparameter configuration, the result will
be fed into the observation history and the process is repeated for T many times
until finally a best hyperparameter configuration λbest is found. Additionally, the
surrogate model’s feature vector is usually augmented by meta features, which
are descriptive features of a data set, to allow the surrogate model to distinguish
between different data sets.

3.3 Gaussian Processes

We introduce Gaussian processes as we use them as base models in a product of
experts. Given is a regression problem of the form

y(x) = f(x) + ε, (2)

where we assume i.i.d. noise ε ∼ N (0, σ2). A Gaussian process assumes that
for a given set of input variables X = (x1, ..., xN ) with associated labels y =
(y1, ..., yN ) the labels are multivariate Gaussian distributed y ∼ N (0,K), where
K is a covariance matrix that is defined through a positive semidefinite kernel
function k(x, x′). A very common choice for k is the squared exponential kernel

k(x, x′) = exp
(−‖x − x′‖2

2σ2
l

)
+ σ2δ(x = x′), (3)

where θ = (σl, σ) are denoted as the hyperparameters and the δ function returns
1 if its predicate is true and 0 otherwise. Given a set of known observations, the
conditional distribution of a label f� given its input x� is Gaussian distributed
with mean and covariance

μ(f�) = k�
� K−1y (4)

σ2(f�) = k�� − k�
� K−1k�, (5)

where k� = (k(x1, x�), ..., k(xn, x�)) is the vector of kernel evaluations of the new
input x� to all observed inputs and k�� = k(x�, x�) is the prior covariance of f�.
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As we can see, using a GP for predictions requires inverting the kernel matrix of
size N , which is an operation of O(N3) and thus becomes infeasible for data sets
with many instances. Recalling that our primary goal was to include large scale
meta knowledge of past hyperparameter performances, this boundary might be
reached very soon, which would force us to throw valuable data away or rely
on other surrogate models. However, solving the linear system of equations for
inversion of K can be reduced to O(N2) by using a Cholesky decomposition of
the kernel matrix [17].

The kernel hyperparameters can be learned by maximizing their marginal
log likelihood using standard optimization techniques such as gradient ascent.
Again, for optimizing the kernel hyperparameters, we have to invert the kernel
matrix as well as compute its determinant, which also both scale cubically in
the dimension of K. As gradient ascent might use several iterations to converge
to a useful θ, this inversion becomes even more the bottle neck with respect to
both computational speed as well as memory usage.

3.4 (Generalized) Product of Experts (POE)

In order to scale Gaussian processes to a large training data set (i.e. observation
history) we will use product of experts models [11], of which several variants
have been proposed. Within a product of GP experts, a set of M invididual
Gaussian processes are learned on M disjoint subsets of the training data, so let
us decompose our training data as

X = (X(1), ...,X(M)) y = (y(1), ..., y(M)), (6)

such that the individual subsets of instances and labels are disjoint. Then, follow-
ing the independence assumption, the marginal joint likelihood factorizes into a
product of single likelihoods

p(y |X, θ) =
M∏
i=1

pi

(
y(i) |X(i), θ(i)

)
. (7)

Thus, in order to learn the individual experts, we only need to invert kernel
matrices of the size of roughly N/M , thus learning the individual experts can be
done in O(N3/M3) which is a reasonable reduction for a sufficiently large enough
M . In this way, we also learn M many different sets of kernel hyperparameters.

As the M experts have been learned, we can compute the marginal likelihood
by multiplying all individual likelihoods. The generalized product of experts [5]
introduces additional weighting factors βi such that:

p(y |X, θ) =
M∏
i=1

pi
βi

(
y(i) |X(i), θ(i)

)
. (8)

Naturally, if all βi = 1, we arrive at the initial formulation of Eq. 7. Computing
the product of the individual likelihoods yields a density that is proportional to
a Gaussian with following mean and precision:
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μpoe(f�) = (σpoe(f�))2
M∑
i=1

βiσ
−2
i (f�)μi(f�) (9)

(σpoe(f�))−2 =
M∑
i=1

βiσ
−2
i (f�) (10)

Essentially, by replacing σ−2
i (f�) = τi(f�) with the precision, we see that the

mean predicted by the product of experts is a sum of means, weighted by the
product of the individual βi and the precision τi, which is then divided by the
total sum of weighting factors. Usually, the βi are set such that

∑
i βi = 1,

surprisingly, this already works quite well for βi ≡ 1/M . This does not change
the mean as the multiplication with the precision cancels out the effect, however,
the precisions effectively get weighed down and decrease the overconfidence of
the initial product of experts without any weights.

3.5 Product of Experts in SMBO

Having introduced the product of experts models, their implementation for
hyperparameter optimization in the SMBO framework seems straightforward.
However, a few questions still remain unanswered. At first, we split the meta
knowledge into all the instances belonging to hyperparameter performances of
one data set. In this way, each expert will be learned on the meta information of
one distinct data set. If this would still be too large for a GP to learn, we could
further subdivide them into smaller subsets.

Secondly, the question of how the information on the target data set will be
incorporated into the surrogate model remains. We seek for two alternatives, in
the first one we simply add the information of new points on the target data set
to all the experts in the ensemble. Doing this, we effectively train all experts to
be expert for two data sets, the initial one they have been trained on plus the
target data set. In our implementation, we then follow the intution of all weights
summing up to one, thus we set all βi = 1/M .

As an independent Gaussian process that is learned without any meta knowl-
edge already behaves reasonably well as a surrogate model, we also tried another
alternative. We still feed the target data set information into all experts learned
in the ensemble but additionally create a new GP that carries only the infor-
mation of the target data set and is weighed much higher than the individ-
ual experts. Specifically, we use βi = 1/2M for the individual experts and
βM+1 = 1/2 for the GP learned on only the target data set responses. In this
way, we use the meta information as well as the strength of an independent
Gaussian process.

Additionally, we seek to scale the hyperparameter performances observed in
the meta data as well as the hyperparameter performances of the target data
set. This is due to the fact that the range of b naturally depends on the data
set. Consider for example a classification problem where b models the misclassi-
fication rate of a classifier for some test data. Naturally, for some data sets, very
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low misclassification rates might be achieved in contrast to other data sets that
are simply harder to classify. A POE might then be biased towards choosing
hyperparameter configurations that produce good results on simple data sets,
which is something we want to prevent. In order to do so, we scale the labels of
the meta data to become standard Gaussian distributed, for the target data set,
we do this on-the-fly every time we see a new response of b as was also proposed
by [26].

4 Experiments

To evaluate the proposed surrogate models for hyperparameter optimization, we
conduct hyperparameter optimization within the SMBO framework including a
variety of published baselines. The experiments are performed on two meta data
sets that we have created ourselves.

4.1 Meta Data Set Creation

We have created two meta data sets for the task of classification using two
distinct classifiers, namely being a support vector machine (SVM) and AdaBoost.
These meta data sets consists of a complete grid search for both classifiers on
50 classification data sets that we have taken from the UCI repository1. If splits
were already given, we merged them into one complete data set, shuffled the
resulting data set and then took 80% of the data for training and the remaining
20% for testing. The AdaBoost meta data set was created by running AdaBoost2

with hyperparameters I ∈ {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}
and M ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30}. This yields 108 meta instances per data set
and therefore the overall meta data set contains 5400 instances.

The second meta data set was created by running an SVM3 on all of the data
sets, with four hyperparameters. The first one resembles the choice of kernel and
is categorical between a linear, a polynomial and an RBF kernel, thus intro-
duces three binary hyperparameters. The second hyperparameter is the tradeoff
parameter, usually denoted as C, the third and fourth hyperparameter are the
degree d of the polynomial kernel and the width γ of the RBF kernel. If the ker-
nel hyperparameters are not used, i.e. the polynomial degree for an RBF kernel,
we set them to a constant value of zero. As for the AdaBoost meta data set, we
computed the misclassification rates using grid-search, where C was chosen from
the set {2−5, . . . , 26}, the polynomial degree d was chosen from {2, . . . , 10} and
γ was chosen from {0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 1000}.
This results in 288 runs per data set, and therefore the overall meta data set
contains up to 14, 400 instances.

Finally, we also added meta features to the meta data set, to allow the sur-
rogate models to distinguish between the same hyperparameter configurations
1 http://archive.ics.uci.edu/ml/index.html.
2 http://www.multiboost.org.
3 http://svmlight.joachims.org.

http://archive.ics.uci.edu/ml/index.html
http://www.multiboost.org
http://svmlight.joachims.org
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Table 1. List of all meta-features used.

Number of Classes Log Inverse Data Set
Dimensionality

Kurtosis Mean

Number of Instances Class Cross Entropy Kurtosis Standard Deviation

Log Number of Instances Class Probability Min Skewness Min

Number of Features Class Probability Max Skewness Max

Log Number of Features Class Probability Mean Skewness Mean

Data Set Dimensionality Class Probability
Standard Deviation

Skewness Standard Deviation

Log Data Set
Dimensionality

Kurtosis Min

Inverse Data Set
Dimensionality

Kurtosis Max

evaluated on different data sets. A list of all employed meta features can be seen
in Table 1. For our experiments, all features in the meta data set, namely the
computed meta features as well as the hyperparameter configurations have been
scaled to values in [0, 1].

4.2 Competing Surrogate Models

Random Search (RANDOM). This is a surrogate that simply picks a random
point out of the grid.

Random Forests (RF). Sequential Model-based Algorithm Configuration [13]
employs a random forest as surrogate model and computes uncertainties using
the learned ensemble by estimating empirical means and standard deviations.

Independent Gaussian Process (IGP). An independent Gaussian process with
SE-ARD kernel that is only learned on the observations on the target data set,
this was proposed by [20].

Surrogate-based Collaborative Tuning (SCOT). This surrogate model is effec-
tively a stacking of an SVMRANK and a Gaussian process and was proposed by
[2]. The ranking SVM learns how to rank hyperparameter configurations across
data sets, uncertainties are estimated by stacking a GP on the ranked output.

Full Gaussian Process (FGP). A Gaussian process with SE-ARD kernel that
is learned on the whole meta data set. This is basically the model we seek to
approximate by learning a product of experts.

Gaussian Process with MKL (MKLGP). This surrogate was proposed by [26]
and learns basically a full GP over the whole meta data set using a combination
of an SE-ARD kernel and a kernel function that models the distances between
data sets based on meta features.
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Factorized Multilayer Perceptron (FMLP). The surrogate model that was pro-
posed by [18], which learns a multilayer perceptron and factorizes the weights in
the first layer in order to learn latent data set and hyperparameter representa-
tions. Uncertainties are estimated by learning an ensemble of FMLPs.

Product of Gaussian Process Experts (POGPE). This surrogate model learns a
product of GP experts as described in Sect. 3.4. Each expert employs an SE-ARD
kernel. Information of the target data set is distributed to all experts, which are
all weighted equally.

Single Gaussian Process Expert (SGPE). This surrogate model also learns a
product of GP experts as described in Sect. 3.4, however, also learns an indepen-
dent GP for the target data set only and weighs the target GP as much as the
whole set of experts.

4.3 Experimental Setup

Our experiments are performed in a leave-one-out fashion, meaning that we
train the surrogate model on 49 data sets and use the meta knowledge to start
SMBO on the remaining test data set. To cancel out random effects, we ran
all experiments for a total of 100 times and averaged the results in the end.
In total, each SMBO run was allowed to test T = 70 different hyperparameter
configurations on the test data. As acquisition function we employed the pop-
ular expected improvement, which is by now the most widely used acquisition
function in hyperparameter optimization using the SMBO framework.

As evaluation metric, we use the average rank, where, for each target data
set, we rank all competing surrogate models based on the best misclassification
rate they have found so far. Ties are being solved by granting the average rank,
i.e. if one surrogate models find the misclassification rates 0.2, another two find
0.25 and a third one finds only 0.5, we would rank the surrogates with 1, 2.5,
2.5 and 4. As we run the experiments for 50 different target data sets, we report
the average of all average ranks.

The implementations were largely done by ourselves, except for SMAC and
SCOT, where we used MLTK4 for the former and the implementation by
Joachims5 for the ranking SVM used in SCOT. All hyperparameters of the
GP based models have been automatically tuned by maximizing their marginal
likelihood, for FMLP we used the setting proposed by the authors. For SMAC,
SCOT and MKLGP we used leave-one-out cross validation to tune the hyperpa-
rameters. For all GP-based models, we implemented the Cholesky decomposition
to speed up the inversion of kernel matrices. In order to facilitate reproducibility
of our experimental results, we make the program code as well as the employed
meta data sets publicly available on Github6.

4 http://www.cs.cornell.edu/∼yinlou/projects/mltk/.
5 http://svmlight.joachims.org/.
6 https://github.com/nicoschilling/ECML2016.

http://www.cs.cornell.edu/~yinlou/projects/mltk/
http://svmlight.joachims.org/
https://github.com/nicoschilling/ECML2016
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4.4 Performance in SMBO

The average rank among all competing methods can be seen in Fig. 1, where
the left plot shows the average rank on AdaBoost versus the number of trials
conducted, and the right one shows the results for the SVM meta data set. First
of all, we see that for both meta data sets the random baseline shows the worst
performance as is expected. Surprisingly, for both meta data sets, POGPE and
SGPE find the best hyperparameter among the competitors in the first trial.
During the SMBO procedure, both the full Gaussian process as well as MKLGP
perform better on the AdaBoost data set, however, we observe that POGPE
performs better on the SVM data set which is quite a surprise. POGPE, despite
its good starting point, is being outperformed by FMLP on the SVM data set
in the first 15 trials, which then degrades in performance and performs worse
than both full GP approaches. Comparing both of these with each other, we
see that they perform almost equally, however, MKLGP tends to have worse
starting points than a simple full GP. For both meta data sets, we see the lift of
including meta knowledge through comparison with the independent GP, which
performs reasonably on AdaBoost but degrades on SVM. This observation leads
us to the conclusion that optimizing the hyperparameters of AdaBoost seems an
easier task than on SVM.

Fig. 1. Average Rank of all competing methods. The left plot shows results for
AdaBoost, the right plot shows results for the SVM meta data set.

In contrast to POGPE, SGPE does not seem to perform that well, maybe the
tradeoff between product of experts and single GP has to be adjusted for each
trial, however, this would introduce another hyperparameter for the surrogate
model, which we do not seek to do.

Overall, we conclude that POGPE, FMLP, FGP and MKLGP are among
the best performing surrogate models, so for these models we also computed the
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Fig. 2. Average Distance to Minimum of the best performing methods. The left plot
shows results for AdaBoost, the right plot shows results for the SVM meta data set.

average distance to the minimum in terms of b. For each data set, we scale all
values of b (in this case accuracies) to be in [0, 1]. Then, again for each data set,
we compute the distance of the best hyperparameter response so far to the best
on the overall grid. This value is then averaged to become the average distance
to the minimum, which gives an idea of how a surrogate model makes use of the
responses it gets on the target data set. The results can be seen in Fig. 2, where
the left plot shows the results for AdaBoost and the right for SVM. Overall, we
see the same behaviour as we have seen in average rank, however, FMLP seems to
be a little bit better here. For AdaBoost, it achieves the lowest average distance,
this is due to FMLP winning severely against its competitors on the data set
sonar-scale, where in the average rank, this win does not count that much. In
conclusion, we see that POGPE works really well on both evaluatuion metrics,
especially when we consider its simplicity in the light of POGPE actually being
an approximation of a full GP.

4.5 Runtime Experiments

In order to demonstrate the scalability of using POGPE, we have also conducted
a runtime experiment. We have measured the runtime of the most competitive
methods, namely being POGPE, FMLP, and both of the full Gaussian process
approaches FGP and MKLGP. Experiments were conducted on a Xeon E5-
2670v2 with 2.50 GHz clock speed and 64 GB of RAM, where we again performed
a total of 70 trials of an SMBO run on the SVM meta data set. To account for
measurement noise, we repeated all experiments 10 times.

The results can be seen in Fig. 3, where the left plot shows the cumulative
runtime in seconds without the initial training time of the surrogate in opposition
to the right plot which includes it. We plot both results as the training of the
surrogate model can be performed in an offline fashion while waiting for new
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Fig. 3. Runtime comparison among the most competitive surrogate models. The left
plot shows the cumulative runtime in seconds.

data. As we do not take into account the learning of the actual model, i.e. the
evaluation of b, both plots can be understood as the total overhead time of
running SMBO instead of using default hyperparameters. We can observe that
POGPE consumes drastically less time than all its competitors, simply due to
the fact that we have to invert much smaller kernel matrices. By excluding the
potentially offline training time, a full GP is faster than FMLP, however, if the
full GP needs to be trained first an FMLP is faster but gets overtaken with
respect to computation time if only enough trials are performed. In both plots,
MKLGP requires the most computation time. Considering that these differences
will be bigger if we use more meta information, we conclude that POGPE is very
fast while performing also very well in the SMBO procedure.

5 Conclusions

In this paper, we proposed to choose POE models as surrogate models for hyper-
parameter tuning, specifically we chose to employ Gaussian processes because of
their fairly easy implementation as well as their predictive performance in the
field of Bayesian optimizazion. We do acknowledge that POGPE is not the best
model in all experiments, but is quite competitive which is a surprise due to its
simplicity and its approximative nature. In the very first trial both POGPE and
SGPE (as they start out the same) on average pick the best hyperparameter con-
figuration compared to all competitor methods, which shows how efficient usage
of the meta data can simply be made by learning a product of experts on each
invidual data set and querying the committee. Moreover, the other competitive
surrogate models such as FMLP and MKLGP introduce additional hyperpara-
meters for the surrogate model that need to be optimized. For FMLP, tuning
of the network architecture such as number of layers and number of nodes per
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layer as well as setting correct learning rates is demanded. MKLGP requires
tuning of the number of neighboring data sets and the tradeoff term between
both employed kernels. In comparison, a simple product of GP experts does not
require any hyperparameter tuning, as the GP parameters can be learned by
maximizing their marginal likelihood quite effectively.

As we have seen in the results, POGPE can also be trained much faster than
the other competitive surrogate models. In the light of big data we will probably
have access to also growing meta data sets that we can employ for hyperpa-
rameter optimization, which makes scalable use of the meta data a necessity.
Moreover, POE models are easy to parallelize which allows easy usage in dis-
tributed scenarios. Out of all these reasons we see them as a very reasonable
choice to pick as surrogate models for hyperparameter optimization including
large scale meta data.
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