Chapter 7
Fault-Tolerant Off-line Data Migration:
The Hegira4Clouds Approach

Elisabetta Di Nitto and Marco Scavuzzo

7.1 Introduction

The Cloud offers the potential to support high scalability of applications. An increase
in the application workload is typically handled by triggering the replication of its
components so as to increase the application computational capability offered to
users. Moreover, an increase in the amount of data to be handled can be easily
managed by exploiting scalable DBMSs supporting partitioning of data on different
nodes. These are the so called NoSQL databases that have been specifically built to
offer scalability, high availability of data and tolerance to network partitions [9].

Unfortunately, when looking more closely at how NoSQL databases work, one
realizes that they represent a good solution for scalability, but they do not offer
mechanisms to allow migration among data stored in NoSQLSs from different vendors.
More specifically, data migration is not a new problem per se. It is a well established
topic in relational databases world; this is mainly due to the standardization occurred
at the data model level (with DDL) and at query level (with DML and DQL). There
exist several tools (see, e.g., [2, 4, 6, 7]) which allow to migrate data across relational
databases and, thanks to SQL, it is possible to preserve queries, compliant to the
standard, even after the migration. On the contrary, in the NoSQL database field
there exist no standard neither for interfaces nor for the data models and, as such, to
the best of our knowledge, there are no tools which allow to perform data migration
across different NoSQLs. Some databases provide tools to extract data from them
(e.g., Google Bulkloader [3]), but in the end, it is up to the programmer to actually
map those data to the target database data model and perform the migration.
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With our approach, that we call Hegira4Clouds,! we aim at providing a solution to
the data migration problem in the context of NoSQL databases, trying to preserve, at
the same time, the specific properties characterizing each NoSQL database. For the
moment, we focus on column-family databases as they are among the most interesting
class of NoSQL for their high level of scalability. Hegira4Clouds migration approach
is based on the idea of extracting data from the source database, transforming them
into an intermediate format, and, finally, translate and store them into the target
database. Data transfer is fault tolerant as it enables the correct termination of the
migration even in the presence of a failure within the migration infrastructure.

In the following of this chapter, we briefly present Hegira4Clouds intermediate
format (Sect.7.2) and its architecture, focusing, in particular, on the fault tolerance
features (Sect. 7.3). Finally, we evaluate the approach (Sect.7.4) and discuss conclu-
sions and future work (Sect.7.5).

7.2 Hegira4Clouds Intermediate Meta-Model

The Hegira4Clouds intermediate format is defined by an intermediate meta-model
described in detail in [13]. It takes into account the features of the most widely
used NoSQL and we have shown that it is sufficiently general for dealing with the
features of so-called columnar and key-value NoSQL databases [8, 15]. Thanks to
its definition, the adoption of a new NoSQL system in Hegira4Clouds requires only
the development of the translator from this new NoSQL into the intermediate format
and vice versa. Furthermore, thanks to this intermediate meta-model, Hegira4Clouds
is able to preserve the data types, read consistency policies, and secondary indexes
supported by the source database.

In particular, we preserve data types by keeping track of the type of each migrated
data explicitly, even though that type is not available in the destination database.
This is accomplished by performing the following procedure: data converted into the
intermediate format are always serialized into a property value field and the original
data type is stored as a string into a property type field. When data are converted from
the intermediate format into the target one, if the destination database supports that
particular data type, the value is deserialized. Otherwise, the value is kept serialized
and it is up to the application level to correctly interpret (deserialize) the value
according to the type field.

As extensively detailed in [10, 13], read consistency policies are handled through
the concept of Partition Group (Fig.7.1). Entities that require strong consistency
on read operations will be assigned, in the intermediate format, to the same Par-
tition Group value. Entities managed according to an eventual consistency policy
will be assigned to different Partition Group values. When entities share the same
Partition Group, if the target database supports strongly consistent read operations,

IRepository: https://github.com/deib-polimi/hegira-components/.
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Fig. 7.1 Intermediate meta-model

then Hegira4Clouds adapts data accordingly (depending on the target database data-
model). Otherwise, Hegira4Clouds simply persists the data so as that they will be
read in an eventual consistent way, and creates an auxiliary data structure to preserve
the consistency information.

Finally, secondary indexes are preserved across different database by means of
the property indexable field. More specifically, during the conversion into the inter-
mediate format, if a certain property needs to be indexed, it is marked as indexable.
When converting into the target format, if the target database supports secondary
indexes, the property is mapped consequently according to the specific interfaces
provided by the target database. Otherwise, Hegira4Clouds creates an auxiliary data
structure on the target database which stores the references to the indexed properties,
so that, when migrating again these data to another database supporting secondary
indexes, they can be properly reconstructed.

7.3 Architecture and Fault Tolerance Features

The Hegira4Clouds architecture is shown in Fig. 7.2. To provide scalablity and relia-
bility, each component is decoupled from the other, and the interacting components
communicate by means of a distributed queue. A Source Reading Component (SRC)
extracts data from the source database, one entity at a time or in batch (if the source
database supports batch operations) translates data into the intermediate format, by
means of the respective direct translator, and puts the data in the Metamodel queue.
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Fig. 7.2 Hegira4Clouds data migration architecture

This queue temporarily stores the data produced by the SRC so that other compo-
nents can consume them at their own peace, thus allowing the system to cope with the
different throughputs of the source and target databases. In parallel, a Target Writing
Component (TWC) consumes the data from the queue and converts them into the
target database data-model, thanks to an inverse translator (specific for each sup-
ported database). After conversion the data is stored in the target database. Hence the
role of translators is that of mapping data back and forth between the source/target
database and the intermediate format, performing the (de)serializations, checking
for data types support, properly mapping indexes and adapting the data to preserve
different read consistency policies. Two examples of translators (Google Datastore
and Azure Tables) are extensively described in [10, 13]. SRC and TWC are organized
in threads called Source Reading Threads (SRT) and Target Writing Threads (TWT),
respectively to achieve the maximum possible throughput.

Hegira4Clouds fault tolerance focuses on tolerating both databases reading/wri-
ting errors and outages (i.e., external faults) as well as crashes in the components of
the migration system (i.e., internal faults).

Queue faults may be prevented by adopting a distributed, disk-persisted, queuing
mechanism, so by assuming that this queue is able to automatically recover from
faults of its replicas (that is the reason why we a adopt RabbitMQ, widely used in
production environments).

Writing errors on the target database are addressed by the Metamodel queue; in
particular, TWTs synchronously write data on the target database and send acknowl-
edgment messages to the queue if the data were persisted correctly; only at this point,
acknowledged data are removed from the queue. Thus, if an error occurs on the target
database, another TWT (or a new TWC) can take over the specific write operations.

Reacting to reading errors in presence of faults on the source database, instead, is
more difficult because of the heterogeneity of the different NoSQL databases; while
some databases guarantee an absolute pointer to the data even after an error or a
crash, thus enabling the possibility to restart the migration from the exact point in
which it has been interrupted, some others (e.g., Google Datastore) do not.

Our approach to avoid restarting the migration from scratch consists in virtually
partitioning the data in the source database, so that partitions containing a certain
amount of data to be migrated can be retrieved in an ordered and unambiguous way,
independently from the source NoSQL database that is being used. In this way, if
there is an unrecoverable database error (i.e.,m external fault) or if the SRC crashes
(i.e., internal fault), the migration can start from the last retrieved partition. This
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approach has been initially presented in [11] and is presented and evaluated in detail
in the rest of this chapter. Of course, such an approach implies that data are stored
in the databases according to a custom design. For this reason, Hegira4Clouds also
supports a design-agnostic approach (see [14]) that is compatible with any kind of
data design, but it is not able to react to unrecoverable source database faults or SRC
faults (i.e., an internal fault).

7.3.1 Virtual Data Partitioning

Since the source database may not support absolute pointers to the data, in order to
keep track of data that is being migrated, there must be some sort of shared knowledge
between the application and Hegira4Clouds. For this reason, we define the concept
of Virtual Data Partition (VDP), which is a logical grouping of entities contained
in the source database. By making the assumption that the applications, using the
source database, insert entities according to a sequential incremented (primary) key,
it is possible to track the point where a data migration task was interrupted. In
fact, by applying this technique, and storing only the last generated sequential id
(lastSegNr), it possible to unequivocally create VDPs and associate stored entities
with them; in fact, by using an approach similar to paged virtual memory (virtual
memory management) for operating systems, it is possible to map an ordered set of
entities to a VDP (i.e., Eq.7.2) and viceversa (i.e., Eq.7.3).

To determine, at migration-time, the exact number of VDPs based on the last
generated sequence number (lastSeqNr) and the user-defined partition size (PS) we
use Eq.7.1.

#partitions = ’VlastSeqN r/PS —I (7.1)

VDPid; = Lkeyx,k /PSJ (7.2)

We use Eq. 7.2 to calculate the id of the VDP containing the given entity (identified
by its key, i.e., key, ). Finally, Eq. 7.3 can be used to calculate the first and last entity
keys belonging to a given VDP (i.e., V DPidy). Notice that:

kequk = VDPidk x PS
: (7.3)
key,x = [(VDPid, + 1) x PS]—1
e Since entities are inserted into the source database according to a sequential incre-

mented key (generated in order to guarantee the global total order of the id), the
entities contained in each VDP are ordered.
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e The number of the VDPs is not fixed a priori, but it grows together with the inserted
entities, and it is a factor of the number of inserted entities (lastSeqNr) and the
maximum number of entities VDPs can contain (i.e., PS).

e The size of the VDPs, in terms of contained entities (and thus the number of VDPs,
Eq.7.1), can be determined at migration-time (by fixing a value for PS) and it can
change from one migration to another, without affecting stored data.

Hence, for migrating data according to this approach, it suffices to read the last
generated sequential number from a fault-tolerant, distributed storage, i.e., the status
log, and decide the VDPs proper size; once done so, for each VDP, the SRC extracts
the entities, from the source database, and executes the migration task.

If the source database supports range scan queries (e.g., HBase, Cassandra) it is
possible, for each database specific translator, to request all the range of entities
contained in a VDP, for example V DPid, , with a single query, just by specifying its
first (i.e., key; ) and last (i.e., key, ») entity keys. Otherwise, if the source database
does not support range queries, the specific database translator requests each entity,
contained in the VDP, one by one. In the first case, entities retrieval from the source
database, is much faster than in the second case, because only a request, towards
the database, is issued; while, in the second case, exactly PS requests are sent to the
source database.

The limit of the VDP approach is that VDPs might also contain the ids of pre-
viously erased entities; while on the first hand, in case of range scans, this does
not affect the performance of the migration task, since the source database handles
missing entities in a range; on the other hand, if the source database does not support
range scans, and the SRC has to issue a request per each entity contained in the VDP,
the source database will return an error when trying to retrieve a previously deleted
entity. The SRC skips the deleted entities that generate an error, but issuing queries
also for deleted entities slows down the migration task. In the worst case, i.e., when
all of the entities in a VDP have been erased, there may be a severe drop on the data
migration overall throughput.

In order to keep track of the migration status (i.e., the number of entities correctly
migrated towards the target database) and to allow for data synchronization (discussed
in [12]), Hegira4Clouds exploits the VDPs. In particular, when the SRC is instructed
to begin a migration task, it creates a snapshot of the source database, which is
stored in the status log. A snapshot consists of: (a) a list of all the VDPs at the time
the migration task was started (which depends on the value of PS, selected when
the migration command was issued); (b) the status of each VDP, which can be of
four types: “not migrated”, “under migration”, “migrated” and “synch”; (c) the last
sequence number issued at the time the migration task was started.

When creating the snapshot, every VDP status is set to “not migrated”. Once the
SRC starts to extract the entities relative to a given VDP, it sets the status of that
VDP to “under migration”. When a TWT determines it has processed all entities
relative to a given VDP, it sets that particular VDP status to “migrated”. The “synch”
VDP status is used when a partition is being synchronized, but this is out of the
scope of this chapter. A TWT is able to determine if a VDP has completely been
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processed by counting the effective number of processed entities for that VDP and
comparing it with the number of entities the VDP actually contains (piggybacked
on each metamodel entity and specific to different VDPs). Hence, each time a TWT
processes an entity relative to a given VDP, it increments an associated counter; if the
counter reaches the value piggybacked in those metamodel entities, then the TWT
changes the VDP status to “migrated”. In this way all Hegira4Clouds components
are aware of the migration status at any point in time, and can therefore take the
appropriate decisions in case of faults (and also of data synchronization, as described
in [12]). Additional details about the snapshot management are provided in [14].

7.3.2 Recovering from Faults

Hegira4Clouds recovery approach assumes that there exists an external orchestrator
(e.g., Mesosphere DCOS [5]) that acts as follows:

1. itmonitors the statuses of Hegira4Clouds components, i.e., the SRC and the TWC;

2. if it detects a fault on the SRC, it waits until the TWC finishes to process all the
messages in the Metamodel queue and starts a new SRC;

3. if it detects a fault on the TWC, it stops the SRC from reading data from the
source database and restarts both components.

4. Once the components have been restarted, the orchestrator calls Hegira4Clouds
recovery APL

Hegira4Clouds components, upon receiving a recovery command, in order to
avoid inconsistencies during data migration, empty the Metamodel queue. Then,
each components act as follows:

e the SRC

— downloads the migration status from the status log;

— for those VDPs whose status is “under migration”, the SRC changes it to “not
migrate” (this prevents inconsistencies from happening);

— finally, it starts to extract data from the source database starting from the first
VDP whose status is “not migrated”.

e the TWC, just waits for the Metamodel queue to be filled by the SRC.

7.4 Evaluation: Migrating Tweets

This section evaluates Hegira4Clouds using a large data set extracted from Twitter.
In particular, we stored into GAE Datastore 10,693,800 publicly available tweets [1]
and then we ran Hegira4Clouds to migrate them into Azure Tables. The purpose of
the experiment is to check if Hegira4Clouds is able to perform the partitioned data
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migration with an acceptable overhead (w.r.t. to the standard data migration [14])
and without introducing errors directly due to the migration process.

Experimental setup As mentioned before, our data set was composed of 10,693,800
tweets. Each tweet, in addition to the 140 characters long message, contains also
details about the user, creation date, geospatial information, etc. Each tweet was
stored in GAE Datastore as a single entity, with an extra sequential identifier (accord-
ing to the specifics reported in Sect.7.3.1) and a variable number of properties (with
different data types). On average, each tweet on GAE Datastore was 3.05KB. The
total entities size was 31.1 GB. We tested Hegira4Clouds in two different scenarios:

1. Standalone environent: all of the migration system components, including the
queue (RabbitMQ 3.4.6) and the status log (Apache ZooKeeper 3.5.4), were
deployed inside an Azure VM.

2. Distributed environent: two equally-sized VMs in the same virtual network, one
hosting the SRC, the TWC and the web-server exposing the REST APIs, and
the other equipped with the queue and the status log.

In both scenarios the VMs were configured as follows: Ubuntu Server 12.04, located
in Microsoft WE data center, with 4 CPU cores and 7 GB RAM.

Scenario 1: Standalone environment This test migrated data described above and
used 32 TWTs to write data in parallel on Azure Tables and 8 SRTs to read data
in parallel from Google Datastore. The main measured system metrics were (a) the
total migration time and consequently the migration throughput (measured in entities
per second), (b) the time needed by the SRC to extract the entities from the source
database, convert and put them in the queue, and (c) the overall CPU utilization
relative to all Hegira4Clouds components. We performed three different runs and
computed the average of each metric. Moreover, in order to evaluate how predictable
each run was with this configuration, we also computed the standard deviation for
each metric (Table7.1).

Scenario 2: Distributed environment In this scenario the environment setup was
composed by two equally-sized VM, one, hegiral, executing an instance of Rab-
bitMQ and ZooKeeper, the other, hegira2, hosting the SRC and TWC components,
as well as the web-server exposing the REST APIs. The migrated data and the con-
figuration parameters were the same of the previous scenario, but, additionally, we
distinguished the CPU usages of the two VMs (Table 7.2).

Table 7.1 Partitioned data migration with standalone environment

#Run Mig. time (s) | Mig. throughput | Ext. time (s) | Ext. throughput | %CPU used
(ent/s) (ent/s)

1 13470 793.90 13469 793.96 49.4

2 16882 633.44 16880 633.52 49.02

3 17486 611.56 15248 701.32 38.46

Averages 15946 670.63 15199 703.58 45.63

Std. dev. 2165.44 99.56 1706.03 80.54 6.21
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Table 7.2 Partitioned data migration with distributed environment

# Run Mig. time | Mig. throughput | Ext. time | Ext. throughput | %CPU %CPU

(s) (ent/s) (s) (ent/s) used used
hegira 1 | hegira 2

1 12075 885.61 12073 885.76 11.1 26.99

2 12187 877.47 12183 877.76 13.05 25.7

3 13995 764.11 13993 764.22 10.06 25.11

Averages | 12752.33 | 838.58 12749.67 | 838.75 11.40 25.93

Std. Dev | 1077.64 67.92 1078.16 67.98 1.52 0.96

7.5 Discussion and Conclusion

From the analysis of results we can conclude that Hegira4Clouds is suitable to han-
dle and process huge quantities of data with a very high throughput. Deploying
Hegira4Clouds on a distributed environment grants higher throughput; in fact, in
scenario 2, the average migration time was almost 1 hour less and consequently the
migration throughput was almost 170 ent/s faster. Moreover, by looking at the stan-
dard deviations, we can conclude that distributing Hegira4Clouds components has
the benefit of providing more predictable migration performance. In fact, while in
the first scenario we observe an average standard deviation corresponding almost to
the 15 %, in the second scenario the standard deviation is almost halved to the 8 %.

Finally, by comparing the results obtained in Scenario 2 with those of the stan-
dard (i.e., non-partitioned) data migration [14] we can assert that the performance
are almost the same and the adoption of the virtual data partitioning mechanism
(together with the usage of a status log, i.e., ZooKeeper) has no tangible overhead
on Hegira4Clouds.

The work on Hegira4Clouds is now focusing on how to manage synchronization
between database replicas and on how to support data migration while the application
using such data is continuing its normal execution.
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