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Abstract. With the remarkable recent rise in the production of battery-
powered devices, their reliability analysis cannot disregard the assess-
ment of battery life. In the literature, there are several battery cycle life
models that exhibit a generic trade-off between generality and accuracy.

In this work we propose a compact cycle life model for batteries of
different chemistries. Model parameters are obtained by fitting the curve
based on information reported in datasheets, and can be adapted to the
quantity and type of available data. Furthermore, we extend the basic
model by including some derating factors when considering temperature
and current rate as stress factors in cycle life.

Applying the model to various commercial batteries yields an aver-
age estimation error, in terms of the number of cycles, generally smaller
than 10 %. This is consistent with the typical tolerance provided in the
datasheets.

Keywords: Battery modeling · Cycle life · Battery chemistry · Capac-
ity fading

1 Introduction

Rechargeable batteries are an essential component in many application domains,
such as electric vehicles, mobile systems, renewable energy, and telecommuni-
cation systems. In order to carry out an early verification of these systems,
including the exchange of energy between the energy storage devices and other
components, it becomes essential to have accurate and efficient battery models,
especially models that evaluate the lifetime of the battery in terms of useful
charge-discharge cycles.

In the literature various models for different functional aspects of batteries
have been proposed, with differing tradeoffs between accuracy and generality.
In the field of electronic design, the most commonly used ones are those in
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which the battery is described by a generic standard model expressed in terms
of an equivalent electrical circuit. (e.g., [1,2]). This is then populated either using
data obtained from direct measurements on actual devices or by extrapolation
of battery characteristics available from datasheets (e.g., [3]). These kinds of
models are typically generated for a specific battery chemistry and show a high
degree of accuracy. This accuracy may significantly degrade if these models are
applied to different battery chemistries. Furthermore, they are specific to a given
battery chemistry and thus show a very high degree of accuracy. Obviously, this
degree of accuracy can vary (decrease) significantly if the model, generated for
a particular battery chemistry, is applied to batteries with different chemical
characteristics.

On the other hand, in certain contexts (e.g., automotive, aerospace, smart
grids), designers often rely on simpler compact analytical macromodels, such as
Peukert’s law [4], as a quick estimator for the sizing of the battery sub-system or
for preliminary what-if analysis. These macromodels are aimed at the generation
of a general relationship between the battery intra-cycle runtime and the most
relevant parameters, like the Depth of Discharge (DOD) or State of Charge
(SOC) of a battery.

While these models have reasonable generality (e.g., they can be applied
to various batteries with different chemical characteristics, once characterized),
they are focused on a single charge/discharge cycle of a battery. They do not pro-
vide information about the “lifetime” of a battery, i.e., decrease in performance
due to long-term inter-cycle effects, such as the fading of the total capacity
(ampere-hour) caused by repeated cycling. It is possible to incorporate such
aging effects into these circuit-level or analytical models, for instance by replac-
ing the use of a fixed battery capacity value with a generic function of some
parameters. However, this operation requires (i) an understanding of the vari-
ous phenomena that affect battery aging, and (ii) the construction of a compact
model that can be used either as a standalone model or incorporated in tradi-
tional functional battery models.

The literature provides several studies on these effects, proposing mathe-
matical models that are based on the electrochemical properties or the physics
of the batteries and are therefore strongly bound to specific battery materials
and chemistry (e.g., [5–9]). Although some other aging models, such as those
proposed in [10–15], are empirically characterized onto a pre-defined equation
template, they are still derived by measurements and, therefore, are not general
enough to support different battery chemistries.

The objective of this work is the generation of an aging model with similar
characteristics to a Peukert-like equation. This should be (i) analytical, but able
to be empirically populated, and (ii) general enough to support different battery
chemistries. Specifically, we propose a mathematical model for estimating the
number of cycles with respect to the related capacity fade of batteries.

The accuracy of the approach proposed is demonstrated by applying this
model to various commercial batteries of different chemistries, for which the
manufacturers provide information on the long-term effects in their datasheets.
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The results show an average estimation error, referring to the number of cycles,
generally within 10 %, which is consistent with the typical tolerance provided in
various datasheets (e.g., [16]).

The paper is organized as follows. Section 2 reports related works on battery
modeling, while Sect. 3 describes the proposed mathematical model for estimat-
ing the number of cycles of batteries, and Sect. 4 reports the experimental results.
In addition, Sect. 5 reports the proposed model extended to the temperature and
current effects on battery aging, with the related results, while Sect. 6 draws some
conclusions.

2 Background and Motivations

2.1 Battery Aging Issues

The life degradation of a rechargeable battery depends on some irreversible
changes of physical, mechanical, and chemical nature (e.g., [17,18] for lithium-
ion batteries) in its basic components, such as (i) corrosion, cracking, plating, or
exfoliation of the electrodes, (ii) decomposition of the electrolyte and/or of the
binder, and (iii) corrosion of the separator, just to list the most evident ones.

The most tangible effect of such deterioration is the irreversible reduction of
the total battery capacity, which is named capacity fade. This fading in capacity
is often measured by the so-called state-of-health (SOH), calculated as the ratio
between the actual total capacity Caged and the rated capacity CR (i.e., the total
capacity of one fresh battery), as reported in (1), while the difference CR - Caged

defines the capacity loss (i.e., Cfade). In this case, most manufacturers provide
information on fading as a percentage (i.e., in a normalized form).

SOH =
Caged

CR
(1)

Battery aging is largely determined by:

– Temperature (T). As with other typical reliability mechanisms, aging usu-
ally increases with increasing temperatures; as energy generation process in the
battery involves a chemical reaction, the relation with temperature follows an
Arrenhius-type of equation. Section 5.1 describes the main temperature effects
on cycle life, from a battery perfomance point of view.

– Depth-of-Discharge (DOD). The DOD is the percentage of battery capac-
ity that has been discharged before starting a new charge phase. A DOD of
100 % implies that a battery has been fully discharged before starting a new
charge phase. Aging increases with deeper discharge cycles (i.e., higher DOD
values).

– Charge/discharge current. Both currents affect battery degradation, but
generally with a different impact on aging (e.g., [19]). Aging worsens with
larger charge or discharge currents. Impact of a certain current on aging
strictly depends on the battery chemistry and temperature. Section 5.2 faces
this issue considering an analysis for various batteries.
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– Number of cycles (N). In a given cycle, deterioration mainly depends on
the working and operating conditions. In addition, it may also depend on the
number of charge/discharge cycles previously encountered or, in other terms,
on the battery SOH at which a certain cycle is performed.

2.2 Battery Aging Models

Although various models have been proposed in literature, they usually have
many parameters whose values have to be empirically extracted from direct
analysis. For instance, [5] proposes an aging model for a certain lithium-ion (Li-
ion) battery that relies on crack propagation theory, with some battery specific
constants also related to mechanical strain. It further includes the average state-
of-charge (SOC) in the model, since battery aging generally increases for high
average SOC values. However, although that mathematical comprehensive model
is well-known in the literature, there are practical difficulties to adapt it to
different Li-ion batteries.

Concerning cycle life estimation, numerous researchers have proposed ana-
lytical models capturing the main aging mechanisms and capacity fading based
on the electrochemical properties of the batteries and even including full-physics
based models (e.g., [8] for Li-ion batteries). In fact, the causes for degradation
in batteries generally differs when considering the various cell components (e.g.,
electrolyte chemical composition, electrodes design, and active material) [17].
However, from the perspective of an electronic designer this modeling approach
is unfeasible and, therefore, more simple and generic aging models are searched.
In this work, we focus on compact mathematical battery cycle life models with
only a couple of parameters in their formulas, other than the aforementioned
aging factors (e.g., DOD and N).

In [9] the authors proposed a model to calculate the usable number of cycles
N of a battery based on the following equation:

N = N1 · eα·(1−DOD′) (2)

where DOD′ is the normalized depth of discharge (0 ≤ DOD′ ≤ 1), α is a
characteristic constant of the battery and N1 is the number of cycles at DOD′ =
1. This model is empirically characterized for lead-acid, nickel-cadmium (NiCd)
and nickel-metal hydride (Ni-MH) batteries, whose cycle-life vs. DOD curve has
an exponential shape. It is not, however, suitable for many lithium-based cells,
whose cycle-life vs. DOD curve sometimes exhibits a more linear behavior (e.g.,
for LiFePO4 cells).

A slightly different relationship between cycle-life and DOD was introduced
in [10]:

N = N0.8 · DOD′ · eα·(1−DOD′) (3)

where N0.8 is the cycle life at DOD = 80%, while α is a constant whose value
is, respectively, 3 and 2.25 for lead-acid and Ni-MH tested battery packs.

Thaller [11] has defined another relationship for battery cycle life after con-
sidering excess capacity F , with respect to the rated capacity, and a penalty
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factor due to the DOD, by including the P parameter, as reported in (4), which
gives this mathematical prediction model for a general battery:

N =
1 + F − DOD′

A · (1 + P · DOD′) · DOD′ (4)

In our work, F is always considered equal to 0, so that each analysis is
performed after starting from the rated capacity of any commercial cell or cell
string. The product A · DOD′ represents the irreversible capacity loss in each
cycle. Values of the parameter A were originally declared to be in the range 0.000
÷ 0.002 [11].

These previous models estimate the cycle life of a battery, always after con-
sidering a fixed irreversible capacity fading (e.g., 20 %, that is, when the total
maximum available capacity reaches 80 % of the nominal one).

In [12] the authors introduce a complex cycle life model consisting of dif-
ferent equations, one for each stress factor considered, i.e., C-rate, T and DOD.
Despite its high accuracy, the model derivation requires extensive empirical mea-
surements and the model itself lacks the compactness and the generality of a
Peukert-like equation.

Another analytical method for battery life prediction is based on the ampere-
hour throughput, i.e., the total energy supplied by the battery during its life [13],
also called “charge life”. The charge life ΓR in ampere-hours (Ah) is defined as:

ΓR = LR · DOD′ · CR (5)

where CR is the rated capacity in Ah at a rated discharge current IR, and LR is
the maximum number of cycles referring to a given normalized depth of discharge
DOD′ and a discharge current IR. In the model presented in [14], the authors
proposed calculating an equivalent Ah weighted-throughput parameter.

The model proposed in [15] adopted this approach to estimate the cycling
capacity fade through a modified definition of the Arrhenius equation, charac-
terized by a square root time dependence.

2.3 Motivations for the Work

Nowadays, with the remarkable rise in the production of battery-powered elec-
tronic devices, system-level design requires an analysis of both circuit and power
supply in order to optimize the entire system [1]. Furthermore, battery technol-
ogy is always “work in progress”, as novel battery chemistries are continuously
proposed. For instance, during the last two decades Li-ion batteries have mostly
replaced NiCd and Ni-MH batteries in mobile phones and portable computers,
mainly due to a greater specific energy (Wh/kg) [20].

Therefore, although various models have been proposed in the literature for
specific battery types, a more general and flexible model for different chemistries,
but still simple enough for fast characterization and simulation, is required.

In spite of the various differences, all the aforementioned models reported
in Sect. 2.2 are built by extracting parameter values through measurements on



114 A. Bocca et al.

Fig. 1. A typical plot of Number of cycles vs. DOD.

the batteries under test. Although the generated models are typically very accu-
rate, this approach is quite time-consuming (especially when multiple cycles are
involved) and requires expensive laboratory instrumentation.

There are other methods for analyzing cycle life through computer simulation
[21], but they consider the complex governing equations of the chemical reac-
tions. For this reason, methods that only rely on available manufacturer data
(e.g., datasheets) to derive the capacity fade in batteries using analytical models
(e.g., [22]) or equivalent electrical circuits (e.g., [23]) have been reported in the
literature in recent years. Clearly, the accuracy of these models depends on the
amount of available information reported in battery datasheets.

The main result of this work is to provide a compact model [24], which
expresses the number of usable cycles as a function of the DOD, extended for
including the other factors affecting capacity fade, namely temperature and
charge/discharge current.

The basic outcome of the characterization is a N vs. DOD curve, such as the
one shown in Fig. 1. This information is seldom available in typical datasheets
and has to be extracted by building an analytical model according to the method-
ology described in the next section. Needless to say, for the rare cases in which
this information is available in the datasheet, the plot can be used directly with-
out resorting to our method. However, in this work we will also consider batter-
ies whose datasheets provide this information, in order to validate our proposed
model.
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3 Modeling Methodology

3.1 Model Definition

The model proposed in this work somehow mimicks the shape of Peukert’s law,
as expressed by (6), which models the intra-cycle non-linear dependency between
capacity and the discharge current:

t =
C

Ik
(6)

where C is the capacity of the battery, I is the discharge current, and t is the
time for totally discharging the battery; k is the Peukert coefficient; typical
values of k depend on the battery chemistry and the manufacturing process and
they typically range from 1.1 to 1.3. As a matter of fact, the curves describing
the Capacity vs. Number of cycles exhibit a similar non-linear relationship.

Our objective is therefore to derive a model expressing battery cycle life in a
compact mathematical form similar to Peukert’s law, and describing the general
non-linear relationship between the capacity fade and the DOD.

In the case of capacity fade, the non-linearity concerns both the number of
cycles N as well as the DOD, and the actual relationship among these quantities
depends also on the value of the target capacity degradation (i.e., the behavior
for a 20 % capacity fade will be different from that for a 30 % capacity fade).
In order to model this non-linearity we need to define a new parameter that
characterizes the battery performance during the cycling.

The proposed mathematical model is shown in (7); it allows to estimate the
number of charging-discharging cycles N for a given battery based on four main
parameters.

N = L · Cfade

DODh
(7)

– L (called the empirical factor) is the parameter that is used to calibrate the
second term of the model with respect to the number of cycles.

– Cfade is the percentage of irreversible capacity loss for which battery life:
usually it is considered as 20 %, but some manufacturers considers a different
value (e.g., 30 %).

– DOD is the depth of discharge expressed as a percentage (eg. 50 %); to avoid
division by 0, it must be > 0, so its range is 1–100%.

– h is the coefficient that models the nonlinear relationship between N and
DOD for a certain Cfade.

The similarity with Peukert’s law is evident. N , considered as an inter-cycle
“lifetime” parameter, is obtained as the ratio of capacity fade and a weighted
metric of the rated capacity discharged on average per cycle (DODh). There
are however two relevant differences: (i) factor L is used to scale the ”lifetime”
across multiple cycles, and (ii) h is not constant, but depends on Cfade. This
makes our approach more general with respect to previous models and allows
one to adapt it to the available manufacturer’s data. In fact, the proposed model
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have two degree of freedom, i.e., L and h, while in the aforementioned models
in Eqs. (2), (3), and (4) reported in Sect. 2, one of the two parameters is always
fixed because it is strictly related to a physical characteristic, while only the
other might be set in order to fit the cycle life function.

Concerning the typical range of DOD, most manufacturers avoid using very
low values of DOD (which will results in very large values of N, besides being
unrealistic) and usually provide data for DOD in the range from 10–30 % to
80–100 % [25]. Moreover, in case of only a few cycles in a long period of time,
aging is usually more influenced by calendar life than cycle life.

The model of Eq. (7), by defining a generic model template, is adaptable also
to some batteries like some LiFePO4 batteries, which report a strictly linear
Capacity vs. Number of cycles characteristic; for this battery, a value of h closer
to 1 will fit easily the linear dependency.

3.2 Analysis of the Mathematical Model

In Eq. (7), Cfade is constant, and fixed to a standard value, i.e., 20 % as in typ-
ical datasheets. Besides the “physical” quantities (Cfade and DOD), the model
includes two other scale parameters, i.e., the empirical factor L and the binding
coefficient h, which have to be determined by fitting empirical data derived from
available information (e.g., datasheet). These two parameters reflect a specific
characteristic of the battery behavior during its cycle life.

The empirical factor L usually has a value with an order of magnitude com-
parable to the value of N at low (e.g., 10 or 20 %) DODs. In other words, we
can see L as a factor that calibrates the value of the second term of the model
(the fraction). Since Cfade is constant for a given battery, the fraction actually
reduces to 1/DOD h. By plotting this expression as a function of the DOD
(Fig. 2) for different values of h, we can clearly see how the non-linearity of
1/DODh is modulated quite markedly by h. For large (≥1) values of h, the
curve tends to flatten out, implying that the fraction 1/DODh tends to become
independent of DOD, and relatively low (<0.1). Smaller values of h, conversely,
emphasize the dependency on DOD, resulting in significant differences (in order
of 0.15–0.2) between low and high DOD values.

The analysis also implies that it is not possible to extract this factor only
by analyzing the battery inter-cycle behavior, so an algorithm should be run in
order to find the two parameters L and h generating the model that best fits
the battery cycle life characteristic.

In the next section we present such an algorithm, which searches for the
values of both L and h that populate the model having the minimum error in
the cycle life estimation with respect to the actual data.

3.3 Extraction of Model Parameters

The actual parameter identification depends on the amount of available data.
Many manufacturers provide information about capacity fade in the form of a
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Fig. 2. 1/DODh vs. DOD for different h values.

Capacity vs. Number of cycles curve as also depicted in Fig. 3. From these plots,
it is no simple matter to perform the battery cycle life evaluation, since the data
about the number of cycles are available for a given number of DODs only (e.g.,
[16]) and, furthermore, sometimes they might even show an uncertainty that
may range from 8 to 10 %, or even higher.

As discussed in Sect. 2, our model is meaningful if the battery under analysis
only provides information in the form of two or more curves in the (capacity,
number of cycles) plane, each corresponding to a different DOD.

Let us assume that there are M such curves available in a datasheet or in
a measured set of data. Obviously the larger M , the more accurate the fitting
process will be. Figure 3 exemplifies this scenario.

Since we need to determine two parameters from the curve(s) (h and L),
and given the limited number of samples points to be considered, it is feasible
to derive them from an exhaustive exploration for all Cfade and DOD points,
as the values of h and L that minimize the maximum error with respect to the
curves. However, an exploration requires a feasible range for these two para-
meters, which is not easy to determine because they are only weakly linked to
“physical” quantities. Of the two, L is the one with some physical interpretation
since it can be regarded as a correction factor of the number of cycles N . There-
fore, we can assume that L ranges between 1 and a value Lmax, determined by
inspection of the datasheet. As a rule of thumb, it is usually near to the largest
value of N reported in the datasheet curves. Conversely, we have no insight of
possible values of h. For this reason, we implement the search as a two-phase
process, as described by Algorithm 1.

The search is organized into of two main iterations over L. In the first one
(Lines 1–7), for all values of Cfade (assumed to be discretized into P values) and
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Fig. 3. Model extraction scenario.

Algorithm 1. Search for the best value of L

1: for all L ∈ [1, Lmax] do
2: for all Cfade = 1 . . . P do
3: for all DOD = 1 . . . M do
4: Compute h by (8)
5: end for
6: end for
7: end for
8: H ← [hmin, hmax]
9: MinMaxErr ← ∞.

10: for all L = 1 . . . Lmax do
11: MaxErr ← 0.
12: for all h ∈ H do
13: TotErr ← 0, MinAvgErr ← ∞.
14: for all Cfade = 1 . . . P do
15: for all DOD = 1 . . . M do
16: Calculate N using (7) and compute the

absolute error E
17: TotErr ← TotErr + E
18: end for
19: end for
20: AvgErr ← TotErr/(P ∗ M)
21: if AvgErr < MinAvgErr then
22: H[L] ← h
23: Err[L] ← AvgErr
24: end if
25: end for
26: end for
27: Lopt ← argmin(Err)
28: hopt ← H[Lopt]
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of the M DOD values it computes the resulting value of h using (8), which is
simply a re-arrangement of (7) expressing h instead of N , and determines thus
a feasible range H = [hmin, hmax] for h.

h =
log(L · Cfade

N )
log(DOD)

(8)

Now that we have a feasible range for h, in the second iteration (Lines 10–
26), we determine the optimal values of h and L, as follows. In the outer loop
over L (Line 10), the optimal value of h is calculated first; for each value of
h (using some discretization step), Cfade and DOD, N is computed using the
model Eq. (7) (Line 16), and the error between this value and the one extracted
from the datasheet is evaluated. The value of h that yields the least average
error is stored as the best for a given value of L into an array h, together with
the relative errors (array Err, Lines 22–23).

At the end of the iteration over L, the value of L corresponding to the smallest
error is selected as single Lopt for the model (Lines 27–28), which is used as an
index in h to determine hopt for each Cfade.

4 Model Validation

The validation of the proposed model is performed after considering batteries of
various chemistries produced by different manufacturers. Although the type of
aging data may differ from one datasheet to another, we have collected the avail-
able information and translated it into the tabular format described in Sect. 3;
using these data, we ran the search algorithm to populate the model for each
battery under analysis.

4.1 VRLA Batteries

We start our evaluation from Valve Regulated Lead Acid (VRLA) batter-
ies, which have a more evident nonlinear aging behavior with respect to
many other chemistries. Moreover, datasheets for most VRLA batteries include
more detailed information on aging, typically in the form of the plot of
Capacity vs. Number of cycles (e.g., Fig. 3).

Table 1 reports the extracted manufacturer data and the resulting model
parameters for two different Absorbed Glass Mat (AGM) VRLA batteries: the
XTV1272 by CSB Battery and the EV12A-B by DISCOVER R©. The first three
columns represent the data given from the related datasheets, in both cases for
three different Cfade points, namely 10, 20, and 40 %. The last four columns
report the parameters obtained by the search algorithm, the resulting number of
cycles Nm from the model, and the estimation maximum absolute error. After
comparing Nm against the cycle life extracted from the datasheets (i.e., Nd), the
greatest errors are given for a low (i.e., 10 %) Cfade, while they are fairly small
for typical lifespan (i.e., Cfade = 20 % or greater).
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Table 1. Extracted parameters and number of cycles estimation for the CSB XTV1272
and DISCOVER EV12A-B AGM-VRLA batteries.

Battery
Datasheet Model

Nd DOD Cfade L h Nm Max. error (%)
C
S
B
X
T
V
12
72

681 30
10

2464

1.093621
597 -12.33

305 50 342 12.13
151 100 160 5.96
861 30

20 1.222672
770 -10.57

374 50 412 10.16
186 100 177 -4.84
1130 30

40 1.343506
1021 -9.65

459 50 514 11.98
231 100 203 -12.12

D
IS
C
O
V
E
R
E
V
12
A
-B

1321 20
10

2691

0.961111
1512 14.46

734 50 627 -14.58
348 80 399 14.66
953 20

20 1.075976
2143 9.73

885 50 800 -9.60
455 80 482 5.93
2949 20

40 1.193213
3017 2.31

1071 50 1011 -5.60
545 80 577 5.87

Although the error is not negligible, it is worth emphasizing that very often
datasheets report a possible range of the number of cycles rather than a single
curve, to indicate the intrinsic uncertainty of the estimation. The spread of the
values actually increases for increasing DODs. For instance, from the datasheet
for the XTV1272 [16], we found that the possible variation of the cycle life (mea-
sured as the difference between the minimum or maximum value with respect to
the average) might even be up to 10, 11, and 16 % for Cfade = 10, 20, and 40 %,
respectively. Hence, the absolute maximum estimation error obtained by the
proposed model (i.e., around 12, 11, and 12 %, respectively) is comparable with
the maximum tolerance given by the manufacturer.

4.2 Other Battery Chemistries

Evaluation of other battery chemistries is complicated by the fact that
in general only the manufacturers of VRLA batteries provide plots of
Capacity vs. Number of cycles, for different DODs. In particular, datasheets
usually report only a single curve referring to a single DOD value for lithium-
based batteries. The availability of just one DOD reference, however, would yield
a model with little practical use in this case, since the calibration for discharge
patterns would be different from that used for characterization.

Therefore, in order to have a more meaningful assessment of the accuracy of
the proposed model, we only selected those batteries whose datasheets report the
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Number of cycles vs. DOD characteristic, even just for a single Cfade value. In
any case, values of DOD below 10 % are not used for the derivation of the model
because (i) they are not representative of typical battery usage and (ii) they are
not statistically representative. It is worth noticing that the number of cycles
should approach infinity as DOD → 0%; therefore, as DOD gets smaller it would
be correct to consider a range of values rather than a precise value. Of course, all
the characteristics given by the manufacturers always refer to certain operating
and working conditions (e.g., charge/discharge current and temperature), which
are usually different from one brand to another. In order to validate the basic
proposed model, at the beginning we do not consider the differences among
these conditions. However, both temperature and current rate, as stress factors
in battery aging, are included in the extended model as reported in Sect. 5.

The parameters and estimation errors for the benchmark batteries are
reported in Tables 2 and 3, which also report, for a more comprehensive vali-
dation, the results of the application of the existing and most meaningful ana-
lytical models [9,11]. As (2) requires the number of cycles at DOD = 100 % as
input parameter, the evaluation of that previous model was not possible for
two batteries because this value is not available in their datasheets, as reported
in Table 2. On the other hand, as the model proposed by [11] is useless for
DOD′ = 1 (in this case, N in (4) would be equal to zero), the analysis was
re-performed by considering the maximum DOD = 80 % as reported in Table 3.

In Table 2, the largest absolute estimation error of the model occurs for a
LiFeMgPO4 battery, almost 20 %, while the maximum mean value is 11.35 %
for the Alpha R© one. However, the total average error of the maximum errors for
the 10 batteries in the table is 10.66 %. The mean errors are obviously smaller,
in general less than 10 %, and in one case 11.35 %.

In general, the proposed model shows robustness and accuracy for different
types of electric storage devices. For the Li-ion battery by Saft Evolion the linear
factor L is very high with respect to any other battery. In fact, the linear factor
usually depends on the battery properties of cycling, while the range of the h
parameter strictly depends on the linearity of the cycle life with respect to the
DOD. The lowest h coefficient found in the model validation is 0.225627 for
the Discover 22-24-700 battery, whereas the highest h is 2.000414 for the Saft
Evolion.

In order to give a more comprehensive example about accuracy, Fig. 4 shows
the plots obtained from all the information in the datasheet for the Lithium
Manganese Dioxide Maxell ML2016 battery, and the estimation data produced
by the proposed model.

Figure 5 reports the plots, normalized to the Cfade and parameter L, of
the models for the selected batteries. The plot for the DISCOVER 22-24-6700,
whose model has h = 0.225627, is reported separately in the upper right pane
for the sake of clarity. The others are represented in a descending order of the h
parameters reported in the fifth column of Table 2, i.e., the curve for the lowest
value (0.995693) is at the top while the one for the highest value (2.000414) is
at the bottom.
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Fig. 4. Extracted N vs. DOD plots for the lithium manganese dioxide Maxell ML2016
battery.

Fig. 5. 1/DODh vs. DOD of the generated models for the selected batteries.

At the end, the chart in Fig. 6 reports a comparison of the estimation models
after applying each of them to the benchmarks. For a comprehensive report, it
also includes the main results obtained for the analysis of the model by [10],
whose estimation errors are too great to be reported. Furthermore, for the
here proposed model, this chart considers the worst case (i.e., data reported
in Table 2).

Although the previous models have two parameters (i.e., coefficients) in their
expressions, one of them always strictly depends on the battery properties. In the
here proposed model, both parameters L and h can be characterized, resulting
in higher accuracy thanks to an additional degree of freedom in the modeling
process.
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Fig. 6. Maximum and mean estimation errors given by the models for all the selected
benchmarks.

5 Extension of the Basic Model

This Section provides an overview of temperature and current as stress factors
that may accelerate the aging of batteries, and presents an extended version of
the model reported in Sect. 3.1, in order to also include the dependency of the
cycle life on these stress factors.

In this context, the total battery cycle life is the number of cycles that a
battery may guarantee at different temperatures and current rates.

5.1 Impact of the Temperature on Cycle Life

The battery capacity is strongly dependent on temperature and it is not always
a monotonic function. Furthermore, such a dependency changes for different
battery chemistries [20].

Temperature effects on battery performance may manifest themselves in a
reversible change of the total battery capacity in a single cycle, and in an irre-
versible capacity fading during the battery cycle life.

In the literature, an Arrhenius-type equation typically describes the rela-
tionship between battery aging due to cycle life and temperature (T) [15,22].
For fixed values of charge and discharge C-rates, this analyitical model can be
written as follows [23]:

Cfade = B · e−Ea/(Rg·Tb) · Az
h (%) (9)

In (9), B is a constant, Tb is the battery temperature (K), while Ea and Rg

are, respectively, the activation energy (J·mol−1) and the universal gas constant
(i.e., 8.3143 J·mol−1·K−1); Ah is the total ampere-hour throughput processed
after a certain number of cycles (i.e., given by N · DOD′ · CR), while z is the
power law factor. Regarding the latter, [15] reports that z is always near 0.5 for
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a graphite-LiFePO4 cell, being “fairly constant at all C-rates”. In addition, this
work provides all the exact values of the coefficients in (9) for a certain battery
cell under test. Furthermore, it should be pointed out that both input and output
ampere-hour throughputs due to charge and discharge currents, respectively,
contribute to capacity fading [14].

Although equations based on Arrhenius’ law provide reference analytical
models, nowadays batteries may have different characteristics. In fact, there are
batteries for which temperature effects, in service and cycle life, do not exactly
follow Arrhenius’ law. For instance, the handbook for the Sonnenschein R© A600
Gelled Electrolyte (GEL) VRLA battery [26] reports a better performance with
respect to Arrhenius’ law, from the test results, after comparing the temperature
effects on both service and cycle life. Therefore, a more adaptive model that fits
any characteristics concerning capacity fading should be considered when ana-
lyzing the effect of the temperature in different battery chemistries and products.

Since (9) refers to the capacity loss due to the effect of temperature in cycle
life, in order to obtain a similar equation for the calendar (service) life, the term
Ah in (9) must be replaced with the battery lifetime t (months) [15,22].

The Proposed Model for Temperature Effect on Aging. In order to
include the temperature effect in the model, we consider a slightly different
mathematical expression with respect to the model given in (7), but still with
only two parameters, for extracting the temperature derating factor (TDF), as
given by the following equation:

TDF = LT ·
(

Tb

Tref

)hT

+ (1 − LT ) (10)

In (10), Tref is the temperature at which the model in (7) refers to (e.g.,
25◦C), while Tb is the battery temperature; LT is an empirical constant, which
appears two times in the formula, while ht is the power factor that reflects the
characteristic of the battery cycle life for different temperatures. Notice that the
TDF is a non-negative value; it is in fact determined by the values of ht and
LT using the algorithm of Sect. 3 to empirically fit the curve of N vs. T , which
obviously represents a non-negative value.

5.2 Impact of the Current on Cycle Life

In various battery aging models, current is not usually considered as one of
the main stress factors in cycle life (e.g., [5]). For instance, in [14] the authors
claimed that the C-rate effect on aging is negligible in Li-ion cells for relatively
large C-rates (in a range ±4C). This assumption cannot however be generalized
for all applications and batteries. In fact, various datasheets report a different
cycle life for different charge/discharge currents. For this reason, the authors in
[27] proposed an extended version of Millner’s aging model [5] by including both
charge/discharge C-rates with their related coefficients, as extracted from the
manufacturer’s data for a commercial LiFePO4 battery.
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So, with respect to the aforementioned expression reported in (9), [15] pro-
vides a similar Arrhenius-type equation that includes the current rate (for values
greater than C/2), here rewritten as follows:

Cfade = B(irated) · e(−Ea+k1·irated)/(Rg·Tb) · Az
h (%) (11)

In (11), the value of the pre-exponent factor B is different for each current irated

(i.e., expressed in C-rate), while Ea and z can be set to a fitted value [15], as
well as the coefficient k1.

Since charge and discharge currents usually have a different impact on aging,
coefficients values in (11) are generally different when considering the charge and
discharge phases.

The Proposed Model for Current Effect on Aging. The discharge current
derating factor (DDF) is given by the following expression:

DDF = Lid ·
(

id
idref

)hd

+ (1 − Lid) (12)

where idref
is the current (in C-rate value) to which the model in (7) refers,

and idrated
is the discharge current rate; Lid is an empirical factor, and hd is the

power factor that reflects the characteristic of the battery cycle life for different
discharge rates.

Similarly, the charge current derating factor (CDF) is given by the following
equation:

CDF = Lic ·
(

ic
icref

)hc

+ (1 − Lic) (13)

where icref is the charge current (in C-rate value) to which the model in (7)
refers to, while ic is the discharge current; similar to the previous expression in
(12), Lic and hc are the parameters for characterizing the battery behavior for
different charge rates.

Finally, the full equation for analyzing the battery cycle life as a function of
DOD, T, and C-rate, is given by the following formula:

N(DOD,T, i) = L · Cfade

DODh
· TDF · DDF · CDF (14)

In (14), both the derating factors for charge and discharge currents must be
included because generally they have a different impact on battery aging and,
therefore, different coefficients in their formulas.

5.3 Results

Preliminary results are obtained for the Sonnenschein A600 GEL-VRLA and Dis-
cover 22-24-6700 LiFePO4 batteries, as their datasheets provide enough infor-
mation for modeling their cycle life considering temperature effects. For both
batteries, the analysis was conducted considering a maximum Tb equal to 50◦C.
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Table 4. Extracted parameters of the derating factor for the model extended to the
temperature effect in cycle life, and consequent estimation error of the model with
respect to the manufacturers’ data.

Producer Code Type LT hT Max. error (%) Mean error (%)

Sonnenschein A600 Gel-VRLA 2.99 −0.391034 9.77 3.87

Discover 22-24-6700 LiFePO4 2.13 −0.840028 8.44 3.23

Table 4 reports the extracted hT parameter for each battery, and the estima-
tion errors of the temperature derating factor given by the model in (10) with
respect to the manufacturers’ data.

It is worth noticing that in both cases the maximum error is less than 10 %.
As far as concerns the current effect on battery aging, which is usually con-

sidered for high C-rates only, the model given in (12) was applied to the Discover
22-24-6700 LiFePO4 battery, for which the extracted parameters Lid and hd are,
respectively, 0.98 and −0.851245. In this case, the maximum and mean estima-
tion errors are, respectively, 2.36 % and 0.96 %. These results demonstrate the
high level of accuracy that the proposed extended model may guarantee.

6 Conclusion

A compact mathematical model for estimating the number of cycles of a bat-
tery with respect to an expected capacity fade, has been proposed. The related
equation describes the cycling behavior of batteries of different chemistries, and
it demonstrates the possibility of obtaining a very fast and also accurate explo-
ration of battery lifespan. The characterization of the long-term effects for a
specific battery only requires two battery-specific parameters: an empirical fac-
tor L and the exponential h coefficient. Validation results show an estimation
mean error generally within 10 %.

Furthermore, the basic model has been extended to include temperature and
current rate effects in battery cycle life. In this scenario, various derating factors
have been defined using mathematical models similar to the basic one. The mean
absolute estimation errors of these models related to temperature and discharge
current are, respectively, less than 4 % and about 1 %.
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