
Chapter 3
The MODAClouds Model-Driven
Development

Nicolas Ferry, Marcos Almeida and Arnor Solberg

3.1 Introduction

The Cloud computing market encompasses an ever-growing number of providers
offering a multitude of infrastructure-as-a-service (IaaS) and platform-as-a-service
(PaaS) solutions. In order to exploit the peculiarities of each Cloud solution as well
as to optimize performances, availability, and cost, an emergent need is to run and
manage multi-Cloud applications [1] (i.e., applications that can execute on multiple
Cloud infrastructures and platforms). However, current stacks, libraries and frame-
works lack in software engineering methodologies and tools to design, deploy and
maintain multi-Cloud systems as stated in the CORDIS reports on Cloud comput-
ing [2, 3], “whilst a distributed data environment (IaaS) cannot be easily moved
to any platform provider (PaaS) […], it is also almost impossible to move a ser-
vice/image/environment between providers on the same level.”

Model-Driven Development (MDD) [4] techniques are particularly useful to
address these challenges. They allow shifting the paradigm from code-centric to
model-centric. Models are thus the main artefacts of the development process and
enable developers to work at a high level of abstraction, focusing on Cloud concerns
rather than implementation details. Model transformations help automating the work
of going from abstract concepts to implementation. This approach, which is com-
monly summarized as “model once, generate anywhere”, is thus particularly relevant
when it comes to design and management of applications across multiple Clouds,

N. Ferry · A. Solberg (B)
Stiftelsen SINTEF, Postbox 4760 Sluppen, 7465 Trondheim, Norway
e-mail: arnor.solberg@sintef.no

N. Ferry
e-mail: nicolas.ferry@sintef.no

M. Almeida
Softeam Cadextan, 21 Avenue Victor Hugo, 75016 Paris, France
e-mail: marcos.almeida@softeam.fr

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_3

23



24 N. Ferry et al.

as well as migrating them from one Cloud to another. Moreover, models can also
be used to reason about the application Quality of Service (QoS), and to support
design-time exploration methods that identify the Cloud deployment configuration
of minimum cost, while satisfying QoS constraints.

In this chapterwepresent theMODACloudsModel-DrivenDevelopment approach
to support the design of multi-Cloud applications with guaranteed QoS. The pro-
posed approach relies on a set of tool-supported domain-specific languages (DSLs)
collectively called MODACloudML. MODACloudML enables managing multi-
Cloud applications in a Cloud provider-independent way while still exploiting the
peculiarities of each IaaS and PaaS solution. By supporting both IaaS and PaaS,
MODACloudML enables several levels of control of multi-Cloud applications by the
Models@runtime engine (see Chap. 9): (i) in case of executing on IaaS or white box
PaaS solutions; full control with automatic provisioning and deployment of the entire
Cloud stack from the infrastructure to the application, or (ii) in case of executing on
black box PaaS solutions; partial control of the application (note that if parts of
the multi-Cloud application executes on IaaS or white box PaaS, MODACloudML
provides full control of those parts).

The remainder of this chapter is organized as follows. Section3.2 overviews the
typical design process using the MODAClouds design-time tools and
MODACloudML. Section3.3 presents the overall architecture of MODACloudML.
Section3.4 details the list of models that compose MODACloudML before provid-
ing examples of some of them. Finally Sect. 3.5 presents some related works and
Sect. 3.6 draws some conclusions.

3.2 The Design-Time Development Process

MODACloudML targets different profiles of users, from application developers and
providers, who are concerned about the actual deployment artifacts and scripts, to
QoS engineers, concerned with application performance and architectural costs. In
order to support such diverse profiles, the MODAClouds Integrated Development
Environment provides automation tools that facilitate the transition between different
models by means of model-to-model transformations. It also provides model-to-text
transformations that allow the developer to export/import models from/to specialized
tools such as the QoS modelling and analysis tools from MODAClouds.

Designing a Cloud application through the design-time environment is typically a
multi-stage process as depicted in Fig. 3.1. First, users specify, through the IDE, the
application architecture and all its functional aspects as well as QoS requirements. In
the next stage, designers may decide to refine these models, for instance, by selecting
a certain class of database services and certain kinds of computational resources. In
MODAClouds, this process is achieved by QoS engineers supported by the Line and
SPACE 4Clouds tools (see Chap. 4). Line can be used to estimate the performance of
the identified solution (e.g., response time and throughput), whilst SPACE 4Clouds
can be used to find the minimum-cost multi-Cloud deployment configuration. At this

http://dx.doi.org/10.1007/978-3-319-46031-4_9
http://dx.doi.org/10.1007/978-3-319-46031-4_4


3 The MODAClouds Model-Driven Development 25

Fig. 3.1 MODAClouds design-time approach workflow

stage, an iterative process may be started to tune the models of the application until a
suitable solution is identified. The output of this process is a CloudML deployment
model that can then be used by the application provider to automatically deploy the
multi-Cloud application.

All these tools rely and can be used to produce the models that compose MODA-
CloudML. In the next sections we present the overall architecture of MODAClouds
as well as the list of models it is made of.

3.3 Overall Language Architecture

The MODACloudML architecture is inspired by the OMG Model-Driven Architec-
ture (MDA) [5], which is a model-based approach for the development of software
systems. The MDA relies on three types of models for three layers of abstractions.
The closer to the system a layer is, the more technical the description. These three
MDA layers, from the more abstract to the more detailed, are:

• The Computational Independent Model (CIM), which describes what the system
is expected to do but hides all the technical details related to the implementation
of the system.

• The Platform Independent Model (PIM), which describes views of the systems in
a platform independent manner so that it can be mapped to several platforms at
the PSM levels.

• The Platform Specific Model (PSM), which refines the PIM with technical details
required for specifying how the system can use a specific platform.

Some of themain benefits of theMDA are to facilitate the portability, interoperability
and reusability of parts of the system which can be easily moved from one platform
to another, as well as the maintenance of the system through human readable and
reusable specifications at various levels of abstraction.



26 N. Ferry et al.

From theCloudperspective, the introduction of new layers of abstraction improves
the portability and reusability of Cloud related concerns amongst several Clouds.
Indeed, even if the system is designed for a specific platform including framework,
middleware, orCloud services, these entities often rely on similar concepts,which can
be abstracted from the specificities of each Cloud provider. Typically, the topology
of the system in the Cloud as well as the minimum hardware resources required to
run it (e.g., CPU, RAM) can be defined in a Cloud-agnostic way. Thanks to this
new abstraction layer, one can map a platform specific model to one or more Cloud
providers.

The MODACloudML architecture refines the PSM abstraction layer by dividing
it into two sub-levels: the Cloud Provider-Independent Models (CPIM) level and
the Cloud Provider-Specific Models (CPSM) level, whilst the CIM and PIM can be
grouped into a so called Cloud-enabled Computational Independent Model (CCIM)
level. MODACloudML thus relies on the following three layers of abstraction: (i) the
Cloud-enabled Computation Independent Model to describe an application and its
data, (ii) theCloud-Provider IndependentModel to describeCloud concerns related to
the application in a Cloud-agnostic way, and (iii) the Cloud-Provider Specific Model
to describe the Cloud concerns needed to deploy and provision the application on a
specific Cloud.

3.4 MODACloudML Sub Models

The models that compose MODACLoudML are presented and organised according
to the modelling level they belong in Fig. 3.2.

CIM

CPIM

CPSM

Usage
Model

Service
Defini on
Model

Service
Orchestra on

Model

Requirements
Model

Data
Model

Data
Model

Design
alterna ves and
deployment

Model

Data
Model

Design
alterna ves and
deployment

Model

Resources
models

Resources
models

Monitoring
Rules

Monitoring
Rules

QoS
Model

QoS
Model

Monitoring
Rules

QoS
Model

Fig. 3.2 The MODACloudML models



3 The MODAClouds Model-Driven Development 27

3.4.1 CCIM Models

The CCIM models, which define what the system is expected to do but hide the
Cloud-related concerns, are the following:

Service Definition Model: describes the software to be developed as a set of com-
ponents or services. It includes the typical constructs needed for describing the
structure of a software system.

Usage Model: specifies the way users are expected to exploit the functionality of
the software to be. It consider a 24h time-horizon. Each single point in time of
the usage model can be exploited by QoS tools regarding the search for optimal
solutions.

Service Orchestration: describes the behaviour of the glue between components
and services. It can be annotated with stochastic information used to express
the probability for some behavioural path to be followed which can in turn be
exploited by QoS analysis and optimisation tools.

Requirements Model: completes and formalizes the service functional description.
Business and QoS requirements can be associated to a Service or to a specific
service operation.

Data Model: describes the main data structures associated with the software to
be. It can be expressed in terms of typical Entity Relational (ER) diagrams and
enriched by a metamodel that specifies functional and non-functional data prop-
erties.

QoS Model: includes information concerning expected QoS characteristics (e.g.,
response time) at the application level. QoS contraints can be attached to specific
application component/services.

In the following we exemplify the usage of the Service Orchestration models to
specify the overall architecture of the SensApp case study.

3.4.2 Example

At theCCIM level, an application is described as a set of high level services following
a Service Oriented Architecture (SOA) [6]. The application is specified as a set of
business-aligned reusable services that can be combined into high-level business
processes and solutions within the context of an enterprise.

Figure3.3 depicts a simple functional architecture of the SensApp case study
specified with theMODAClouds IDE as a Service Orchestrationmodel. SensApp [7]
is a typical Cloud-based application that acts as a buffer between sensor networks
and Cloud-based systems. On the one hand, it facilitates sensors to continuously
push data while, on the other hand, it provides higher level services with notification
and query facilities.



28 N. Ferry et al.

Fig. 3.3 SensApp CCIM architecture

The overall architecture of SensApp consists of a core service called SensApp
to manage the sensors and their data coupled with a MongoDB1 database to store
sensor descriptions and meta-data as well as the measurements. The SensApp admin
uses the public REST API of SensApp and provides capabilities to manage sensors
and visualise data using a graphical user interface. For the sake of simplicity, other
concerns such as the detailed description of interfaces, or the behaviour of services
and users are not presented in this figure.

The models at the CCIM level are used to semi-automatically generate part of the
CPIM models. In particular, the Service Definition Models and the Service Orches-
trations Model, which can partially be generated through reverse engineering tech-
niques, are used to initiate the Design Alternatives and deployment models whilst
the CCIM data models are used to initiate the CPIM data models.

3.4.3 CPIM and CPSM Models

CPIM and CPSM levels are composed of the same set of models. CPIM models are
derived from CCIM models and are in turn refined into CPSM models. The set of
models that compose these two levels are the following:

Design Alternative and Deployment Model: at the CPIM level, it describes the
assignment of application components to underlying resources. This includes ser-
vices, platforms and infrastructural resources. At the CPSM level, it characterizes
Cloud resources of a specific Cloud provider.

Data Model: at theCPIM level, thismodel refines theCCIMdatamodel to describe
data model in terms of logical models as flat model, hierarchical model and rela-
tional model. Finally, at the CPSM level, it describes the data model based on the
specific data structures implemented by the Cloud providers.

Monitoring Rules: this model describes the monitoring rules aiming at control-
ling the execution of specific application components/data/connectors assigned
to specific resources. They are used to indicate to the run-time platform what
components/services to monitor.

1https://www.mongodb.org.

https://www.mongodb.org


3 The MODAClouds Model-Driven Development 29

QoS Model: this model includes information concerning QoS characteristics of
Cloud resources in both a provider-independent (CPIM level) and provider-
specific (CPSM level) way. It includes cost information, thus, offering the possi-
bility to estimate an upper-bound for application costs.

Resources Model: this model represents different Cloud environment and offer-
ings and can be used as a catalogue of available resources. This catalogue is
particularly useful as a basis for the specification of CPIM and CPSM models. It
is also used in order to evaluate performance and cost of applications, as proposed
by the decision making and analysis tools, as well as during the selection of the
resource to be used by a multi-Cloud application.

In the followingwe exemplify the usage of the deployment model to specify the com-
ponent deployment and orchestration in the Cloud. Deployment models are specified
using CloudML.

CloudML [8, 9] consists of: (i) a domain-specific language (DSL) for specifying
the provisioning anddeployment ofmulti-Cloud applications; and (ii) amodels@run-
time environment for enacting the provisioning, deployment, and adaptation of these
applications. While the CloudML language is part of MODACloudML, the mod-
els@runtime environment is integrated as part of the MODAClouds IDE. This way,
developers can take advantage of the CCIM models and of the optimization tools
in order to specify deployment models. CloudML allows developers to model the
provisioning and deployment of a multi-Cloud application at both the CPIM and
CPSM levels of abstractions. This two-level approach is agnostic to any develop-
ment paradigm and technology, meaning that the application developers can design
and implement their applications based on their preferred paradigms and technolo-
gies.

CloudML is inspired by component-based approaches [10] that facilitate separa-
tion of concerns and reusability. In this respect, deployment models can be regarded
as assemblies of components exposing ports (or interfaces), and bindings between
these ports. In a nutshell, CloudML enables to express the following concepts (we
refer the reader to [9] for details):

• Cloud: Represents a collection of VMs offered by a particular Cloud provider.
• External component: Represents a reusable type of VM or PaaS solution.
• Internal component: Represents a reusable type of application component to be
deployed on an external component.

• Port: Represents a required or provided interface to a feature of a component.
• Relationship: Represents a communication between ports of two application com-
ponents, they express dependencies between components.

• Hosting: Represents the fact that a component uses another as execution platform.

In addition, CloudML implements the type-instance pattern [11], which also
facilitates reusability. This pattern exploits two flavors of typing, namely ontological
and linguistic [12]. Figure3.4 illustrates these two flavors of typing. SL (for Small
Linux) represents a reusable type of VM. It is linguistically typed by the class VM
(for Virtual Machine). SL1 represents an instance of the VM SL. It is ontologically
typed by SL and linguistically typed by VMInstance.



30 N. Ferry et al.

Fig. 3.4 Linguistic and
ontological typing

The transformation from CPIM to CPSM consists in: (i) adding the actual data
resulting from the resolution of the constraints defined in the external component
types (e.g., actual number of cores, RAM size, storage size), and (ii) adding data
required for the deployment and management of the application that are Cloud
provider-specific. Thanks to this enrichment, it is possible to retrieve data about
the actual resources provisioned including how they can be accessed and how they
can be configured. Such data is particularly useful during the process of configuration
of the components and their bindings.

3.4.4 Example

Figure3.5 depicts the deployment model of SensApp at the CPIM level specified
with theMODAClouds IDE. The overall systemwill be deployed using two different
virtual machines (VMs), the first VMwill host SensApp and the second the SensApp
Admin. Both VMs (CloudNodeInstance andML) have differents characteristics and
are thus specified as instances of different types (SL and ML). Both SensApp and
its admin, in order to be executed properly, have to be hosted in a Servlet container.
In this case they are both hosted on the same type of Jetty container called JettySC.
This type of relationship is depicted in the figure by arrows between blue ports. In
addition, SensApp has to communicatewith the database in order to store and retrieve
sensors data. This type of relationship is depicted by arrows between purple ports.

3.5 Related Work

In the literature several efforts aimed to offer support for designing, optimizing
and managing multi-Cloud applications. In particular, several EU projects provide
methodologies and tools to support the design and management of Cloud-based
applications. However, to the best of our knowledge, none of them propose an inte-
grated approach offering models that can be used for performance and cost analysis
and optimisation, as well as deployment and runtime management of multi-Cloud
applications.



3 The MODAClouds Model-Driven Development 31

Fig. 3.5 Deployment model of SensApp at the CPIM level

The Cloud Application Modeling Language (CAML) [13] is being developed
within the ARTIST EU FP7 project2 and supports the provider-independent specifi-
cation of deployment topologies and their refinement into provider-specific deploy-
ment. Themain focus of theARTISTproject being themigration of legacy application
to the Cloud as well as the feasibility study of such migration, the language has been
defined as an UML internal modeling language based on amodel library and profiles.
This way, it can be directly applied on UML models, which is especially beneficial
for migration scenarios where reverse-engineered UML models are tailored towards
a selected Cloud environment. These CAML profiles also capture Cloud offerings
from a functional and non-functional perspectives including cost aspects.

In order to cover the necessary aspects of the specification and execution of multi-
Cloud applications, the PaaSage project3 adopts the Cloud Application Modelling
and Execution Language (CAMEL). CAMEL integrates and extends existing DSLs,
including Cloud Modelling Language (CloudML) [8, 9], Saloon [14, 15], and the
Organisation part of CERIF [16], for specifying multiple aspects of multi-Cloud
applications, such as provisioning, deployment, providers, organisations, users, and
roles. Moreover, CAMEL adds DSLs for specifying aspects such as metrics, require-
ments, goals, scalability rules [17, 18], security controls, execution contexts, execu-
tion histories, etc. CAMEL is designed and implemented with the Eclipse Modelling
Framework (EMF)4 on top of the Connected Data Objects (CDO)5 persistence solu-
tion. MODAClouds and PaaSage are collaborating on the research and development
of CloudML. However, PaaSage does not offer a specific approach for the design-
time optimization of multi-Cloud applications.

The Topology and Orchestration Specification for Cloud Applications (TOSCA)
[19, 20] is a specification developed by the OASIS consortium, which provides a

2http://www.artist-project.eu/.
3https://www.paasage.eu.
4https://www.eclipse.org/modeling/emf/.
5https://www.eclipse.org/cdo/.

http://www.artist-project.eu/
https://www.paasage.eu
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/cdo/


32 N. Ferry et al.

language for specifying the components comprising the topology of Cloud-based
applications along with the processes for their orchestration. TOSCA is comparable
to CloudML, however the language has been conceived for design-time modelling
only.

3.6 Conclusion

The MODAClouds Model-Driven Development approach relies on the so called
MODACloudML which integrates a set of domain-specific languages. These lan-
guages cover the specifications of both functional and non functional aspects of
multi-Cloud applications. Thanks to the three levels architecture, multi-Cloud appli-
cations can be designed in a Cloud provider-independent way thus reducing ven-
dor lock-in before being refined with provider-specific information thus allowing to
exploit the peculiarities of each provider.

References

1. Petcu D (2014) Consuming resources and services from multiple clouds. J Grid Comput 1–25
2. SSAI Expert Group (2010) The future of cloud computing. Technical report
3. SSAIExpertGroup (2012)A roadmap for advanced cloud technologies underH2020.Technical

report
4. Schmidt DC (2006) Guest editor’s introduction: model-driven engineering. IEEE Comput

39(2):25–31
5. OMG: OMG model-driven architecture. http://www.omg.org/mda/
6. MacKenzie M, Laskey K, McCabe F, Brown P, Metz R (2006) Reference model for service

oriented architecture 1.0. Technical report, OASIS
7. Mosser S, Fleurey F,Morin B, Chauvel F, Solberg A, Goutier I (2012) SENSAPP as a reference

platform to support cloud experiments: from the internet of things to the internet of services.
In: SYNASC 2012: 14th international symposium on symbolic and numeric algorithms for
scientific computing. IEEE Computer Society, pp 400–406

8. Ferry N, Rossini A, Chauvel F,Morin B, SolbergA (2013) Towardsmodel-driven provisioning,
deployment, monitoring, and adaptation of multi-cloud systems. In: O’Conner L (ed) Proceed-
ings of CLOUD 2013: 6th IEEE international conference on cloud computing. IEEE Computer
Society, pp 887–894

9. Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: applying MDE to
tame the complexity of managing multi-cloud applications. In: Proceedings of UCC 2014:
7th IEEE/ACM international conference on utility and cloud computing

10. Szyperski C (2011) Component software: beyond object-oriented programming, 2nd edn.
Addison-Wesley Professional

11. Atkinson C, Kühne T (2002) Rearchitecting the UML infrastructure. ACM Trans Model Com-
put Simul 12(4):290–321

12. Kühne T (2006) Matters of (meta-)modeling. Softw Syst Model 5(4):369–385
13. Bergmayr A, Troya J, Neubauer P,WimmerM, Kappel G (2014) UML-based cloud application

modeling with libraries, profiles and templates. In: Proceedings of workshop on CloudMDE,
pp 56–65

http://www.omg.org/mda/


3 The MODAClouds Model-Driven Development 33

14. Quinton C, Rouvoy R, Duchien L (2012) Leveraging feature models to configure virtual appli-
ances. In: CloudCP 2012: 2nd international workshop on cloud computing platforms. ACM,
pp 2:1–2:6

15. Quinton C, Haderer N, Rouvoy R, Duchien L (2013) Towards multi-cloud configurations using
feature models and ontologies. In: MultiCloud 2013: international workshop on multi-cloud
applications and federated clouds. ACM, pp 21–26

16. Jeffery K, Houssos N, Jörg B, Asserson A (2014) Research information management: the
CERIF approach. IJMSO 9(1):5–14

17. Kritikos K, Domaschka J, Rossini A ((2014 (To Appear))) SRL: a scalability rule language
for multi-cloud environments. In: Proceedings of CloudCom 2014: 6th IEEE international
conference on cloud computing technology and science

18. Domaschka J, Kritikos K, Rossini A ((2014 (To Appear))) Towards a generic language for
scalability rules. In: Proceedings of CSB 2014: 2nd international workshop on cloud service
brokerage

19. Palma D, Spatzier T (2013) Topology and orchestration specification for cloud applications
(TOSCA). Technical report, Organization for theAdvancement of Structured Information Stan-
dards (OASIS) (June)

20. Kopp O, Binz T, Breitenbücher U, Leymann F (2013) Winery–a modeling tool for tosca-based
cloud applications. In: Service-oriented computing. Springer, pp 700–704

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	3 The MODAClouds Model-Driven Development
	3.1 Introduction
	3.2 The Design-Time Development Process
	3.3 Overall Language Architecture
	3.4 MODACloudML Sub Models
	3.4.1 CCIM Models
	3.4.2 Example
	3.4.3 CPIM and CPSM Models
	3.4.4 Example

	3.5 Related Work
	3.6 Conclusion
	References


