
Chapter 8
Deployment of Cloud Supporting Services

Gabriel Iuhasz, Silviu Panica, Ciprian Crăciun and Dana Petcu

8.1 Introduction

The main emphasis in this chapter is on the various supporting services needed to
run an application. In the MODAClouds context, all services and resources involved
in running and managing an application on a given Cloud provider comprise the
runtime environment.

We give an overview of the Execution Platform (Energizer 4Clouds) and its main
components and services that have a direct role in deploying the supporting services.
In particular we will detail the mOS operating system and its main subsystems as
well as the supporting services. We briefly talk about how all services are packaged
and deployed after which we give an overview of and rational behind their design
and implementation. These supporting services are: Object Store, Artifact Repo-
sitory, Load-Balancer Controller and finally the Batch Engine. A brief overview
of how the supporting services are used in the MODAClouds project will be covered
at the end of this chapter. We also cover the runtime platform integration and inter-
dependencies of the supporting services and various other platforms that comprise
the runtime platform.

G. Iuhasz (B) · S. Panica · C. Crăciun · D. Petcu
Institute e-Austria Timisoara, West University of Timişoara,
B-dul Vasile Pârvan 4, 300223 Timişoara, Romania
e-mail: iuhasz.gabriel@info.uvt.ro

S. Panica
e-mail: silviu@info.uvt.ro

C. Crăciun
e-mail: ccraciun@info.uvt.ro

D. Petcu
e-mail: petcu@info.uvt.ro

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_8

69



70 G. Iuhasz et al.

8.2 MODAClouds Execution Platform

In this section we focus on the functionalities of the execution platform, and more
precisely on the supporting services which enable the deployment and execution of
various other services that are part of the runtime platform. In particular the runtime
platform is responsible for monitoring and self-adaptation.

Figure8.1 offers a general overview of the overall dependencies between the
executionplatform, themonitoring (Tower 4Clouds), adaptation (SpaceOps4Clouds)

Fig. 8.1 Energizer 4Clouds—Execution Platform



8 Deployment of Cloud Supporting Services 71

and the MODACloud IDE. The execution platform has three main sub-systems;
infrastructure, coordination, platform. The infrastructures sub-system handles low-
level management of Cloud resources, coordination sub-system enables services to
find one another and exchange messages and finally the platform sub-system handles
the MODAClouds-specific tasks. The supporting services which are the main focus
of this chapter can be found at the bottom of the above figure.

Discovery is an important functionality, required by all services from the execu-
tion platform. Each component consumes or provides various services, which are
accessed in almost all cases over established networks protocols (HTTP, AMQP, raw
TCP etc.). Thus, the developer is provided with API’s that abstracts and expose these
service endpoints and the way to resolve them.

8.2.1 mOS

The mOS operating system is based on existing open-source operating systems and
it is used to host the MODAClouds Platform. Currently there are two versions mOS
v0.x (based on Slitaz) and v1.X (based on OpenSUSE) [4]. It is designed to run
on any compatible Cloud infrastructure. The pre-compiled kernels are available to
support major Cloud providers such as Amazon EC2, Google Compute Engine and
Flexiscale to name but a few.

There are several important services that run inside mOS which are paramount to
its functioning. The mOS bootstrap service is tasked with customizing the execution
platform by starting required services at boot time. These services are in charge of
various actions that create the run-time environment. Other notable services are the
so-called ZeroConf services which are special services hosted by the Cloud providers
to enable the interaction between active VMs and a special service in order to obtain
information about specific resource. The information about the resources include:
user-data specified when the instance is configured at start-up, password-less SSH
public key, username and password pairs, network information.

VMresource registration is handled by the naming servicewhich generates unique
name randomly and registers it with the DNS. There are other services such as user-
data service, package daemon and logging service which are responsible for user
scripts, package installation and event logging. The implementation of mOS v1.X
using openSUSE 13.1 uses the default ramdisk for boot with slight modifications in
order to satisfies some requirements by the MODAClouds platform.

8.2.2 Platform Sub-systems

The run-time bootstrapper coordinates the deployment of the core packages as well
as the supporting service packages. This is achieved by delegating most of the jobs
to other subsystem. It serves as a kind of frontend for the operator and the service



72 G. Iuhasz et al.

deployment. It delegates most task to the resource allocator, node bootstrapper and
controller, service deployer and finally the application deployer.

All of the above mentioned systems are crucial to the runtime. However, the
main focus of this chapter is to detail the importance of supporting service for the
MODAClouds runtime. Keeping this in mind, only some of the components used in
the deployment of the supporting service are highlighted here. For example, the node
bootstrapper is in charge of the initial mOS customization for the MODAClouds
run-time environment. It runs as a local OS service, started at boot time or run time.
It also applies all customization needed to start the runtime environment. The node
controller is responsible with the management of the core services that runs mOS
and supports theMODAClouds platform. It will start/stop andmonitor the services to
ensure that every main component of the execution platform is working as expected.

8.3 Supporting Services

The auto-discovery of services, previously mentioned in Sect. 8.2, depends to a large
extent on the correct packaging and deployment of services. In order to run a service
on the platform there are certain requirements that need to be met by the software.
First, the software has to be packaged as an RPM which contains everything the
service needs in order to run. TheseRPMpackages can bemadeusing the JSONbased
MODAClouds mOS Packager [5] or using the standard RPMSPEC for OpenSUSE
13 for x86_64. Any non standard dependencies must be provided together with RPM
so that they can be published together in theMODAClouds repository. It is important
to note that although specially designed for MODAClouds each supporting service
is a standalone deployable tool outside the MODAClouds context.

In order to successfully deploy any service or component their runtime dependen-
cies in term of other servicesmust be specified. For example, theDDA (Deterministic
Data Analyzer) tool depends at runtime on C-SPARQL. In addition, all TCP or UDP
sockets on which the services listen must be specified. Finally, wrapper scripts are
configuring through environmental variables the socket addresses on which services
are allowed to listen and the remote service endpoints on which the service depends
on.

The next subsections detail the most important supporting services fromMODA-
Clouds. These are integral for the correct functioning of the MODAClouds solution.

8.3.1 Object Store

The classic approach in software configuration is through configuration files which
reside on the local disk, however such an approach is not very well suited for a Cloud
environment, where VM’s are started from identical templates (the VM images), and
in most cases unattended, thus the configuration files must be rewritten at startup.



8 Deployment of Cloud Supporting Services 73

Luckily, for such a scenario, there are existing solutions, such as Puppet1 or Chef.2

However they also require a central database where the actual configuration para-
meters are stored. Moreover some of the deployed services might also want to store
small state data, either for later retrieval, or for weak synchronization within a cluster.
In this case the simplest solution is to use either a kind of database, or a distributed
file system. This is the rational behind the development of the Object Store.

The Object Store provides an alternative to the more traditional locally stored
configurationfiles. In theObject Store an object is a keyed containerwhich aggregates
various attributes that refer to the same subject. For example one could have an object
to hold the configuration parameters of a given service (or class of services); or
perhaps to hold the end-point (and other protocol parameters) where a given service
can be contacted.

The object’s attributes are: data, indices, links, annotations, and attachments.
A collection serves no other purpose than to group similar objects together, either

based on purpose or type, or based on scope (such as all objects belonging to the
same service). Collections can be used without being created first, and there is no
option to destroy them (except removing one-by-one all the objects that belong to it).
Therefore there are no other implications (in terms of performance or functionality)
of placing an object in a collection or another, except perhaps easing operational
procedures (such as removing all objects belonging to a service).

The most basic usage of an object would be to store some useful information,
and have it available for later access. The stored data can be anything, from JSON
or XML to a binary file, and besides the actual data it is characterized by a content-
type. Later based on this declared content-type one can decide how to interpret the
data. Although there can be a single data item for an object, one could easily use
multipart/mixed to bundle together multiple data items; however it is advisable to
avoid such a scenario and use either links or attachments.

Access to the data is atomic and concurrent updates are permitted without any
locking or conflict resolutionmechanisms, the latest update overriding previous ones,
thus no isolationwith lost-updates beingpossible.Although the data canbe frequently
accessed or updated without high overhead, it is advisable to cache operations by
using thededicatedHTTPconditional requests.Because thedata is stored temporarily
in memory, it is advised to keep the amount of data small, well under a 100 kilo-
bytes. Data that is larger should be handled as an attachment. In addition to its data,
an object can be augmented with indices which enables efficiently selecting objects
on other criteria than just the object key. An object can have multiple indices, each
index being characterized by a label and a value, and it is allowed to have multiple
indices with the same label.

Themajor difference between indices presented by this solution and other NoSQL
or even SQL databases is that most other solutions build their indices based on the

1http://docs.puppetlabs.com/.
2http://docs.chef.io/.

http://docs.puppetlabs.com/
http://docs.chef.io/


74 G. Iuhasz et al.

actual data. In the case of the object store, the indices are built based onmeta-data that
is associated with the actual data (the indices attribute). By separating the indexing
from the actual data we have greater control over how the data is stored and retrieved.
We also optimize for those access patterns where the data changes frequently, but
the values used by the indexer stay the same.

Links are the feature which allows an object to reference another one, building
in essence a graph. For example one could have a service configuration object,
holding specific parameter values, and pointing to a global configuration object,
holding default parameter values. A link is characterized by a label and the referenced
object key, and it is allowed to have multiple links with the same label or the same
referenced object (therefore amany-to-many relation can be created). Unlike indices,
links are scoped under the object, are unidirectional, and are not usable in selection
criteria. Therefore one can not ascertain which objects reference a given target object
(without performing a full scan of the store). The only operation, besides creation
and destruction, that can be applied to a link is link-walking, where by starting
from an object, one can specify a label and gain access to the referenced object’s
attributes; link-walking can be applied recursively. Links can be destroyed or created
as frequently as necessary as they are not indexed.

Data that logically belongs to the object, but which is either too large to be used as
actual data or is static, can be placed within an attachment. Attachments are created
in two steps. First, the attachment is created by uploading its content, and obtaining
its fingerprint, so if the same data is uploaded twice the fingerprint remains the same
thus no extra storage space is consumed. Second, a reference to the attachment (i.e. its
fingerprint) is placed within the object with a given label, together with the content-
type and size which serves only for informative purposes. The same attachment can
be referenced from multiple objects without uploading its data, provided that the
fingerprint is known.

Similarly, accessing the attachment of an object is done in two steps: obtaining the
attachment reference, then accessing the actual attachment based on its fingerprint.
Like with links, attachments are scoped under an object, only their data being glob-
ally stored. In terms of efficiency, creating or updating attachments do not have high
overhead (except the initial data upload). This is because the various information
pertaining to a specific object such as the actual data, meta-data, links, annotations,
attachments are not lumped together. These are partitioned, just like vertically parti-
tioned SQL databases. Also, because attachments are identified based on their global
qualifier, duplicating or moving an attachments from one object to another doesn’t
require the re-upload of the entire attachment.

The annotations are meta-data which can be specified for objects or attachments,
and are characterized by a label (unique within the same object) and any JSON term
as a value. Annotations are those data which if erased do not impact the usage of the
object. In general annotations can be used to store ancillary data about the object,
especially those used by operational tools. For example, one can specify the creator,
tool and possibly the source, ACL’s or digital signatures, etc.



8 Deployment of Cloud Supporting Services 75

The object store has facilities for multi-Cloud deployment via replication. The
replication process has three phases: defining on the target (i.e. the server) a repli-
cation stream, which yields a token used to authenticate the replication; defining on
the initiator (i.e. the client) a matching replication stream; and the actual replication
which happens behind the scenes. It must be noted that the replication is one way,
namely the target (i.e. the server) continuously streams updates towards the initiator
(i.e. the client). If two-way replication is desired, the same process must be followed
on both sides.

Regarding conflicts, and because internally the object store exchanges “patches”
which only highlight the changes, any conflicting patch is currently ignored. It is
therefore highly recommended to confine updates to a certain object only to one
of the two replicas. However if multiple changes happen to the same object, and
multiple patches are sent, and say the first one yields a conflict, but the rest don’t,
only the conflicting patch will be discarded, the others being applied. It is possible
to obtain replication graphs or trees, including cycles, and the object store handles
these properly.
Service Configuration Use Cases
Let us suppose that an operator has several instances of the same service type (i.e.
application server or database) which he would like to configure during execution.
Moreover the user would like to change the configuration and have it dynamically
applied as easily as possible.

Single shared configuration is the most basic scenario. Themost simple solution
is to store the configuration parameters in an object created before execution is started,
preferably JSON term or plain text as the data, or alternatively as an attachment. Then
at execution the object’s reference is specified as an initialization argument to each
of the instantiated services, which retrieve the data and use it to properly configure
the service.

If each service continuously polls the object for updates, it can detect when the
operator has changed the configuration parameters, and apply the necessary changes
(possibly by restarting). This might seem to involve fetching the data over and over
again thus incurring large network overhead, such is not necessary true if one uses
HTTP conditional requests which is rather efficient.

In the case of Multiple shared configurations the services require multiple dif-
ferent configuration parameters grouped in multiple “files”, possibly because their
syntax is different, or perhaps for better maintenance by the operator. One solution
to this problem is to create a master object and using links to point to the other
needed configuration objects. As before polling can be applied to detect configu-
ration changes, but because now it involves multiple objects, after an update has
been detected a grace period should be used, after which another check should be
done, if no other updates have been detected the configurations are applied. This
prevents frequently restarting the service while the operator updates sequentially the
configuration objects.



76 G. Iuhasz et al.

8.3.2 Artifact Repository

The artifact repository is designed as archive of artifacts generated in various parts
of the MODAClouds Project. The project aims to be able to store information like
deployment recipes, maven artifacts, software packages or, basically, any other data.
The Artifact repository provides an API for managing the artifacts and for search-
ing the stored data based on their meta-data. The API is REST [1] compliant, and
consumable from all MODAClouds components and development tools.

It has to satisfy a set of fairly simple requirements. It has to enable the upload of
binary files (BLOB). An artifact may be composed of on or more files under 1 GB.
Each artifact has to be versioned as any modification done to an existing artifact has
to be identifiable. Also, each file associated with an artifact has to be downloadable
and it has to support a number of repositories.

The artifact are stored directly on the file system. The file hierarchy is directly
mirrored from the URL structure. This means that the folder structure will include
folders for repositories, artifacts, versions and the files. Thus making interrogation
extremely intuitive. Another bonus of using a simple file system based approach is
the ability to use rsync as the synchronization mechanism between artifact repository
deployments. In some ways it can be considered as a stripped down version of the
object store. It’s main design goal was to create a simple yet powerful mechanism to
store software artifact can handle much larger files than the object store.

8.3.3 Load Balancer Controller

The goal of the load balancer controller, is to provide a RESTful API that is able
to control and configure Haproxy.3 For this we used a micro-framework written in
python called flask.4 It is designed as an extensible framework with little dependen-
cies. The main two dependencies are the web server gateway interface subsystem
represented by Werkzeug and Jinja2 which provides template support. It is impor-
tant to note that flask does not natively support some required functionalities such
as accessing databases, however there are a significant number of extensions to the
framework that resolve these shortcomings [2]. During the project we developed a
python Haproxy RESTful API (modaclouds-loadbalancer-controller orMLC) which
based on the users input generates a configuration file for the load-balancer (Haproxy)
thus controlling its behavior. It exposes both frontend and backend settings as well as
limited support for ACL specifications. At this point it is important to note that MLC
doesn’t check if the ACL triggers are correct when first entered by the operator.

It stores all interactions in a sqlite database, which also serves as the basis of the
configuration file. The jinja2 template engine is used to generate the configuration

3http://www.haproxy.org/.
4http://flask.pocoo.org/docs/0.10/.

http://www.haproxy.org/
http://flask.pocoo.org/docs/0.10/


8 Deployment of Cloud Supporting Services 77

file which is then loaded into Haproxy. Currently each configuration file is saved into
the database and can be accessed by querying the database. The API is designed to:

• add, edit and delete resources—This means that pools, gateways, endpoints and
targets can be defined. These represent direct representations of resources present
in Haproxy. Each interaction is saved and versioned.

• set policy—Load-balancing policies and their associated parameters can be set of
each target. For example in the case of round-robin we can set the weights for each
target.

• start Haproxy service—First a configuration file is generated and used to start the
load-balancing service. Each time a new configuration is generated it is reloaded
into the already running service.

The MLC is designed to hide as much technical details of Haproxy as possible.
This is done in order to make the REST API as agnostic as possible. For example
in MLC we use the term gateway to define a frontend server and pool to define the
backend servers. This enables easy extension of the MLC and the REST resource
structure can be easily mapped onto other load-balancer solutions (such as ngnix)
besides Haproxy.

8.3.4 Batch Engine

The main goal of the Batch Engine (BE) is to support the computationally-intensive
routines that are to be executed as part of the Filling the Gap Analysis. As there are
no tight deadlines, these routines are executed offline, and therefore it is possible
to exploit the large datasets of monitoring information collected at runtime. We
therefore opt for a BE that exploits a pool of parallel resources. In particular, the
BE aims to provide on demand HTC/HPC clusters on top of existing computational
Cloud resources (e.g., Eucalyptus, EC2, Flexiant, PTC, etc.).

From a technical perspective, theBE integrates the services provided by the under-
lying scheduling middleware, particularly the HTCondor workload management
system [3]. The BE provides REST API’s that allow job execution management
(including submission and monitoring).

The API offered by BE is extensible, providing the ability to support new job-
scheduling engines or middleware. As the FG analysis techniques were implemented
in Matlab, we are making use of the Parallel Toolbox and the APIs offered by the
BE to submit and manage the parallel jobs, as well as to retrieve the results. The
execution of the FG analysis relies on the Matlab Compiler Runtime (MCR), a free
runtime platform to execute standalone applications developed in Matlab.

The main features of the BE are include automatic provisioning using specially-
designed Puppet modules, the ability to use existing infrastructure (ex: Amazon EC2,
Flexiant) and anAPImiddleware for job control. There are several important features
in the BE. First, a REST API (based on JSONRPC2) for controlling the deployment.



78 G. Iuhasz et al.

ThisAPI allows todynamically specify the architecture of theprovisioned cluster, and
to reuse predefined models. It allows customizing the cluster based on the required
resources (CPU, memory, GPUs, etc.). This API abstracts the cluster deployment
operations, including: machine deployment; software provisioning, configuration,
monitoring. The API resorts to specially-defined Puppet modules that handle the
deployment of all the software components.

It also uses a REST API for job management and monitoring. This REST API
abstracts the job management operations and interacts with the back-end HTCon-
dor service. The API provides common operations offered by HTCondor as REST-
compliant services. These operations include job submission, data staging, job state
notifications, etc.

Lastly a flexible core that allows the addition of various schedulers, each with a
different feature set, as required by applications.

From an architectural point of view the BE is composed of four main subsys-
tems: Batch Engine API: This subsystem is responsible for interacting with the
client applications or users. It handles the requests and delegates them to the other
subsystems.

Batch Engine Cluster Manager API: Based on SCT,it uses the Configuration
Management subsystem (mainly Puppet) and theCloud interface for deploying nodes
and provisioning the job scheduler (e.g., HTCondor).

Batch Engine Execution Manager: Is responsible with the effective job exe-
cution and corresponding event handling (interaction with external components). It
dispatches job execution requests to the deployedHTCondor workloadmanager. The
workload manager permits the management of both serial and parallel jobs, feature
that will be exploited by applications that use MPI like technologies.

Scheduler: Represents the effective job-scheduling system, responsible for exe-
cuting the submitted jobs. It also provides the wrapping mechanism needed for
offering integration facilities like the job notification API.

Finally, the FG Analyzer calls the Batch Engine periodically and executes several
jobs on multiple nodes performing different analyses. For instance, the FG Analyzer
can execute several demand estimation procedures in parallel using the Batch Engine
to compare the accuracy of them during design time. It also executes the analysis
corresponding to different datasets in parallel, thus speeding up the analysis phase.

8.4 Conclusions

As we saw in the previous sections, there are a wide array of tools and platforms
that make up the complete MODAClouds solution. TheMODAClouds platform core
components are comprised of more than 70 RPM packages. Some of these packages
are custom repackages of components such as the Java Virtual Machine, Go runtime,
python interpreter, Haproxy etc. These are packages on which MODAClouds plat-
form services depend upon. For the sake of completeness we will list the components
that comprise each MODAClouds platform:



8 Deployment of Cloud Supporting Services 79

• Creator 4Clouds—Filling the Gap (FG) Analyzier, Functional Modelling Tool,
Space 4Cloud, LINE, CloudML, DATA Mapping

• Venues 4Clouds—Decision Support System
• Tower 4Clouds—Monitoring Manager, DDA, Data Collector, QoSModels, Met-
rics Observer, Metrics Explorer, Knowledge Base, Matlab SDA, Weka SDA

• SpaceOps 4Clouds—Self-Adaptation Stress tester, Load-Balancer reasoner
• Energizer 4Clouds—Load Balancing Controller, Object Store, Artifact Reposi-
tory, Data Migration, mOS image, mOS package builder

Most components from Tower 4Clouds [7], SpaceOps 4Clouds [6] and Energizer4
Clouds [5] are packaged and deployed on top of mOS. Even more significant is the
fact that most tools use the supporting services in order to fulfill their function. For
example the Load Balancer Reasoner uses the Load Balancer controller supporting
service in order to adjust the weights of server backends in Haproxy. Without this
REST interface based controller the reasoner would not be able to function. This
controller is also used by the Models@Runtime component and can be used by any
other application that needs a load balancer. Similarly the object store and artifact
repository are used by the Tower 4Clouds components and Load Balancer reasoner,
while the Batch engine is used by the Filling the Gap tools.

This chapter has provided an overview of the deployment and architecture of the
supporting services and runtime platform. It has highlighted the importance of these
types of serviceswhich play an important role in theMODACloudsRuntime platform
(Energizer 4Cloud). We have also covered how services from Tower 4Clouds and
SpaceOps 4Clouds are packaged and later deployed on top of mOS. We have also
described the fact that each supporting service is a self contained software package
meaning that they can be easily reused and modified. The four supporting services,
Object Store, Artifact Repository, Load-Balancer Controller and Batch Engine have
been described and rationale behind their design has been covered. Lastly these
services are put into context of the MODAClouds runtime platform (with details
how each supporting service is integrated into sub-system of the runtime platform).

References

1. Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans
Internet Technol 2(2) ISSN 1533-5399

2. Grinberg M (2014) Flask web development: developing web applications with python. O’Reilly
Media Inc. ISBN 1449372627

3. Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the condor expe-
rience. Concurr Pract Exp 17

4. Petcu D, Macariu G, Panica S, Crăciun (2013) Portable cloud applications—from theory to
practice. Future Gener Comput Syst 29. ISSN 0167-739X

5. Iuhasz G, Panica S, Casale G, Wang W, Jamshidi P, Ardagna D, Ciavotta M, Whigham D, Ferry
N, González R (2015) MODAClouds D6.5.3—runtime environment final release. http://www.
modaclouds.eu

http://www.modaclouds.eu
http://www.modaclouds.eu


80 G. Iuhasz et al.

6. Fortiş F, Iuhasz G, Neagul M, Casale G, Perez J, Wang W (2015) MODAClouds D5.3.2—
techniques for filling the gap between design time and runtime. http://www.modaclouds.eu

7. Casale G, Weikun W, Miglierina M, Munteanu V (2014) MODAClouds D6.3.2—monitoring
platform final release. http://www.modaclouds.eu

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://www.modaclouds.eu
http://www.modaclouds.eu
http://creativecommons.org/licenses/by/4.0/

	8 Deployment of Cloud Supporting Services
	8.1 Introduction
	8.2 MODAClouds Execution Platform
	8.2.1 mOS
	8.2.2 Platform Sub-systems

	8.3 Supporting Services
	8.3.1 Object Store
	8.3.2 Artifact Repository
	8.3.3 Load Balancer Controller
	8.3.4 Batch Engine

	8.4 Conclusions
	References


