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Abstract. We are interested in discovering user groups from collabo-
rative rating datasets of the form 〈i, u, s〉, where i ∈ I, u ∈ U , and s
is the integer rating that user u has assigned to item i. Each user has
a set of attributes that help find labeled groups such as young computer
scientists in France and American female designers. We formalize the
problem of finding user groups whose quality is optimized in multiple
dimensions and show that it is NP-Complete. We develop α-MOMRI,
an α-approximation algorithm, and h-MOMRI, a heuristic-based algo-
rithm, for multi-objective optimization to find high quality groups. Our
extensive experiments on real datasets from the social Web examine the
performance of our algorithms and report cases where α-MOMRI and
h-MOMRI are useful.

1 Introduction

Today’s data scientists are faced with large volumes of data to explore. In par-
ticular, collaborative rating sites have become essential data resources to make
decisions about mundane tasks such as purchasing a book, renting a movie or
going to a restaurant. The availability of a number of datasets on the social
Web, such as MovieLens, a movie rating site, LastFM, a music rating site and
BookCrossing, a book rating site, appeals to scientists today who design algo-
rithms that help analysts make better decisions on complex tasks such as crowd
data sourcing (which users to ask ratings from), advertisers in determining which
items to recommend to which users, and social scientists in validating hypothe-
ses such as young professionals are more inclined to buying self-help books, on
large datasets.

In practice, however, there does not exist analytics tools that enable the
scalable, on-demand discovery of user groups. In this paper, we are given a
dataset of rating records in the form 〈i, u, s〉, where i ∈ I (set of items), u ∈ U
(set of users), and s is the integer rating that user u has assigned to item i.
We define the notion of user group as a conjunction of demographic attributes
over rating records, such as rich young professionals or teachers who live in the
countryside. Given a dataset, e.g., ratings of Woody Allen movies, we formalize
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the problem of discovering high quality user groups. Quality is formulated as
the optimization of two dimensions: coverage and diversity. Optimizing coverage
ensures that most input records 〈i, u, s〉 will belong to at least one group in
the output. Optimizing diversity ensures that found groups are as different as
possible from each other, e.g., males and females or young and old, and unveils
ratings by different users. User groups with high coverage and high diversity, can
help analysts make a variety of decisions such as audience targeting in advertising
or hypothesis validation in social science. Example 1 illustrates a common case
in practice.1

Example 1. It is generally believed that romantic movies (e.g., American Beauty,
1999) are mostly watched by females. This observation is based on demographic
breakdown reports on IMDb.2 Anna, who is a social scientist, wants to vali-
date this hypothesis by exploring diverse user groups that cover most ratings
for romance genre movies. Such a group-centric examination would provide the
following 3 user groups: i. female reviewers from DC (District of Columbia),
ii. young female reviewers, and iii. male teenager reviewers with average ratings
of 4.6, 3.7 and 3.1 (out of 5), respectively. By observing those groups, Anna
finds that the hypothesis holds only for a sub-population of female reviewers,
middle-age or residents of DC. Also the results show another group of romance
genre lovers, male teenagers, which contradicts the hypothesis. Anna is confident
in her observation (as the results has high coverage) and she can notice different
aspects of her hypothesis (as results are diversified).

Beyond coverage and diversity, another interesting dimension of group qual-
ity is its rating distribution. As it has been argued in previous work [4], groups
with homogeneous ratings may be more appealing to some applications, while
groups with polarized ratings are preferred by others. Indeed the rating distrib-
ution in a group provides analysts with the ability to tune the quality of found
groups according to specific needs. Example 1 is a good case for homogeneity.
By reporting the average rating of 4.6 for young female reviewers, we know that
most individuals in that group have high ratings. The following example shows
how tuning the rating distribution of discovered groups leads to new discoveries
when used alongside coverage and diversity.

Example 2. Following Example 1, Anna then looks at the variance of ratings in
those groups and finds that male teenager reviewers has a higher variance com-
paring to two other groups. This potentially shows that not all male teenagers
like romantic movies. Anna is more interested in a homogenous group, so she can
either choose the second or third group or ask the system to find other groups
specifically for males or teenagers.

Given an input set of rating records (e.g., Sci-Fi movies from the 90’s, David
Lynch movies, movies starring Scarlett Johansson), our problem is that of dis-
covering a set of user groups. Even when the number of records is not very high,
1 We use this example as our running example throughout the paper.
2 http://www.imdb.com.

http://www.imdb.com
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the number of possible groups that could be built may be very large. Indeed, the
number of groups is exponential in the number of user attribute values and many
groups are very small or empty. Therefore, given the ad-hoc and online nature of
group discovery, our challenge is to quickly identify high quality user groups. We
hence define desiderata that user groups should satisfy (local desiderata) and
those that must be satisfied by the set of returned groups (global desiderata).

Local desiderata: i. (Describability) Each group should be easily understand-
able by the analyst. While this is difficult to satisfy through unsupervised clus-
tering of ratings, it is easily enforced in our approach since each group must be
formed by rating records of users that share at least one attribute value, which
is used to describe that group. ii. (Size) Returning groups that contain too few
rating records is not meaningful to the analyst. We hence need to impose a
minimum size constraint on groups.

Global desiderata: i. (Coverage) Together, returned groups should cover most
input rating records. While ideally we would like each input record to belong
to at least one group, that is not always feasible due to other local and global
desiderata associated with the set of returned groups. ii. (Diversity) Returned
groups need to be different from each other in order to provide complementary
information on users. iii. (Rating Distribution) Ratings in selected groups should
follow a requested distribution (e.g., homogeneity). iv. (Number of groups) The
number of returned groups should not be too high in order to provide the analyst
with an at-a-glance understanding of the data.

A candidate solution is a group-set that verifies all above desiderata. Finding
such a group-set is a hard problem because of two reasons. First the pool of
candidate group-sets is very large as any possible combination of attribute value
pairs can form a group, and any number of groups can form a group-set. By
having only 20 attribute value pairs, we end up with 1, 048, 575 groups (i.e.,
(220) − 1) and over 1012 group-sets of size 5 (i.e., 1, 048, 575 choose 5). The
second reason of hardness is that diversity, coverage and rating distribution are
conflicting objectives (Sect. 5.1), i.e., optimizing one does not necessarily lead
the best values for others. Thus the need for a Multi-Objective optimization
approach that will not compromise one objective over another. Such an approach
would return the set of all candidate group-sets that are not dominated by any
other along all objectives.

In this paper, we propose α-MOMRI, an α-approximation algorithm for
user group discovery that considers local and global desiderata and guarantees
to find group-sets that are α-far from optimal ones. Since α-MOMRI relies on an
exhaustive search in the space of all groups, we propose h-MOMRI, a heuristic
that exploits the lattice formed by user groups and prunes exploration in order to
speed up group-set discovery. Both our algorithms admit a set of rating records of
the form 〈i, u, s〉 and a constrained Multi-Objective optimization formulation [5]
and return group-sets that satisfy the formulation and are not dominated by any
other group-set. The contributions of this paper are as follows.



Multi-Objective Group Discovery on the Social Web 299

1. We formalize specific quality dimensions (coverage, diversity and rating dis-
tribution) which we find to be the most natural for discovering user groups
on the Social Web. We exploit the semantics of these objectives to go beyond
a generic approach.

2. We formalize the problem of discovering user groups as a constrained Multi-
Objective optimization problem with quality dimensions as objectives.

3. We develop α-MOMRI, an α-approximation algorithm for user group dis-
covery. Returned group-sets are instances of Pareto plans and are guaranteed
to be α-far from optimal ones.

4. We develop h-MOMRI, a heuristic-based algorithm that exploits the lattice
formed by user groups to speed up group discovery.

5. In an extensive set of experiments on MovieLens and BookCrossing
datasets, we analyze different solutions of α-MOMRI and h-MOMRI and
show that high quality group-sets are returned by our approximation and
very good response time is achieved by our heuristic.

2 Data Model and Preliminaries

We model our database D as a triple 〈I,U ,R〉, representing the sets of items,
reviewers and rating records respectively. Each rating record r ∈ R is itself a
triple 〈i, u, s〉, where i ∈ I, u ∈ U , and s is the integer rating that reviewer u has
assigned to item i. The values of s are application-dependent and do not affect
our model.

I is associated with a set of attributes, denoted as IA = {ia1, ia2, . . . }, and
each item i ∈ I is a tuple with IA as its schema. In other words, i = 〈iv1, iv2, . . . 〉,
where each ivj is a set of values for attribute iaj . For example, for the movie
Kazaam (1996) in MovieLens dataset, the set of attribute values are 〈Paul M.
Glaser, {Comedy, Fantasy}〉 for the attribute schema 〈director, genre〉. Note
that the attribute genre is multi-valued. We also have the schema UA =
{ua1, ua2, . . . } for reviewers, i.e., u = 〈uv1, uv2, . . . 〉 ∈ U , where each uvj is
a value for attribute uaj . As a result, each rating record, r = 〈i, u, s〉, is a
tuple, 〈iv1, iv2, . . . , uv1, uv2, . . . , s〉, that concatenates the tuple for i, the tuple
for u, and the numerical rating score s. The set of all attributes is denoted as
A = {a1, a2, . . . }. We now define the notion of user group.

Definition 1 (User Group). A group g is a set of rating records 〈u, i, s〉
described by a set of attribute value pairs shared among the reviewers and the items
of those rating records. The description of a group g is defined as {〈a1, v1〉, 〈a2, v2〉,
. . . } where each ai ∈ A (set of all attributes) and each vi is a set of values for ai.
By |g|, we denote the number of rating records contained in g.

For instance, the first group in Example 1, g = {〈gender, female〉,
〈location, DC〉, 〈genre, romance〉} contains rating records in MovieLens for
romance movies whose reviewers are all females in DC. Note that is it au-naturel
to combine item attributes (genre) and user attributes (location and gender)
together. Figure 1 illustrates an example dataset with 7 rating records. The user
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ID Movie Name Gender Age Occup. Rating

r1 Toy Story John M young teacher 4

r2 Toy Story Jennifer F old teacher 3

r3 Toy Story Mary F old teacher 2

r4 Titanic Carine F old other 4

r5 Toy Story Sara F young student 3

r6 Toy Story Martin M young student 5

r7 Titanic Peter M young student 1

r1

r2

r3

r4

r5

r7

r6

g1={<gender,female>}

g2={<occupation,student>, <age,young>}

g3 = {<movie,Toy Story>}

Fig. 1. Example dataset and group-set

group g1 is for female reviewers with 4 rating records, and g2 is for young students
with 3 rating records. There exists one record in common between two mentioned
user groups (r5). Note that a user group differs from a where-clause SQL query,
since our objectives and constraints are not expressible as SQL predicates.

Given a rating record r = 〈v1, v2 . . . , vk, s〉, where each vi is a set of
values for its corresponding attribute in the schema A, and a group g =
{〈a1, v1〉, 〈a2, v2〉, . . . , 〈an, vn〉}, n ≤ k, we say that g covers r, denoted as
r � g, iff ∀i ∈ [1, n], ∃r.vj such that vj is a set of values for attribute g.ai

and g.vj ⊆ r.vi. For example, the rating 〈female, DC, student, 4〉 is covered by
the group {〈gender, female〉, 〈location, DC〉}.

{} 

#records= 3662

{male, young} 

#records= 1588

{CA, 

student} 

#records=20

{male} 

#records=2634

{young} 

#records=2147

{CA} 

#records=664

{student} 

#records=184

{male, young, 

CA} 

#records=268

{male, young, CA, student}  

#records=2

{young, CA} 

#records=375

{male, 

student} 

#records=120

{male, CA} 

#records=477

{young, 

student} 

#records=13

{young, CA, 

student} 

#records=2

{male, young, 

student} 

#records=13

{male, CA, 

student} 

#records=17

Fig. 2. Partial lattice for the movie Toy Story

Similarly to data cubes, the set of all possible groups form a lattice where
nodes correspond to groups and edges correspond to parent/child and ances-
tor/descendant relationships. A partial lattice for rating records of the movie
Toy Story (1995) is illustrated in Fig. 2 where we have four reviewer attributes
to analyze: gender, age, location (CA stands for California) and occupation.
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For simplicity, exactly one distinct value per attribute is shown in the Figure.
The complete lattice contains 15,582 attribute-value combinations.

2.1 Group Quality Dimensions

We now define three quality dimensions for groups, i.e., coverage, diversity and
rating distribution. We are given a set of rating records R ⊆ R and a group-set G.

Coverage is a value between 0 and 1 and measures the percentage of rating
records in R contained in groups in G.

coverage(G,R) = | ∪g∈G (r ∈ R, r � g)|/|R| (1)

For instance, in Fig. 1, coverage(G,R) = 0.8 where G = {g1, g2} and R
contains rating records for the movie Toy Story.

Diversity is a value between 0 and 1 that measures how distinct groups in
group-set G are from each other. Diversity penalizes group-sets containing over-
lapping groups. To prioritize groups with few overlaps, the overlapping penalty
is considered as an exponentiation with a negative exponent.

diversity(G,R) = 1/(1 + Σg1,g2∈G|r ∈ R, r � g1 ∧ r � g2|) (2)
For instance, in Fig. 1, diversity(G,R) = 0.5.
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Fig. 3. Different rating distributions for a group-set

Rating Distribution. A group-set G may be characterized by its rating distri-
bution. Figure 3 illustrates some examples of distributions. A rating distribution
is a function over the set of ratings in the rating records of groups in G. Equa-
tion 3 shows an example of such a function which computes the average diameter
of ratings. Other aggregation functions could be defined.

diameter(G) = avgg∈G(maxr∈g(r.s) − minr′∈g(r′.s)) (3)

The two most common rating distributions are groups whose members have
a consensus (homogeneous distribution, Fig. 3 left), and groups whose members
have very different points of view (polarized distribution, Fig. 3 right). A small
value of diameter(G) leads a homogeneous group-set G and a high value leads
a polarized group-set G. In Fig. 1, diameter(G) = 3.

The diameter function can capture homogeneity and polarization, but not
some other distributions such as “balanced”. A detailed discussion on differ-
ent functions for capturing rating distributions is provided in our technical
report [12].
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2.2 Multi-Objective Optimization Principles

We propose to use the quality dimensions (coverage, diversity and rating
distribution) defined as optimization objectives. When dealing with more
than one dimension to optimize, there may be many incomparable group-
sets. For instance, for a set of ratings R, we can form two group-sets,
G1 with coverage(G1, R) = 0.8 and diversity(G1, R) = 0.4 and G2 with
coverage(G2, R) = 0.5 and diversity(G2, R) = 0.7. Each group-set has its own
advantage: the former has higher coverage and the latter has higher diversity.
Another group-set G3 with coverage(G3, R) = 0.5 and diversity(G3, R) = 0.2 has
no advantage compared to G1, hence it can be ignored. In other words, G3 is
dominated by G1. In this section, we borrow the terminology of Multi-Objective
optimization [5] and define these concepts.

Definition 2 (Plan). Plan pi, associated to a group-set Gi for a set of rating
records R ⊆ R, is a tuple
〈|Gi|, coverage(Gi, R), diversity(Gi, R), diameter(Gi)〉.
Definition 3 (Sub-plan). Plan pi is the sub-plan of another plan pj if their
associated group-sets satisfy Gi ⊆ Gj.

Definition 4 (Dominance). Plan p1 dominates p2 if p1 has better or equiv-
alent values than p2 in every objective. The term “better” is equivalent to
“greater” for maximization objectives (e.g., diversity, coverage and polarization),
and “lower” for minimization ones (e.g., homogeneity). Furthermore, plan p1
strictly dominates p2 if p1 dominates p2 and the values of objectives for p1 and
p2 are not equal.

Definition 5 (Pareto Plan). Plan p is Pareto if no other plan strictly dom-
inates p. The set of all Pareto plans is denoted as P.

3 Problem Definition

We define our constrained Multi-Objective optimization problem as follows: for
a given set of rating records R and integer constants σ and k (number of groups),
the problem is to identify all group-sets, such that each group-set G satisfies:

– coverage(G,R) is maximized;
– diversity(G,R) is maximized;
– rDistb(G) is optimized;
– |G| ≤ k;
– ∀g ∈ G : |g| ≥ σ.

Note that our problem focuses on group-sets in opposition to individual
groups, which is a clear distinction from the literature. The last constraint in
our problem states that a group g should contain at least σ rating records,
an application-defined threshold. For example, if we fix σ to 10 rating records,
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the groups highlighted in gray in Fig. 2 will not be returned. Note that while we
always maximize coverage and diversity, we may either minimize (e.g., in case
of homogeneity) or maximize (e.g., in case of polarization) the diameter based
on the analyst’s needs. We state the complexity of our problem as follows.

Theorem 1. The decision version of our problem is NP-Complete.

Proof (sketch). It is shown in [4] that a single-objective optimization problem for
user group discovery is NP-Complete by a reduction from the Exact 3-Set Cover
problem (EC3). There, homogeneity is maximized and a threshold on coverage
is satisfied. In our case, two new conflicting dimensions (diversity and coverage)
are added. This means that the problem in [4] is a special case of ours, hence
our problem is obviously harder. �

4 Algorithm

The main challenge in designing an algorithm for user group discovery, is the
Multi-Objective nature of the problem. A Multi-Objective problem can be easily
solved if it is possible to combine all objective dimensions into a single dimension
(scalarization), or if optimizing one dimension leads an optimized value for other
dimensions.

Both following transformations are infeasible for our problem because our
objectives are conflicting, i.e., optimizing one does not necessarily lead to an
optimized value for others (Sect. 5.1). For instance, a group-set may cover almost
all input rating records but contains highly overlapping groups thereby hurting
its diversity.

In this paper, we discuss 3 different algorithms for our problem: exhaustive,
approximation and heuristic.

4.1 Exhaustive and Approximation Algorithms

The exhaustive algorithm starts by calculating Pareto plans for single groups.
Then it iteratively calculates plans for group-sets containing more than one group
by combining single groups. At each iteration, dominated plans are discarded.
The algorithm combines sub-plans to obtain new plans and exploits the optimal-
ity principle (POO) for pruning [15]. This approach makes an exhaustive search
over all combinations of user groups to find Pareto plans, i.e., both time and
space consuming [6].

We propose to improve the complexity of the exhaustive algorithm with our
approximation-based algorithm which makes less enumerations and guarantees
the quality of results. Another way of improvement is heuristic-based which will
be discussed in Sect. 4.2. For our approximation algorithm, we exploit the near-
optimality principle (PONO) [15].

Definition 6 (PONO). Given a maximization objective f (e.g., diversity, cov-
erage, polarization) and α ≥ 1, let p1 be a plan with sub-plans p11 and p12. Derive
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Algorithm 1. α-approximation MOMRI (α-MOMRI)
Input: σ, k, α > 1, R
Output: Pareto result set Pα

1 α ← ∅
2 for all user groups g whose size is at least σ do
3 pg ← construct plan(g)
4 if pg is not α-dominated by any other plan in Pα then Pα.add(pg)

5 end
6 for n ∈ [2, k] do
7 for group-sets G of size n do
8 pG ← construct plan(gG)
9 if pG is not α-dominated by any other plan in Pα then Pα.add(pG)

10 end

11 end
12 return Pα

p2 from p1 by replacing p11 by p21 and p12 by p22 where p21 and p22 are sub-
plans of p2. Then f(G21) ≥ f(G11)×α and f(G22) ≥ f(G12)×α together imply
f(G2) ≥ f(G1) × α. The extension for a minimization objective is straightfor-
ward.

We have formally proved that all our objectives satisfy PONO. Proofs are
provided in our technical report [12]. Note that among different definitions in
the literature for coverage, diversity and rating distribution, we picked the ones
that are most intuitive to our problem and that satisfy PONO. For instance, the
rating distribution function in [4] does not satisfy PONO.

PONO overrides POO. Thus a new notion of dominance is introduced in
Definition 7 to be in line with PONO.

Definition 7 (Approximated Dominance). Let α ≥ 1 be the precision
value, a plan p1 α-dominates p2 if for every maximization objective f (e.g.,
diversity, coverage, polarization), f(G1) ≥ f(G2) × α. The extension for a min-
imization objective is straightforward.

Definition 8 (Approximated Pareto Plan). For a precision value α, plan
p is an α-approximated Pareto plan if no other plan α-dominates p.

Generating fewer plans makes a Multi-Objective optimization algorithm run
faster [15]. This is because the execution time heavily depends on the number
of generated plans. Thus a pruning strategy dictated by PONO is at the core
of the α-MOMRI algorithm illustrated in Algorithm 1. In the special case of
α = 1, the algorithm operates exhaustively. If α > 1, the algorithm prunes more
and hence is faster. In the latter case, a new plan is only compared with all
plans that generate the same result. But a new plan are only inserted into the
buffer if no other plan approximately dominates it. This means that α-MOMRI
tends to insert fewer plans than the exhaustive algorithm. Note that α-MOMRI
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Algorithm 2. Heuristic MOMRI (h-MOMRI)
Input: σ, k, α, R
Output: Result set Ph

1 Ph ← ∅
2 N ← Set of intervals on diversity values
3 for n times do
4 Gs ← random groupset(k, σ)
5 G∗

s ← SHC (Gs)
6 interval ← get interval(G∗

s)
7 N [interval ].add(G∗

s)

8 end
9 for interval ∈ N do

10 Keep non-dominated plans in interval and add them to Ph

11 end
12 Ph ← optimize diameter(Ph)
13 return Ph

is objective-independent. In the future, we plan to extend the scope of group
discovery to other objectives (as listed in [7]).

4.2 Heuristic Algorithm

A heuristic algorithm has obviously its own advantages and disadvantages. Of
course a heuristic algorithm does not provide any approximation guarantee.
Eventually, it returns a subset of Pareto set. Nevertheless, the fact that it gen-
erates a subset of Pareto makes it faster.

Algorithm 2 illustrates our heuristic algorithm. The algorithm starts by mak-
ing n different iterations on finding optimal points to avoid local optima (lines 3
to 8). At each iteration, the algorithm begins with a random group-set Gs with
k groups whose size is at least σ (line 4). Then a Shotgun Hill Climbing [14]
local search approach (SHC ) is executed (Algorithm 3) to find the group-set
with optimal value starting from Gs (line 5). SHC maximizes coverage. Diver-
sity is already divided into intervals N for each of which a buffer is associated.
The resulting group-set of SHC is placed in the buffer whose interval matches
the diversity value of the group-set (line 7). Finally, n different solutions are
distributed in different interval buffers. The algorithm then iterates over interval
buffers to prune dominated plans (lines 9 to 11). Based on Definition 4, a plan is
pruned and removed from its buffer if it is dominated by other plans. Finally, for
each interval, we report one unique solution that has the maximum/minimum
value for diameter based on the requested distribution (line 12).

SHC operates on a generalization/specialization lattice of groups (as in
Fig. 2). Navigation of this lattice in a downward fashion satisfies monotonic-
ity property for coverage: given any two groups g1 and g2 where g1 is the parent
of g2, the coverage of g1 is no smaller than the coverage of g2. Note that in
a bi-objective context, SHC can optimize each one of coverage and diversity.
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Algorithm 3. Shotgun Hill Climbing (SHC ) Algorithm
Input: Group-set G, R
Output: Optimized group-set G∗

1 G∗ ← ∅
2 while true do
3 C ← ∅
4 for g ∈ G and each lattice-based parent g′ of g do
5 G′ ← G − {g} + {g}′

6 C.add(G′, coverage(G′, R))

7 end
8 let (G′

m, coverage(G′
m, R)) be the pair with maximum coverage

9 if coverage(G′
m, R) ≤ coverage(G, R) then

10 G∗ ← G
11 return G∗

12 end
13 G ← G′

m

14 end

However, to benefit from the monotonicity property, we use SHC to optimize
coverage. SHC verifies all local neighbors of a group for an improvement of cov-
erage. If no improvement is achieved, it stops and returns the current group-set.
Nevertheless, if we optimize diversity using SHC , navigation in the generaliza-
tion/specialization lattice is nothing but a random walk over the space of groups.

For instance, consider the input group-set Gs = {g1, g2} where g1 =
{〈gender, male〉, 〈occupation, student〉} and g2 = {〈location, CA〉,
〈occupation, student〉}. These two groups are marked in bold boxes in Fig. 2.
We obtain a coverage of 0.79 for Gs. Keeping g2 fixed, the resulting combi-
nations by swapping g1 with its parents are either g3 = {〈gender, male〉} or
g4 = {〈occupation, student〉}. For instance, the coverage of G′

s = {g2, g3} is
0.81. As we observe an improvement, we iterate on this new group-set G′

s to
improve coverage.

A detailed discussion on complexity analysis of our proposed algorithms is
provided in our technical report [12].

5 Experiments

In this section, we first validate the need for Multi-Objective optimization. Then
we compare α-MOMRI and h-MOMRI on the quality of returned groups and
the scalability of those algorithms.

We consider two different rating datasets for our study: MovieLens and
BookCrossing. Due to lack of space, we only show results on MovieLens. An
exhaustive set of results is presented in our technical report [12]. Both datasets
have approximately the same number of ratings. BookCrossing has one order
of magnitude more users and items. We consider a 5-star rating system for both
datasets.
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Table 1. Input sets of rating records

Profile Movie in MovieLens

Highest number of ratings American Beauty

Lowest number of ratings Celtic Pride

Highest average rating Sanjuro

Lowest average rating Kazaam

MovieLens contains four user attributes: gender, age, occupation and
zipcode. We convert the numeric age into four categorical attribute values,
namely teenager (under 18), young (18 to 35), middle-age (35 to 55) and old
(over 55). There are 21 different occupations listed in MovieLens e.g., student,
artist, doctor, lawyer, etc. We convert zipcodes to states in the USA (or to
foreign, if not in USA) by using the USPS zip code lookup.3 We also enriched
MovieLens by crawling IMDb4 using the OMDb API5 to obtain following item
attributes: director, writer and release year and genre.

We implement our prototype system using JDK 1.8.0. All scalability exper-
iments are conducted on an 2.4 GHz Intel Core i5 with 8 GB of memory on OS
X 10.9.5 operating system.

For our experiments, we consider four different sets of input rating records
described in Table 1. Each item contains at least 50 ratings. We assume that it
is straightforward to analyze less than 50 ratings, manually. We also fix σ = 10
as this value is a border line between frequent ratings and the long tail [12].

5.1 Need for Multi-Objective Optimization

What is the added value of Multi-Objective optimization? We compare first
MOMRI with MRI [4], a single-objective approach for group discovery which
some authors of this work have already proposed. MRI minimizes diame-
ter and considers a lower bound on coverage min c. Given a set of rating
records R for the movie American Beauty in MovieLens, k = 3, min c =
0.7, one of the returned group-sets by MRI is GMRI = {g1, g2, g3} where g1 =
{〈gender, female〉, 〈age, young〉}, g2 = {〈occupation, student〉, 〈age, young〉}
and g3 = {〈gender, male〉, 〈occupation, student〉}. The objective values for
GMRI are as follows: coverage(GMRI , R) = 0.81, diversity(GMRI , R) = 0.03 and
diameter(GMRI , R) = 0.13. However, as diversity is not optimized, there exists
huge overlap in groups: many young reviewers are also students.

In the same context, one returned group-set by MOMRI is the one
we already discussed in Example 1: GMOMRI = {g4, g5, g6} where g4 =
{〈gender, female〉, 〈age, young〉}, g5 = {〈age, young〉, 〈location, DC〉} and
g6 = {〈gender, male〉, 〈age, teen − ager〉}. The objective values for GMOMRI

3 http://zip4.usps.com.
4 http://www.imdb.com.
5 http://www.omdbapi.com.

http://zip4.usps.com
http://www.imdb.com
http://www.omdbapi.com
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are as follows: coverage(GMOMRI , R)=0.79, diversity(GMOMRI , R)=0.33 and
diameter(GMOMRI , R) = 0.11. This group-set has optimized values on all objec-
tives. Specifically, it has a high diversity as only 2 female reviewers for American
Beauty are both young and residents of DC. It also shows that min c in MRI is
a hard constraint and can easily miss a promising result which has a very high
coverage but does not meet the threshold.

We already discussed that consistency of objectives transforms the multi-
objective problem into a single-objective one that is trivial to solve (Sect. 4). In
this experiment, we verify if our objectives (defined in Sect. 2.1) are consistent.
We maximize coverage and observe how values of diversity and diameter evolve.
To maximize coverage, we use Algorithm 3. Figure 4 illustrates the results for
different sets of input rating records in Table 1. Each point illustrates the objec-
tive values for each of 20 runs. Note that this experiment is independent of the
heuristic and the approximation algorithms.
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Fig. 4. Conflicting objectives on MovieLens. Movie title initials are illustrated on
points.

We observe that in general, no correlation exists between the optimized value
of coverage and other objectives. Thus each objective should be optimized inde-
pendently. The same result was obtained for BookCrossing [12].

5.2 Comparison of Algorithms

In this section, we compare h-MOMRI and α-MOMRI. Our hypothesis is that
h-MOMRI has a manageable solution space size compared to α-MOMRI which
leads to a reduced execution time.

First we compare the quality of algorithms regarding the dominance of solu-
tions. In Multi-Objective optimization, if for two algorithms X and Y , the major-
ity of X’s solutions dominate Y ’s, it means that X is able to produce solutions
with higher quality than Y . In this experiment, we make the same comparison
between α-MOMRI and h-MOMRI. For this experiment, we need to compare
each pair of α-MOMRI and h-MOMRI solutions. We count the number of times
each algorithm dominates the other in pairwise comparison of their results. We
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consider α = 1.15 for α-MOMRI and nbintervals = 40 for h-MOMRI. We
denote the set of α-MOMRI solutions as Pα and the set of h-MOMRI solu-
tions as Ph. We observe that for all sets of input rating records in Table 1, at
least 62 % of solutions in Ph are dominated by solutions in Pα. This is because
α-MOMRI generates the complete set of α-approximated Pareto plans, while
h-MOMRI produces a subset. For instance, for the movie American Beauty,
α-MOMRI produces 16 times more solutions than the heuristic algorithm. Evi-
dently the solutions in Ph are either as good as Pα’s or worse. Our results show
that although α-MOMRI presents a huge set of all Pareto plans, h-MOMRI
can return an acceptable representative subset where almost half of solutions are
as good as the set Pα.

Now we compare α-MOMRI and h-MOMRI concerning their performance
and the number of solutions they produce. We consider 3 different instances for
each algorithm: for α-MOMRI, we consider instances with α = 2 (A), α = 1.5
(B) and α = 1.15 (C), and for h-MOMRI, we consider instances with 5 (D), 10
(E) and 40 (F ) intervals. We run this experiment with 4 items having the highest
amount of rating records as items with fewer records exhibit similar behavior.

Figure 5 illustrates the results. As expected, in general the number of solu-
tions produced by h-MOMRI is one order of magnitude less than α-MOMRI
in both datasets. In both algorithms, the number of ratings records play an
important role and increases the number of solutions. In [12], it is shown that
the time performance of both algorithms is a function of the group space size.
A data-centric observation in Fig. 5 reveals that more rating records lead more
groups, hence worse performance (which is the case for American Beauty).

A B C D E F

104

105

106

Algorithms

T
im

e
(m

s)

American B.

Jurassic P.

A New H.

Saving P. R.

A B C D E F

102

103

Algorithms

#
S
o
lu

ti
o
n
s

American B.

Jurassic P.

A New H.

Saving P. R.

Fig. 5. Comparison of α-MOMRI and h-MOMRI algorithms in execution time (left)
and # solutions (right) on MovieLens

Choosing between α-MOMRI and h-MOMRI. Both α-MOMRI and h-
MOMRI are useful for analysts in different scenarios. α-MOMRI can be used
in an offline context to produce an exhaustive set of user groups with a preci-
sion defined by α for further analysis. For instance, a movie rating website (like
IMDb) can index user groups generated offline and execute various user queries
like ‘what are interesting groups of female teenagers who have rated romantic
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movies’. On the other hand, in an online or streaming context, h-MOMRI is
beneficial because it can immediately produce a representative subset of results.
For instance, in a movie rating website an analyst can quickly observe interesting
user groups of comedy and romantic movies.

6 Related Work

To the best of our knowledge, no approach has proposed and formalized the prob-
lem of discovering user groups for collaborative rating datasets by considering
multiple independent and conflicting quality dimensions. Recent studies6 have
shown an interest in reporting statistics about pre-defined groups, as opposed
to our work where we look to discover high-quality user groups on the fly. How-
ever our work does relate to a number of others in its aim and optimization
mechanism.

Multi-Objective Optimization. There exist different approaches to solve a
multi-objective problem [15,16]. We already discussed that Scalarization does
not work in our case (Sect. 5.1). Another popular method is ε-constraints [13]
where one objective is optimized and others are considered as constraints. The
approach in [4] can be seen as a relaxed ε-constraints version of our problem.
Another approach is Multi-Level Optimization [11] which needs a meaningful
hierarchy between objectives. In our case, all objectives are independent and
conflicting, hence using this mechanism is not feasible.

User Group Discovery. User groups can be discovered by clustering methods
[1–3,9] where a single objective is optimized. Multi-Objective clustering [8,10]
is an improvement where clusters are obtained from n different clustering algo-
rithms. This guarantees clusters with high quality in multiple dimensions. This
is a two-step approach where i. each clustering algorithm, applied to one quality
dimension, generates its own set of clusters, ii. a goodness measure picks tar-
get clusters by combining results of all algorithms. However, the definition of a
goodness measure is subjective and does not guarantee that all desired objectives
are optimized. Also MOMRI scans data only once as the pruning technique in
α-MOMRI considers all objectives at the same time and determines if a can-
didate group-set should or not be kept for further comparisons. On the other
hand, clustering methods often lead to information overload. Using h-MOMRI,
the analyst receives a manageable subset of high quality results in a reason-
able time. More (precise) results are returned by reducing α for α-MOMRI or
increasing nbintervals for h-MOMRI.

7 Conclusion and Future Work

In this paper, we investigated the question of finding the best group-sets that
characterize a database of rating records of the form 〈i, u, s〉, where i ∈ I, u ∈ U ,

6 http://blog.testmunk.com/how-teens-really-use-apps/.

http://blog.testmunk.com/how-teens-really-use-apps/
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and s is the integer rating that user u has assigned to item i. We showed that
the problem of finding high-quality group-sets is NP-Complete and proposed
a constrained Multi-Objective formulation. Our formulation incorporates local
and global group desiderata. We proposed two algorithms that find group-sets
as instances of Pareto plans. The first one α-MOMRI, is an α-approximation
algorithm and the second, h-MOMRI, is a heuristic-based algorithm. Our exten-
sive experiments on MovieLens and BookCrossing datasets show that our
approximation finds high quality groups and that our heuristic is very fast with-
out compromising quality.

Our work can be improved in many ways. In particular, we plan to perform
an extensive user study to be able to evaluate the quality of returned group-sets.
An online poll (about movies or books) could be used to build a ground-truth
and will be used to evaluate the usefulness of our group-sets. Also, we plan to
investigate an extensive analysis of rating distributions for our algorithms using
some dispersion measures.
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