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Abstract. The choice of hyperparameters and the selection of algorithms
is a crucial part in machine learning. Bayesian optimization methods have
been used very successfully to tune hyperparameters automatically, in
many cases even being able to outperform the human expert. Recently,
these techniques have been massively improved by using meta-knowledge.
The idea is to use knowledge of the performance of an algorithm on given
other data sets to automatically accelerate the hyperparameter optimiza-
tion for a new data set.

In this work we present a model that transfers this knowledge in two
stages. At the first stage, the function that maps hyperparameter configu-
rations to hold-out validation performances is approximated for previously
seen data sets. At the second stage, these approximations are combined
to rank the hyperparameter configurations for a new data set. In exten-
sive experiments on the problem of hyperparameter optimization as well
as the problem of combined algorithm selection and hyperparameter opti-
mization, we are outperforming the state of the art methods. The software
related to this paper is available at https://github.com/wistuba/TST.

Keywords: Hyperparameter optimization · Meta-learning · Transfer
learning

1 Introduction

The tuning of hyperparameters is an omnipresent problem in the machine learn-
ing community. In comparison to model parameters, which are estimated by a
learning algorithm, hyperparameters are parameters that have to be specified
before the execution of the algorithm. Typical examples for hyperparameters
are the trade-off parameter C of a support vector machine or the number of
layers and nodes in a neural network. Unfortunately, the choice of the hyperpa-
rameters is crucial and decides whether the performance of an algorithm is state
of the art or just moderate. Hence, the task of hyperparameter optimization is
as important as developing new models [2,5,18,23,27].

The traditional way of finding good hyperparameter configurations is by using
a combination of manual and grid search. This procedure are a brute force app-
roach of searching the hyperparameter space. They are very time-consuming or
even infeasible for high-dimensional hyperparameter spaces. Therefore, methods
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to steer the search for good hyperparameter configurations are currently an
interesting topic for researchers [3,23,27].

Sequential model-based optimization (SMBO) [13] is a black-box optimiza-
tion framework and is currently the state of the art for automatic hyperparameter
optimization. Within this framework, the trials of already tested hyperparame-
ter configurations are used to approximate the true hyperparameter response
function using a surrogate model. Based on this approximation, a promising
new hyperparameter configuration is chosen and tested in the next step. The
result of this next trial is then used to update the surrogate model for further
hyperparameter configuration acquisitions.

Human experts utilize their experience with a machine learning model and
try hyperparameter configurations that have been good on other data sets. This
transfer of knowledge is one important research direction in the domain of auto-
matic hyperparameter optimization. Currently, two different approaches to inte-
grate this idea into the SMBO framework exist. Either by training the surrogate
model on past experiments [1,21,25,33], or by using the information on past
experiments to initialize the new search [7,32].

We propose a two-stage approach to consider the experiences with different
hyperparameter configurations on other data sets. At the first stage, we approx-
imate the hyperparameter response function of the new data set as well as of
previous data sets. This approximation is then combined to rank the hyperpara-
meter configurations for the new data set, considering the similarity between the
new data set and the previous ones. In two extensive experiments for the problem
of hyperparameter optimization and the problem of combined algorithm selec-
tion and hyperparameter optimization, we show that our two-stage approach is
able to outperform current state of the art competitor methods, which have been
recently published on established machine learning conferences.

2 Related Work

The aim of automatic hyperparameter optimization is to enable non-experts
to successfully use machine learning models but also to accelerate the process
of finding good hyperparameter configurations. Sequential model-based opti-
mization (SMBO) is the current state of the art for automatic hyperparameter
optimization. Various approaches exist to accelerate the search for good hyper-
parameter configurations. One important approach is the use of meta-knowledge.
This approach has already proven its benefit for other hyperparameter optimiza-
tion approaches [9,16,20,29]. One easy way to make use of meta-knowledge is
through initialization. This approach is universal and can be applied for every
hyperparameter optimization method. Reif et al. [20] suggest to choose those
hyperparameter configurations for a new data set as initial trials that performed
best on a similar data set in the context of evolutionary parameter optimiza-
tion. Here, the similarity was defined through the distance among meta-features,
which describe properties of a data set. This idea was applied to SMBO by Feurer
et al. [7] and later improved [8]. Recently, it was proposed to learn initial hyper-
parameter configurations in such a way that it is no longer necessary to be limited
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to choose initial hyperparameter configurations from the set of hyperparameter
configurations, which have been chosen in previous experiments [32].

While the initialization can be used for any hyperparameter optimization
method, the idea to use transfer surrogate models is specific for the SMBO
framework. Bardenet et al. [1] were the first who proposed to learn the surro-
gate model not only on the current data set but also over previous experiments
in order to make use of the meta-knowledge. Soon, this idea was further investi-
gated: specific Gaussian processes [25,33] and neural networks [21] were proposed
as surrogate models.

The aforementioned ideas make use of meta-knowledge to accelerate the
search for good hyperparameter configurations. Another way of saving time is
to stop an hyperparameter configuration evaluation early if it appears to be
not promising after few training iterations. Obviously, this is only possible for
iterative learning algorithms, which are using gradient-based optimization. Even
though this approach is orthogonal to the meta-learning approach, the aim is
the same, i.e. accelerating the search for good hyperparameter configurations.
Domhan et al. [6] propose to predict the development of the learning curve based
on few iterations. If the predicted development is less promising than the cur-
rently best configuration, the currently investigated configuration is discarded.
A similar approach is proposed by Swersky et al. [26]. Instead of trying different
configurations sequentially and eventually discarding them, they learn the mod-
els for various hyperparameter configurations at the same time and switch from
one learning process to the other if it looks more promising.

3 Background

In this section the hyperparameter optimization problem is formally defined and,
for the sake of completeness, the sequential model-based optimization framework
is presented.

3.1 Hyperparameter Optimization Problem Setup

A machine learning algorithm Aλ is a mapping Aλ : D → M where D is the
set of all data sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter configuration with Λ = Λ1 × . . . × ΛP being the P-dimensional
hyperparameter space. The learning algorithm estimates a model Mλ ∈ M,
which minimizes a loss function L (e.g. residual sum of squares), that is penalized
with a regularization term R (e.g. Tikhonov regularization) with respect to the
training set Dtrain of the data set D:

Aλ

(
Dtrain

)
= arg min

Mλ∈M
L (

Mλ,Dtrain
)

+ R (Mλ) . (1)

Then, the task of hyperparameter optimization is to find the hyperparameter
configuration λ∗ that leads to a model Mλ∗ , which minimizes the loss on the
validation data set Dvalid, i.e.

λ∗ = arg min
λ∈Λ

L (Aλ

(
Dtrain

)
,Dvalid

)
= arg min

λ∈Λ
fD (λ) . (2)
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The function fD is the hyperparameter response function of data set D.

fD (λ) = L (Aλ

(
Dtrain

)
,Dvalid

)
(3)

For the sake of demonstration, in the remaining sections, we consider the problem
of tuning the hyperparameters of a classifier. Thus, f returns the misclassification
rate. This is obviously no limitation, but shall help the reader to understand the
concepts given a concrete example.

3.2 Sequential Model-Based Optimization

Sequential model-based optimization (SMBO) [13], originally proposed for black-
box optimization, can be used for optimizing hyperparameters automatically by
using the SMBO framework to minimize the hyperparameter response function
(Eq. 3) [2]. SMBO consists of two components, (i) a surrogate model Ψ , that
is used to approximate the function f , which we want to minimize, and (ii) an
acquisition function a, that decides which hyperparameter to try next.

Algorithm 1 outlines the SMBO framework for minimizing the function f .
For T many iterations different hyperparameters are tried. In iteration t, we
approximate f using our surrogate model Ψt+1 based on the observation history
Ht, the set of all hyperparameter configurations and performances, which have
been evaluated evaluated so far. The surrogate model is an approximation of
f with the property that it can be evaluated fast. Based on the predictions of
Ψ and the corresponding uncertainties about these predictions, the acquisition
function finds a trade-off between exploitation and exploration and determines
the hyperparameter configuration to try next. This configuration is then evalu-
ated, and the new observation is added to the observation history. After T trials,
the best performing hyperparameter configuration is returned.

Algorithm 1. Sequential Model-based Optimization
Input: Hyperparameter space Λ, observation history H, number of trials T , acquisition

function a, surrogate model Ψ .
Output: Best hyperparameter configuration found.
1: for t = 1 to T do
2: Fit Ψt+1 to Ht

3: λ ← arg maxλ∈Λ a
(
μ (Ψt+1 (λ)) , σ (Ψt+1 (λ)) , fmin

)

4: Evaluate f (λ)
5: Ht+1 ← Ht ∪ {(λ, f (λ))}
6: if f (λ) < fmin then
7: λmin, fmin ← λ, f (λ)
8: return λmin

Since the acquisition function a needs some certainty about the prediction,
common choices are Gaussian processes [1,23,25,33] or ensembles, such as ran-
dom forests [12]. Typical acquisition functions are the expected improvement
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[13], the probability of improvement [13], the conditional entropy of the mini-
mizer [28] or a multi-armed bandit based criterion [24]. The expected improve-
ment is the most prominent choice for hyperparameter optimization and is also
the acquisition function, which we choose. Formally, the improvement for a
hyperparameter configuration λ is defined as

I (λ) = max
{
fmin − Y, 0

}
(4)

where fmin is currently the best function value and Y is a random variable
modeling our knowledge about the value of the function f for the hyperparameter
configuration λ, which depends on Ht. The hyperparameter configuration with
highest expected improvement, i.e.

E [I (λ)] = E
[
max

{
fmin − Y, 0

} | Ht

]
, (5)

is chosen for the next evaluation. Assuming Y ∼ N (
μ (Ψt+1 (λ)) , σ2 (Ψt+1 (λ))

)
,

the expected improvement can be formulated in closed-form as

E [I (λ)] =

{
σ (Ψt+1 (λ)) (Z · Φ (Z) + φ (Z)) if σ (Ψt+1 (λ)) > 0
0 otherwise

(6)

where

Z =
fmin − μ (Ψt+1 (λ))

σ (Ψt+1 (λ))
(7)

where φ (·) and Φ (·) denote the standard normal density and distribution func-
tion, and μ (Ψt+1 (λ)) and σ (Ψt+1 (λ)) are the expected value and the standard
deviation of the prediction Ψt+1 (λ).

4 Two-Stage Surrogate Model

Our proposed two-stage surrogate model is explained in this section. The first
stage of the surrogate model approximates the hyperparameter response func-
tions of a new data set and each data set from the meta-data individually with
Gaussian processes. The second stage combines the first-stage models by tak-
ing the similarity between the new data set and the data set from previous
experiments into consideration. We construct a ranking of hyperparameter con-
figurations as well as a prediction about the uncertainty of this ranking. The
proposed two-stage architecture is visualized in Fig. 1.

4.1 Notation

In the following, the prefix meta is used to distinguish between the different learn-
ing problems. The traditional problem is to learn some parameters θ on a given
data set containing instances with predictors. For the hyperparameter optimiza-
tion problem you can create meta-data sets consisting of meta-instances with
meta-predictors. A meta-data set contains meta-instances (λi, fD (λi)) where
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Fig. 1. At the first stage the hyperparameter response functions of the new data set
Dnew as well as data sets D = {D1, . . . , Dk} used for previous experiments are approx-
imated using known evaluations. At the second stage the predictions of each individual
model f̂D are taken into account weighted by the similarity between D and Dnew to
determine the final predicted score.

fD (λi) is the target and λi are the predictors. The hyperparameter response
function fD : Λ → R is a function for a specific classifier and a specific data set
D. For a given hyperparameter configuration, it returns the misclassification rate
after training the classifier with the respective hyperparameter configuration on
the training data set D. The task is to find a good hyperparameter configura-
tions on a new data set Dnew within T trials. To achieve this, a meta-data set,
i.e. meta-instances for other data sets D ∈ D, is given and this knowledge is
transferred to the new problem.

4.2 First Stage - Hyperparameter Response Function
Approximation

The first stage of our two-stage surrogate model approximates the hyperpara-
meter response function for each data set. The meta-data set can be used to
approximate the hyperparameter response function fD for all D ∈ D by learn-
ing a machine learning model f̂D, using the meta-instances of each data set D.
Similarly, we can learn an approximation f̂Dnew for the new data set, for which
we have only few, but a growing number of meta-instances. Before learning f̂D

for all D ∈ D, the labels of the meta-instances are scaled to [0, 1] per data set.
This is done such that each data set has equal influence on the second stage.
The labels of the new data set Dnew remain untouched.

For approximating the hyperparameter response function fD, any machine
learning model can be used, which is able to capture high non-linearity. We
decide to use Gaussian processes [19], which are a very prominent surrogate
model for SMBO [1,23,25,33].
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4.3 Second Stage - Final Hyperparameter Configuration Ranking

The second stage combines all models of the first stage within one surrogate
model Ψ to rank the different hyperparameter configurations and predict the
uncertainty about the ranking. The predicted score of a hyperparameter config-
uration is determined using kernel regression [11]. We use the Nadaraya-Watson
kernel-weighted average to predict the mean value of the surrogate model

μ (Ψ (λ)) =

∑
D∈D∪{Dnew} κρ

(
χDnew

,χD

)
f̂D (λ)

∑
D∈D∪{Dnew} κρ

(
χDnew

,χD

) (8)

with the Epanechnikov quadratic kernel

κρ (χD,χD′) = δ

(‖χD − χD′‖2
ρ

)
(9)

with

δ (t) =

{
3
4

(
1 − t2

)
if t ≤ 1

0 otherwise
(10)

where ρ > 0 is the bandwidth and χD is a vector describing the data set D. We
discuss the description of data sets in-depth in the next section.

The predicted uncertainty for a hyperparameter configuration λ is defined as

σ (Ψ (λ)) = σ
(
f̂Dnew (λ)

)
(11)

Using Eqs. 8 and 11, the expected improvement for arbitrary hyperparameter
configurations can be estimated. Thus, our Two-Stage Transfer surrogate model
Ψ can be used within the SMBO framework described in Algorithm 1.

4.4 Data Set Description

In this section we introduce three different ways to describe data sets in vector
form.

Description Using Meta-features. The most popular way to describe data
sets is by utilizing meta-features [1,20,22]. These are simple, statistical or infor-
mation theoretic properties extracted from the data set. The similarity between
two data sets, as defined in Eq. 9, is then dependent on the Euclidean distance
between the meta-features of the corresponding data sets. In this work we are
using the meta-features listed in Table 1. For a more detailed explanation, we
refer the reader to Michie et al. [17]. A well-known problem with meta-features
is that it is a difficult problem to find and choose meta-features that are able to
adequately describe a data set [15].
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Table 1. The list of all meta-features used by us.

Meta-features

Number of classes Class probability max

Number of instances Class probability mean

Log number of instances Class probability standard deviation

Number of features Kurtosis min

Log number of features Kurtosis max

Data set dimensionality Kurtosis mean

Log data set dimensionality Kurtosis standard deviation

Inverse data set dimensionality Skewness min

Log inverse data set dimensionality Skewness max

Class cross entropy Skewness mean

Class probability min Skewness standard deviation

Description Using Pairwise Hyperparameter Performance Rankings.
Describing data sets based on pairwise hyperparameter performance rankings
has been used in few approaches [16,29]. The idea is to select all paired com-
binations of hyperparameter configurations (λi,λj) evaluated on the new data
set Dnew and estimate how often two data sets D and D′ agree on the ranking.
Usually, it is assumed that the hyperparameter configurations evaluated on Dnew

have also been evaluated on all data sets from the meta-data set D ∈ D. In the
context of general hyperparameter tuning, this is likely not the case. Therefore,
we propose to use the first stage predictors to approximate the performances to
overcome this problem.

Formally, given t many observations on Dnew for the hyperparameter config-
urations λ1, . . . ,λt, Dnew can be described as χDnew

= ((χDnew)i)i=1,...,t2
∈ R

t2 ,

(
χDnew

)
j+(i−1)t

=

{
1 if fDnew (λi) > fDnew (λj)
0 otherwise

. (12)

Similarly, using the same t hyperparameter configurations, we can define for all
D ∈ D

(χD)j+(i−1)t =

{
1 if f̂D (λi) > f̂D (λj)
0 otherwise

. (13)

Please note that we use f̂ instead of f . As explained before, a hyperparameter
configuration that is evaluated on Dnew was likely not evaluated on all data
sets D ∈ D. For this reason we predict the performance using the first stage
predictors. Using this description, the Euclidean distance between two data sets
is the number of discordant pairs [14].
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5 Experimental Evaluation

5.1 Tuning Strategies

We introduce all tuning strategies considered in the experiments. We consider
strategies that do not use knowledge from previous experiments as well as those
that use it.

Random Search. As the name suggests, this strategy chooses hyperparameter
configurations at random. Bergstra and Bengio [3] have shown that this outper-
forms grid search in scenarios with hyperparameters with low effective dimen-
sionality.

Independent Gaussian Process (I-GP). This tuning strategy uses a Gaussian
process with squared-exponential kernel with automatic relevance determination
(SE-ARD) as a surrogate model [23]. It only uses knowledge from the current
data set and is not using any knowledge from previous experiments.

Spearmint. While I-GP is our own implementation of SMBO with a Gaussian
process as a surrogate model we also compare to the implementation by Snoek
et al. [23]. The main difference to I-GP is the use of the Matérn 5/2 kernel. We
added this as a baseline because it is considered to be a very strong baseline.

Independent Random Forest (I-RF). Besides Gaussian processes, random forests
are another popular surrogate model [12], which we compare against in the
experiments. We compared our own implementation against the original imple-
mentation of SMAC. Since our implementation provided stronger results, we will
report these results. No knowledge from previous experiments is employed.

Surrogate Collaborative Tuning (SCoT). SCoT [1] uses meta-knowledge in a two
step approach. In the first step, an SVMRank is learned over the whole meta-
data. Its prediction for the meta-instances are used to replace the labels of the
meta-instances. Bardenet et al. [1] argue that this overcomes the problem of
having data sets with different scales of labels. On this transformed meta-data
set, a Gaussian process with SE-ARD kernel is trained. In the original work it
was proposed to use an RBF kernel for SVMRank. For reasons of computational
complexity, we follow the lead of Yogatama and Mann [33] and use a linear kernel
instead.

Gaussian Process with Multi-Kernel Learning (MKL-GP). Yogatama and Mann
[33] propose to use a Gaussian process as a surrogate model for the SMBO
framework. To tackle the problem of different scales on different data sets they
are normalizing the data. Furthermore, they are using a kernel which is a linear
combination of an SE-ARD kernel and a kernel modeling the distance between
data sets.
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Factorized Multilayer Perceptron (FMLP). FMLP [21] is the most recent surro-
gate model we are aware of. Published on last year’s ECML PKDD, it is using
a specific neural network to learn the similarity between the new data set and
those from previous ones implicitly in a latent representation.

Two-Stage Transfer Surrogate (TST). This is the surrogate model proposed by
us in this work. We consider two variations with two different data set represen-
tations. TST-M is using the meta-feature representation for the data sets, TST-R
is using the pairwise ranking representation. We are using SE-ARD kernels for
the Gaussian processes.

The kernel parameters are learned by maximizing the marginal likelihood
on the meta-training set [19]. All hyperparameters of the tuning strategies are
optimized in a leave-one-data-set-out cross-validation on the meta-training set.

The results reported estimated using a leave-one-data-set-out cross-validation
and are the average of ten repetitions. For strategies with random initialization
(Random, I-GP, Spearmint, I-RF), we report the average over thousand repe-
titions due to the higher variance. Hyperparameter configurations are limited
to the precomputed grid which makes the experiment computational feasible
for our infrastructure. We do not believe that limiting the black-box search
to a grid has any impact on the results. In the end, this can be considered
as additional constraints on the search space. In practice, our surrogate model
allows finding arbitrary hyperparameter configurations like all other competitor
methods. The evaluation was committed in the same way for transferring and
non-transferring methods. Meta-hyperparameters for the surrogate models were
individually tuned. For those strategies that use meta-features (SCoT, MKL-GP,
TST-M), we use those meta-features that are described in Table 1.

5.2 Meta-data Sets

We use two meta-data set introduced in [31] but increase the number of meta-
features from three to the 22 listed in Table 1. The support vector machine
(SVM) meta-data set was created using 50 classification data sets chosen at
random from the UCI repository. Existing train/test splits were merged, shuffled
and split into 80 % train and 20 % test.

The SVM [4] was trained for three different kernels (linear, polynomial and
Gaussian) such that the hyperparameter dimension is six. Three dimensions are
used for kernel indicator variables, one for the trade-off parameter C, one for
the degree of the polynomial kernel d and one for the width γ of the Gaussian
kernel. If a hyperparameter was not involved, its value was set to 0. The misclas-
sification error was precomputed on the grid C ∈ {

2−5, . . . , 26
}
, d ∈ {2, . . . , 10}

and γ ∈ {
10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103

}
resulting into

288 meta-instances per data set. Creating this meta-data set took about 160
CPU hours.

Furthermore, we use a Weka meta-data set to evaluate on the combined
algorithm and hyperparameter configuration problem as tackled in [27]. 59 clas-
sification data sets are preprocessed as done for the SVM meta-data set. Using
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19 different Weka classifiers [10], we precomputed the misclassification error on a
grid which resulted into 21,871 hyperparameter configurations per data set such
that the overall meta-data contains 1,290,389 meta-instances. It took us more
than 891 CPU hours to create this meta-data set.

To show that the tuning strategies can also deal with hyperparameter con-
figurations they have never seen on other data sets, the tuning strategies only
have access on meta-instances on a subset of the meta-instances. The evaluation
on meta-test was done using all meta-instances.

To enable reproducibility, we provide a detailed description of the meta-data
sets, the meta-data sets itself and our source code on GitHub [30].

5.3 Evaluation Metrics

We compare all tuning methods with respect to two common evaluation met-
rics: average rank and average distance to the global minimum. The average
rank ranks the tuning strategies per data set according to the best found hyper-
parameter configuration. These ranks are then averaged over all data sets. The
average distance to the global minimum after t trials is defined as

ADTM (Λt,D) =
∑

D∈D
min
λ∈Λt

fD (λ) − fmin
D

fmax
D − fmin

D

(14)

where fmax
D and fmin

D are the worst and best value on the precomputed grid,
respectively. Λt is the set of hyperparameter configurations, that have been eval-
uated in the first t trials. The performance per data set is scaled between 0 and 1
to get rid of the influence of different misclassification offsets and scales. Finally,
the distances between the performance of the best performing hyperparameter
configuration found to the best possible performance on the grid is averaged over
all data sets.

5.4 Experiments

We compare the different hyperparameter optimization methods in two different
scenarios: (i) hyperparameter tuning and (ii) combined algorithm selection and
hyperparameter tuning. For the task of hyperparameter tuning, we optimize the
hyperparameters of a support vector machine. The results are summarized in
Fig. 2. What we can see is that TST-R is outperforming the competitor methods
with respect to both evaluation metrics by a large margin. TST-M has a similar
good start as TST-R but its performance degenerates after few trials. Because
the only difference between TST-R and TST-M is the way the data sets are
described, one might argue that meta-features are less descriptive in describing
a data set than the approach of pairwise rankings. We do not think that one
can infer this from these results. The true reason for this behavior is that the
distances for TST-R are updated after each trials and the distance to the data
sets from previous experiments is increasing over time. Thus, the influence of
the meta-data set vanishes and TST-R is focusing only on the knowledge about
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the new data set at some point of time. Contrariwise, TST-M is using a constant
distance between data set based on the meta-features. While the meta-knowledge
is useful especially in the beginning, TST-M keeps relying on this such that
the information of the new data set is not optimally taken into account. One
simple way of fixing this problem is to decay the influence of the meta-knowledge
which would introduce at least one meta-hyperparameter. Because TST-R is
performing well without an additional meta-hyperparameter for the decay, we
do not follow this idea here.

Spearmint provides stronger results than I-GP due to the choice of a different
kernel. This might be an indication that we can further improve TST-R, if we
use the Matérn 5/2 kernel instead of the SE-ARD.

Fig. 2. Our proposed transfer surrogate model TST-R provides the best performance
with respect to both evaluation measures for the task of hyperparameter tuning. For
both metrics, the smaller the better.

We investigate the performance of the optimization methods also for the
problem of combined algorithm selection and hyperparameter tuning on our
Weka meta-data set. For this experiment, we remove some methods for different
reasons. We remove some weaker methods (Random and TST-M) to improve
the readability. Furthermore, we do not compare to methods, which are using
one Gaussian process, that is trained on the complete meta-data (SCoT and
MKL-GP). The reason for this is that Gaussian processes do not scale to these
large meta-data sets (time and memory-wise) [31]. Our approach is learning one
Gaussian process for each data set such that each model only needs to be learned
on a fraction of the data and thus remains feasible. Nevertheless, we compare to
FMLP, the strongest competitor from the previous experiment as well as I-GP
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Fig. 3. Our approach TST-R also outperforms the competitor methods for the task of
combined algorithm selection and hyperparameter tuning. Surrogate models that use
Gaussian processes that train over the whole meta-data are not feasible for this data
set [31]. Therefore, we consider I-GP and I-RF with meta-learning initialization.

and I-RF. Furthermore, we also compare to I-GP and I-RF with five initialization
steps using a strong meta-initialization technique [32]. The results summarized
in Fig. 3 are very similar to our previous experiment. TST-R again is best for
both evaluation metrics but FMLP shows to be a strong competitor.

6 Conclusion

In this work, we propose a two-stage transfer surrogate for using meta-knowledge
to accelerate the search with the SMBO framework. We propose to approximate
the hyperparameter response surface of each data set with an individual model.
These individual models are finally combined at the second stage to estimate
the score of a hyperparameter configuration. In extensive experiments on two
meta-data sets, we compare our method to numerous competitor methods pub-
lished recently on established machine learning conferences. We show empirically
that our two-stage transfer surrogate model is able to outperform all considered
competitor methods for the task of hyperparameter tuning as well as the task
of combined algorithm selection and hyperparameter tuning.

For future work we are planning to have a deeper look into different ways of
describing data sets. Furthermore, we want to investigate whether it is possible
to add a decay meta-hyperparameter that enables our approach to also work
with typical data set descriptions such as meta-features. Most importantly, we
want to investigate the impact of different kernels for TST on the performance.
Currently, the Matérn 5/2 seems to be a promising candidate.
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optimization. In: Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings
of a meeting held 12–14 December, Granada, Spain, pp. 2546–2554 (2011)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://
www.csie.ntu.edu.tw/∼cjlin/libsvm

5. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, 11–13
April, pp. 215–223 (2011)

6. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperpara-
meter optimization of deep neural networks by extrapolation of learning curves.
In: Proceedings of the Twenty-Fourth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July, pp. 3460–3468
(2015)

7. Feurer, M., Springenberg, J.T., Hutter, F.: Using meta-learning to initialize
bayesian optimization of hyperparameters. In: ECAI Workshop on Metalearning
and Algorithm Selection (MetaSel), pp. 3–10 (2014)

8. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparame-
ter optimization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 January, pp.
1128–1135 (2015)
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