Chapter 9
Models @ Runtime for Continuous Design
and Deployment

Nicolas Ferry and Arnor Solberg

9.1 Introduction

Nowadays, software systems are leveraging upon an aggregation of dedicated
infrastructures and platforms, which leads to the design of large scale, distributed,
and dynamic systems. The need to evolve and update such systems after delivery
is often inevitable, for example, due to changes in the requirements, maintenance,
or needs for advancing the quality of services such as scalability and performances.
The demands to evolve and update the systems typically increase with Cloud-based
systems, since the Cloud enable to dynamically adjust and evolve the platforms and
infrastructures, while previously these were very much rigid and more or less fixed.
This implies on the one hand more opportunities and flexibility to better evolve and
adjust the systems to various needs and requirements, on the other hand the com-
plexity of designing, delivering, managing and maintaining such systems challenges
current software engineering techniques.

Asstatedin[1], in order to reduce delivery time and fostering continuous evolution
of these systems, there is a need to close the gap between development and operation
activities. However, developers and operators are often working in separate teams
with specific roles, and thus, prefer to use the specific languages they feel comfortable
with. This hinders the knowledge sharing between these teams, thereby, on the one
hand making it difficult for designers to obtain and understand feedback on the
status of the operated system that could be useful to evolve it, and on the other hand
making it difficult for operators to analyse and comment on the impact of proposed
or implemented design changes. As promoted by the DevOps movement [2]. This
issue can be better handled by facilitating collaboration between developers and

N. Ferry - A. Solberg (<)
Stiftelsen SINTEF, Postboks 4760 Sluppen, 7465 Trondheim, Norway
e-mail: Arnor.Solberg @sintef.no

N. Ferry

e-mail: Nicolas.Ferry @sintef.no

© The Author(s) 2017 81
E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_9

82 N. Ferry and A. Solberg

operators for example through aligning concepts and languages used in development
and operation, and supporting them with automated tools that help reducing the gap
and improving the flexibility and efficiency of the delivery life-cycle (e.g., resource
provisioning and deployment).

In particular, continuous integration [3] tools play a key role, for example, through
the significant increase of the frequency of integration it ensures immediate feedback
to developers. Continuous integration also enable frequent releases, more control in
terms of predictability (as opposed to integration surprises in less frequent and more
heavy integration cycles) as well as productivity and communication. Continuous
deployment can be seen as a part of the continuous integration practice and is defined
as: “Continuous deployment is the practice of continuously deploying good software
builds automatically to some environment, but not necessarily to actual users” [3].

In the context of Cloud applications and multi-Cloud applications [4] (i.e., appli-
cations that can be deployed across multiple Cloud infrastructures and platforms),
designers and operators typically seek to exploit the peculiarities of the many existing
Cloud solutions and to optimise performance, availability, and cost. In such context,
there is a pressing need for tools supporting automated and continuous deployment
to reduce time-to-market but also to facilitate testing and validation of the design
choices. However, current approaches are not sufficient to properly manage the com-
plexity of the development and administration of multi-Cloud systems [5].

In this chapter we present the mechanism and tooling within the MODAClouds
approach to reduce the gap between developers and operators by supporting contin-
uous deployment of multi-Cloud applications. In order to reduce the gap between
developers and operators we apply the same concepts and language for deploy-
ment and resource provisioning at development time and at operation time (the
CLoUDMLpresented in Chap. 3). To automate the continous deployment and resource
provisioning we have developed a deployment and resource provisioning engine
based on the principles of the Models @ Runtime approach [6]. This engine is respon-
sible for enacting the continuous deployment of multi-Cloud applications as well as
the dynamic adaptation of their deployment and resource provisioning including
operations such as scaling out and bursting of parts of an application. The engine
“speaks” the language of CLOUDML, thus, it provides the same concepts and abstrac-
tions for the operators as applied by the developers.

The remainder of the paper is organised as follows. Section9.2 presents our
model-based approach. Section 9.3 provides an overview of the MODAClouds Mod-
els@Runtime engine. Sections 9.3.1 and 9.3.2 details how the engine can be used to
continuously adapt the deployment of an application in a declarative and imperative
way, respectively. Section 9.3.3 presents the mechanism to monitor the status of the
running system. Section9.3.4 details the mechanisms enabling remote interaction
with the engine. Finally, Sect.9.4 presents some related work and Sect.9.5 draws
some conclusions.

http://dx.doi.org/10.1007/978-3-319-46031-4_3

9 Models@Runtime for Continuous Design and Deployment 83

9.2 The Models@Runtime Approach

Model-Driven Engineering (MDE) techniques have shown to be effective in sup-
porting design activities [7]. MDE is a branch of software engineering which aims at
improving the productivity, quality and cost-effectiveness of software development
by shifting the paradigm from code-centric to model-centric. Models and modelling
languages, as the main artefacts of the development process, enable developers to
work at a higher level of abstraction rather than at the level of implementation details.
However, as stated in [6], applying the classical MDE approach for software evolu-
tion would be impractical. Indeed, this would typically result in generating the new
solution, stopping the running system before replacing it by the new one, this in
contrast with common expectations for Cloud services to have more or less 100 %
up-time. In order to address this issue, the Models @ Runtime approach has emerged.

Models @Runtime [6, 8] is an architectural pattern for dynamic adaptive systems
that leverage models as executable artefacts supporting the execution of the system.
This way, Models@Runtime promotes the DevOps method, by providing a unique
model-based representation of the applications for both design- and run-time activ-
ities (i.e., for developers and operators). As depicted in Fig.9.1, Models @Runtime
provides an abstract representation of the underlying running system, which facil-
itates reasoning, simulation, and enactment of adaptation actions. A change in the
running system is automatically reflected in the model of the current system. Sim-
ilarly, a modification to this model is enacted on the running system on demand.
This causal connection enables the continuous evolution of the system with no strict
boundaries between design-time and run-time activities.

¢ ¢

|
I
Developer 1 Operator
|
I
Update, | Up_datg,
validate, test 1 Maintain,
Manage

Sharing models

~ . I
Metagmodel
Model N Model
(of the running system)) -_= (of the running system)
et S
ausal conborms Causal
Link Link

1
Running ; : : Running
System : | System
: s i
1
|
]

Test Environment Operation Environment

Fig. 9.1 Continuous deployment using Models @ Runtime

84 N. Ferry and A. Solberg

Exploiting Models@Runtime for the continuous deployment of Cloud-based
applications would thus result in the process depicted in Fig.9.1. A developer team
can specify a model of the deployment of its application (typically exploiting a
domain-specific language such as CLOUDML) and thus automatically enact this
deployment into a test environment. The team can therefore benefit from this test
environment to tune its development and redeploy it automatically. Any change made
to the deployment model will be enacted on demand on the running system whilst its
status will be reflected in the model providing useful feedback. Once the new release
is validated, it can be provided together with the associated deployment model to the
operation team. The latter can in turn exploit the model to deploy the new release
in a production environment. The operators can thus tune this model to maintain
and manage the running system. Because the models shared by the developers and
operators conform to the same metamodel, at any time they can share and exchange
information.

9.3 The MODAC]Ilouds Models@Runtime Engine

The MODAC]Ilouds Models @Runtime environment relies on the Cloud Modelling
Language [9] (CLOUDML) in order to provide a deployment model causally con-
nected to the running system. As a result, the Models @Runtime maintains deploy-
ment models at two levels of abstraction: Cloud provider-independent models
(CPIM) and Cloud provider-specific models (CPSM) as advocated by MODA-
CloudML. On the one hand, any modification to the CPIM will be reflected in the
CPSM and, in turn, propagated on-demand onto the running system. On the other
hand, any change in the running system will be reflected in the CPSM, which, in
turn, can be assessed with respect to the CPIM. This way, by exploiting the MODA-
CloudML deployment model, the Models @ Runtime environment seamlessly bridges
the gap between the runtime and design-time activities. Figure 9.2 shows the CPSM
of the Constellation case study (see Chap. 13) defined using the MODACIlouds IDE
and managed by the Models @Runtime engine.

Figure 9.3 depicts the architecture of the MODAClouds Models @ Runtime engine.
A reasoning system can read the current CPSM (step 1), which describes the actual
running system, and produces a target CPSM (step 2). Then, the runtime environment
calculates the difference between the current CPSM and the target CPSM (step 3).
Finally, the adaptation engine enacts the adaptation modifying only the parts of the
system necessary to account for the difference, and the target CPSM becomes the
current CPSM (step 4). For each modification of the running system, the synchro-
nization engine propagate notifications describing the change to third party entities.

Once the application is deployed, the Models @ Runtime engine interacts with the
Cloud providers API in order to observe the status of the Cloud services used. This
mechanism is based on a pulling approach for which the frequency of the requests
to the providers API can be parameterized.

http://dx.doi.org/10.1007/978-3-319-46031-4_13

9 Models@Runtime for Continuous Design and Deployment 85

- -
] —
- ==

On-Demand uea:i-m"fﬂmce On-Demand Micro Instance

H i mink B] agentd : Agenthode B
jeet: adServicel: jwpl [aval—agentManagert
vm-adex s-] JEEContainer u eeplatform» '1nmnmuauonSemg - B Annm«awra
(¥ g »
>EladRequired : ; :
B———§FJadRequire G >§] =N
m-adi eg jeeRequired £ >£]
£} jmsProvide1 -, imsRequired1
jdbcRequired
-
jdse
=
e} databased ; 5 g “J}
On-Demand $ Small 0B

Target

CPSM Models@run-time

piff X, (3)

Current Adaptation
CPSM L engine

Synchronization
engine

Fig. 9.3 The CloudML Models @Runtime architecture

Using the Models@Runtime engine, the deployment of an application can be
adapted in both imperative and declarative ways. The imperative approach requires
the explicit definition through a set of predefined instructions of how to reach the
desired deployment. In contrast, the declarative approach requires the specification
of the desired deployment and then the plan on how to reach that deployment is
derived automatically. Both approaches result in a target CPSM that is consumed
by a comparison engine, which computes the difference between the target model
and the model of the running system. The result of this process is thus exploited
to manipulate and adapt only the parts of the system necessary to account for the
difference. In the following subsections we detail first the comparison engine and
then the main adaptation commands.

86 N. Ferry and A. Solberg

9.3.1 The Comparison Engine

The inputs to the Comparison engine (also called Diff) are the current and
target deployment models. The output is a list of actions representing the required
changes to transform the current model into the target model. The types of potential
actions are listed in Table9.1 and result in: (i) modification of the deployment and
resource provisioning topology, (ii) modifications of the components’ properties, or
(ii1) modifications of their status on the basis of their life-cycle. In particular, the
status of an external component (i.e., representing a VM or a PaaS solution) can
be: running, stopped or in error, whilst the status of an internal component
(i.e., representing the software to be deployed on an enternal component) can be:
uninstalled, installed, configured, running or in error.

The comparison engine processes the entities composing the deployment models
in the following order: external components, internal components,
execution binding,to relationships, on the basis of the logical depen-
dencies between these concepts. In this way, all the components required by another
component are deployed first. For each of these concepts, the engine compare the two
sets of instances from the current and target models. This comparison is achieved

Table 9.1 Types of output actions generated by the Comparison engine

Action Parameter Effect

addExternalComponent External Component Provision a new virtual
machine or prepare a PaaS
service

removeExternal Component ExternalComponent Terminate a virtual machine or
stop a PaaS service

addInternal Component Internal Component Deploy the internal component
on the target virtual machine

removelnternalComponent Internal Component Remove the internal
component instance from its
current host

addCommunication Communication Configure the endpoints of the
communication

removeCommunication Communication Disconnect the endpoints of
the communication

addHosting Hosting Configure the endpoints of the
hosting

removeHosting Hosting Disconnect the endpoints of
the hosting

setStatus Status Change the status of a
component

setProperty Property Change a property of a

component

9 Models@Runtime for Continuous Design and Deployment 87

] Agent2 : AceniNode [|

agentilanager? :
o _d"—‘ Agenthanager a

Ak a2
= a
On-Demand Medwm Instance ISREGUIreSZ -
| ot N
i FigxiScale 2 GB /2 CPU Server
B Agmen Server : Admisisiratontiode [o Anentl : Agenitiade ™ <
jeet: adServcet : ¥ v il sgentilanagert
s (B scctomtaner Blsspistors 1 Dumspnnsersdl B e Sovtanages O
[E =~ ElaRequired [£ B
y-adi p j#eRequited T —>§]
smsPicwcet o msRequiredl
1 iencRequired
'
oy DaaBasei o o

r
On-Demand Standard Small DB Instance

Fig. 9.4 An example of target CPSM of the Constellation case study

on the matching of both the properties of the instances and their types as well as
on the basis of their dependencies (e.g., if the host of a component has changed
the component might be redeployed). For each unmatched instance from the cur-
rent model a remove action with the instance as argument is created. Similarly, for
each unmatched instance from the target model an add action with the instance as
argument is generated.

As an example, the comparison between the models depicted in Figs.9.2 and 9.4
results in the following modifications in the deployment of the Constellation server:
a new VM is provisioned on Flexiscale, Agent 1 is migrated from the on-demand
medium instance to the new VM, and finally a new Agent is also installed on the
same VM.

We always give a higher priority to the target model, which for example means that
any virtual machine instance in the target model that does exist in the current model
will be regarded as one that need to be created. Conversely, any virtual machine in
the current model that does not exist in the target model will be removed. Coping
with changes that happens during reasoning could be handled in various ways, for
instance as part of a third step of the adaptation process (model checking). Currently,
the Models @Runtime engine does not handle changes that might occur during the
time of reasoning.

9.3.2 Adaptation Commands

As stated before, the deployment of an application can be dynamically adapted by
exploiting the set of commands exposed by the engine. In particular, within the
MODAC]Iouds runtime environment, the Models@Runtime engine is responsible
for enacting adaptation actions such as the scaling and bursting of an application.

88 N. Ferry and A. Solberg

These actions can be achieved by directly providing a deployment model to the
Models @Runtime engine. For instance, the simplest way to perform a bursting at
the IaaS level consists in updating the model of the running system by either updating
the provider associated to the type of the VM instance or by simply changing the
type of a VM instance with one associated to the desired provider. This approach
allows fine grained tuning of the deployment of an application to the needs of new
contexts or requirements, however, it can be a complex task for a third party to be
responsible for evolving to the new deployment model.

Therefore, the Models @Runtime engine also provides high level commands that
avoid direct manipulation of the models. In particular, the scale command enable
scaling out a VM in the same Cloud and the burst command enable scaling out
a VM in another Cloud. Currently, in both these cases the first task of the engine
consists in modifying the current deployment model as follow:

1. Create a new instance of VM with unique name and port names of the same type
as the VM to be scaled. In case of bursting, the provider associated to the new
instance is the one specified in the bursting command.

2. For each internal component instance running on the VM to be scaled, create an
instance of the same type and add an execution binding between each of them
and the newly created VM. All new instances are created with unique names and
port names.

3. Identify all the relationship instances involving the internal component running
on the VM to be scaled and for each of them, create an instance of the same type
with unique names. The endpoints of these new relationship instances are: the
newly created internal component instance and the same component as the one
involved in the original relationship.

Once the deployment model is updated, the engine acts differently depending of
the type of command. In case of bursting to a new provider, the engine simply exploit
the Models @Runtime comparison mechanism and trigger a classical deployment,
whilst in the case of scaling within the same Cloud it operates as follows:

. If not existing, create an image of the VM to be scaled.

. Provision a VM using this image.

. Reconfigure all components on the basis of the newly created relationship.
. Restart the new components.

W N =

In case a set of VM instances cannot be further scaled (e.g., in case there are no
more resources available on a private Cloud), the Models @Runtime engine acts as
follows: The target model generated by the scale out command is considered as the
current model of the system and the status of the newly created VM is set to error
whilst the status of its hosted internal components is set to unrecognized.

In order to reduce the time needed to scale a VM, another provided feature is
to provision VMs in advance with all the required software component deployed
on it, and thus making them ready to be started or stopped on demand. In order to
support such an approach, the Models@Runtime engine offers commands to start
and stop components. These commands can be applied to both external and internal

9 Models@Runtime for Continuous Design and Deployment 89

components. In the case of external components, this is achieved by exploiting the
various Cloud provider APIs, whilst in the case of internal components it consists in
calling the start and stop commands of the resources associated to the component.
In both cases, the components have to be provisioned and installed upfront.

9.3.3 State Tracking

The Models@Runtime engine allows tracking the status of a deployment or adap-
tation as well as the status of Cloud resources once a multi-Cloud application is
deployed. In order to track the state of Cloud resources, a simple monitoring agent is
started in a parallel thread. Modules (one for each provider) can then be attached to
the agent which are then responsible for interacting with the providers API in order
to monitor the status of the Cloud resources being used. The frequency at which
these status checks are performed can be configured manually or programmatically.
Once performed and in case the status of a Cloud resource has changed, the agent
exploits the Models @Runtime synchronization mechanism in order to reflect this
change into the CPSM of the running system. As a result, all the registered clients
of the Models@Runtime engine are notified of the update. Similarly, the status of
the internal component is changed during the deployment process depending on the
result of each deployment command.

The Models @Runtime engine is also synchronized with the MODAClouds mon-
itoring platform (see Chap.5) so that it can subscribe to receive some of the metrics
collected by the monitoring platform.

In addition, this synchronization enable the co-evolution of the monitoring plat-
form with the Cloud-application (e.g., when a service bursts from one provider to
another, the monitoring activity has to be adapted accordingly). By synchronizing the
Models @Runtime engine and the monitoring platform, the latter can dynamically
and automatically be adapted to best fit with the actual deployment of the application.

In case the deployment of an application is adapted, the Models @ Runtime engine,
can communicate the changes to the monitoring platform and update the deployment
of the data collectors. The monitoring platform can in turn adapt its own configuration
accordingly, exploiting the Monitoring Manager which is the main coordinator of
the monitoring activity. It manages and configures all the monitoring components
including the model used by the Data Collectors (DCs) so that the retrieving of data
can be adapted accordingly.

The deployment or un-deployment of Data Collectors can be done for example, to
free resources, to replace a Data Collector with a new one that may offer slightly some
different features, or when a monitored component is migrated. In addition, when the
deployment of the running system is modified (e.g., bursting or migration from one
provider to another), the monitoring activity will restart on the new machine using
the same settings and rules used on the old one. Since the Models @Runtime engine
can manage multi-Cloud applications and because the DCs are provider-agnostic,
the migration can be performed from one provider to another.

http://dx.doi.org/10.1007/978-3-319-46031-4_5

920 N. Ferry and A. Solberg

:Models@ Running Monitoring Data

runtlime Systlem Manager Collelctors
Migrate 1

:User

Application deployment

Data collector deploymeng !

0Old instances deletion

ployment update

I Moddl update
I]
1
_____________________ B 5 e 0 i
- 1
1
1

PR SN S A
1 1
| |

Fig. 9.5 Adaptation of the monitoring platform during the bursting process

Figure 9.5 details the interactions between the reasoning engine, the monitoring
platform and the Models @Runtime engine during the migration of an application.

First, the Models@Runtime engine instantiates a new machine and deploys the
application on it. Then it deploys the Data Collectors on the VM and finally removes
the old instantiation of the application. At this stage, the Models @Runtime engine
notifies to the Monitoring Manager the changes in the deployment (e.g., status of
the new machine, address of the Data Collector), and the Monitoring Manager uses
these information to autonomously update the KB from which the Data Collector
retrieve its own configuration.

The communication from the model @runtime engine to the monitoring platform
is performed through the REST APIs offered by the Monitoring Manager which is
the main coordinator of the monitoring activity.

9.3.4 Interaction with the Models @ Runtime Engine

The Models @Runtime environment also provides synchronisation mechanisms for
remote third-party entities (e.g., such as the MODACIouds reasoning engines) to
adapt the system. This synchronisation is implemented by the propagation of changes
in both directions, namely notification and command. A notification allows
the Models @Runtime engine to propagate its change to third-parties, whilst a com-
mand enables modifications on the current CPSM. This mechanism is exploited by
various MODACIouds runtime components such as the MODAC]louds reasoning
engine to be informed of the changes occurring in the deployment of the running
system and then adapt it accordingly. Because the two models used by two players
can be isolated from each other and might not be aware of the whole model state, only
the sequence of modifications is propagated, without carrying the start state of each
change. Therefore, either notification or command is a sequence of modifications.

9 Models@Runtime for Continuous Design and Deployment 91

:Models VMInstance:
:User ; @ AWS
runtime VMa
I 1 1 1
1 register(VMa) 1 : :
1 |
- registered’ ______ - :
I 1
1 1 |
deploy() L ! !
T setStatus("pending") ! :
! pending() ' !
& 1 1
T provision(VM) : LR
I i il
I) i 1
I "runtimelnformation”
. EEORRITERETRESTRETREES i P S e UL S
| 1 1
: setStatus("running") ._IL :
! running() ! :
T) setRuntimelnfo(ip) ! :
L 0 g .
! |
"deployment completed” : :
"""""""""" I I
I 1 1
| 1 1

Fig. 9.6 Models@Runtime notification mechanism

Figure 9.6 presents a typical usage of the notification mechanism. First a client
use an asynchronous command to register for being notified when a change occur
on a specific VM. Then she exploits another asynchronous command to initiate a
deployment. As a result, the Models @Runtime engine (i) changes the status of the
object in the model that represents this VM to pending and sends a message that
depicts this change to the client, and (ii) initiates the actual provisioning of the VM.
Once terminated, the status of the VM is changed to running and the corresponding
notification is sent. In addition, the Models@Runtime engine retrieves from the
provider and populate the model with a set of runtime information such as the IP of
the VM. For each of these changes in the model a notification is sent.

Currently, the communication with third-parties is achieved using the WebSocket
protocol! in order to enable light-weight communications. Events are encoded as
plain text and we provide a domain-specific language to define them, including
the text format, the query and criteria to locate the relevant model element, the
modification or change on the element, and the combination of other events. We
defined the standard MOF (Meta-Object Facility) reflection modifications as the
primitive events, and allow developers to further define higher level events as the
composition of primitive ones. Using this language, one can also define the model
changes on an abstract model as the composition of events on a concrete model, and

Thitp://www.websocket.org/.

http://www.websocket.org/

92 N. Ferry and A. Solberg

in this way, it can be used as an event-based transformation. After each adaptation, the
engine wraps the modification events into one message and send it to the WebSocket
port.

In order to handle concurrency (i.e., adaptation actions coming from several third-
parties), the Models@Runtime uses a simple transaction-based mechanism. The
WebSocket component creates a single transaction which contains all the modifica-
tions from a third-party, and passes it to a concurrency handler. The handler queues
the transactions, and executes them one after another without overlapping. Since
all the modifications are simply assignments or object instantiation commands on
the model in the form of Java objects, the time to finish a transaction of events is
significantly shorter than the adaptation process.

9.4 Related Work

In the Cloud community, several solutions support the deployment, management and
adaptation of Cloud-based application. However, to the best of our knowledge, none
of them provides the same concepts and abstractions at runtime for the operators as
applied by the developers.

Advanced frameworks such as Cloudify,” Puppet® or Chef* provide capabilities
for the automatic provisioning, deployment, monitoring, and adaptation of Cloud sys-
tems without being language-dependent. Such solutions provide DSL to capture and
enact Cloud-based system management. The Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA) [10] standard is a specification developed by
the OASIS. TOSCA provides a language for specifying the components comprising
the topology of Cloud applications along with the processes for their orchestration.

In addition, several approaches focus on the management of application based
on PaaS solutions. Sellami et al. [11] propose an model-driven approach for PaaS-
independent provisioning and management of Cloud applications. This approach
includes a way to model the PaaS application to be deployed as well as a REST API
to provision and manage the described application. The Cloud4SOA EU project [12]
provides a framework for facilitating the matchmaking, management, monitoring
and migration of application on PaaS platforms.

By constrast with the Models @ Runtime engine, in all these approaches, the result-
ing models are not causally connected to the running system, and may become irrel-
evant as maintenance operations are carried out. The approaches proposed in the
CloudScale [13] and Reservoir [14] projects suffer similar limitations.

http://www.cloudifysource.org/.
3https://puppetlabs.com/.
“http://www.opscode.com/chef/.

http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/

9 Models@Runtime for Continuous Design and Deployment 93

On the other hand, the work of Shao et al. [15] was a first attempt to build a mod-
els@runtime platform for the cloud, but remains restricted to monitoring, without
providing support for configuration enactment. To the best of our knowledge, the
CLOUDMLModels @Runtime engine is thus the first attempt to reconcile cloud man-
agement solutions with modelling practices through the use of models @run-time.

9.5 Conclusion

In this chapter we presented how the MODAClouds Models @Runtime approach
leverage upon MDE techniques and methods at runtime to support the continuous
design and deployment of multi-Cloud applications. This includes support for their
dynamic provisioning, deployment and adaptation by third party entities. Thanks to
the proposed approach it is possible to exploit the same concepts and language for
deployment and resource provisioning at both development and operation time. This
facilitates interaction between developer and operation teams and helps reducing the
gap between the two related activities as advocated by the DevOps movement.

References

Httermann M (2012) DevOps for developers. Apress
. Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test,
and deployment automation. Addison-Wesley Professional
3. Fitzgerald B, Stol KJ (2014) Continuous software engineering and beyond: trends and chal-
lenges. In: Proceedings of the 1st international workshop on rapid continuous software engi-
neering. ACM, pp 1-9
4. Petcu D (2014) Consuming resources and services from multiple clouds. J Grid Comput 1-25
5. Ardagna D, Di Nitto E, Casale G, Petcu D, Mohagheghi P, Mosser S, Matthews P, Gericke A,
Balligny C, D’ Andria F, Nechifor CS, Sheridan C (2012) MODACLOUDS, a model-driven
approach for the design and execution of applications on multiple clouds. In: ICSE MiSE:
international workshop on modelling in software engineering. IEEE/ACM, pp 50-56
6. Blair G, Bencomo N, France R (2009) Models @run.time. IEEE Comput 42(10):22-27
7. Ruscio DD, Paige RF, Pierantonio A (eds) Special issue on success stories in model driven
engineering 89(Part B) Elsevier (2014)
8. Morin B, Barais O, Jézéquel JM, Fleurey F, Solberg A (2009) Models @Run.time to support
dynamic adaptation. IEEE Comput 42(10):44-51
9. Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: applying MDE to
tame the complexity of managing multi-cloud applications. In: Proceedings of UCC 2014:
7th IEEE/ACM international conference on utility and cloud computing

10. Palma D, Spatzier T (2013) Topology and orchestration specification for cloud applications
(TOSCA). Technical report, Organization for the Advancement of Structured Information Stan-
dards (OASIS)

11. Sellami M, Yangui S, Mohamed M, Tata S (2013) PaaS-independent provisioning and manage-
ment of applications in the cloud. In O’Conner L (ed) CLOUD 2013: 6th IEEE international
conference on cloud computing. IEEE Computer Society, pp 693-700

12. Cloud4SOA EU project. http://www.cloud4soa.com

N =

http://www.cloud4soa.com

94

13.

14.

15.

N. Ferry and A. Solberg

Brataas G, Stav E, Lehrig S, Becker S, Kopcak G, Huljenic D (2013) CloudScale: scalability
management for cloud systems. In: ICPE 2013: 4th ACM/SPEC international conference on
performance engineering. ACM, pp 335-338

Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero R, Wolfsthal Y,
Elmroth E, Céceres J, Ben-Yehuda M, Emmerich W, Galan F (2009) The reservoir model and
architecture for open federated cloud computing. IBM J Res Dev 53(4):535-545

Shao J, Wei H, Wang Q, Mei H (2010) A runtime model based monitoring approach for cloud.
In: CLOUD 2010: 3rd IEEE international conference on cloud computing. IEEE Computer
Society, pp 313-320

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	9 Models@Runtime for Continuous Design and Deployment
	9.1 Introduction
	9.2 The Models@Runtime Approach
	9.3 The MODAClouds Models@Runtime Engine
	9.3.1 The Comparison Engine
	9.3.2 Adaptation Commands
	9.3.3 State Tracking
	9.3.4 Interaction with the Models@Runtime Engine

	9.4 Related Work
	9.5 Conclusion
	References

