
Chapter 15
Operation Control Interfaces

Craig Sheridan and Darren Whigham

15.1 Introduction

An interesting commercial use-case for Flexiant of the MODAClouds solution is
based upon adding extra functionality to Flexiant Cloud Orchestrator (FCO) [1]
Triggers [2]. Triggers are functions that allow an action in FCO to initiate a second
action, which can either be internal or even external to Flexiant Cloud Orchestrator.

A trigger is simply a block of Flexiant Development Language (FDL) [3] code,
which is a Lua [4] based language, that is used to extend Flexiant Cloud Orchestra-
tor.Triggers will run either before an event occurs (a pre trigger) or after an event
occurs (a post trigger) which can be used to perform a variety of actions such as auto-
matically starting servers at creation time or mailing and alerting based on customer
actions.

15.2 Language for Triggers Description

A trigger is written as a block of Flexiant Development Language (FDL) code, which
is a Lua based language used to extend Flexiant Cloud Orchestrator. FDL is written
as a code block and run within the platform itself. Within FDL there are multiple
APIs [5] that can be called such as billing, trigger, and payment. For this chapter we
will focus on the trigger API. Triggers can be used to perform any of the following
actions:

C. Sheridan · D. Whigham (B)
Flexiant, London, UK
e-mail: dwhigham@flexiant.com

C. Sheridan
e-mail: csheridan@flexiant.com

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation
of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_15

141



142 C. Sheridan and D. Whigham

• Sending email as a result of an action or state change
• Making an HTTP call and processing the result
• Making user API or admin API calls from within FCO.
• Writing an entry in the syslog
• Running a local executable file
• Reading or writing to a file
• Manipulating XML documents, objects, and nodes

To achieve these different actions, various trigger types are utilised. The following
table lists these different ‘triggerTypes’, as well as whether the trigger is initiated
before (PRE) or after (POST) the initiating event.

15.3 Architecture of the Trigger Support

The FDL Trigger API, named “TRIGGER”, is activated when the user returns from
an entry point with the API set to TRIGGER. This makes the entry point a trigger.
Once an entry point has been set to act as a trigger, it will return three pieces of
additional data when describing themselves; triggerType, triggerOptions, and value
object.

The triggerType is the type of event that will initiate the trigger, for example an
API call or a change in resource state. This can be refined using the triggerOption
object, which is a list stating the specific events that can initiate the trigger. For
example, if the triggerType indicates that the trigger can be initiated by a server state
change, the triggerOptions determine which server states initiate the trigger.

The value object has the same layout as in the API (See SOAP Value). Each value
object specifies a configurable value, together with its validator, thus setting out the
permissible values for it.

With all FDL APIs, including TRIGGER, anything which a user prints (to STD-
OUT or STDERR) will go to the Jade sysout log. The user can log any string to the
normal log with logger (which takes a string). If the Lua throws an exception, Jade
will catch it. However, the user should aim not to throw exceptions but instead return
something appropriate depending on the API.

The entry point will always be called with a single parameter p dependent on the
API being called, or a value of nil. If a value other than nil is passed, the return value
of the function depends upon the API. In this case, the function is expected to return
a table that describes itself. This table will contain the following keys:

• api: the name of the API as a string (for instance “BILLING”)
• version: the version of the API as a number.
• ref: a unique identifier for the function. Do not use identifiers starting with an
underscore; these are reserved for Flexiant.

• name: a string containing the name of the entry point (max 50 characters)
• description: a string containing a description of the entry point (maximum 250
characters)



15 Operation Control Interfaces 143

• execution function: a reference to a LUA function which is the function to call
with values of p other than nil. If this is not specified or is specified as nil, then
the same function will be called.

15.4 Usage of Triggers to Enable Load Balancing

Triggers are most commonly used to access all the functionality that is offered by
FCO, but they can also be used to make external API calls. Trigger functionality
has been added as part of the MODAClouds project to extend the platform and tools
capabilities. Within theMODAClouds project a number of unique triggers have been
developed.

The first of these triggers is called the Auto Server Failover trigger, which is called
should a server be shutdown or killed within a certain customers account.

Upon being called this trigger looks for a Live Server tag attached to the server,
and if found, replaces it with a Backup server tag. This new tag can be anything, such
as Faulty Server, but for this example Backup server will be used. The trigger then
looks in the FCO account for a VM tagged Backup server that is in a stopped state
and starts it. Finally, once the new server is started, the Backup server tag is removed
and a Live server tag is added.

Another trigger that has been created for the MODAClouds project is the Auto
Alert Mail trigger. This will send an email to the account owner to alert them that a
server has stopped or been killed. The Auto Alert Mail trigger works by looking for
an “Auto Mail” tag assigned to the relevant account whenever FCO registers that a
server has been shutdown or killed. This tag contains the recipient address to send
an email to, and once found, the trigger sends a message to the address to inform the
account holder that a server has been shut down. The message includes the UUID [6]
of the server and the Date/time stamp for when this server was shutdown. This useful
trigger therefore allows account owners to be notified of any issues with their servers,
as well as recording a date/timestamp within the syslog to allow for troubleshooting.

Both of theAuto Server Failover andAutoMailAlert triggers have been combined
and included within the MODAclouds solution as detailed in the following section.

Within the Modacloud project, these triggers have been implemented to work in
conjunction with load balancers. As detailed in Fig. 15.1.

The Load Balancer will be set up within the FCO Cloud platform. Behind this
will be a number of VM’s that will serve load balancers. These VMs will be tagged
within FCO as either a Live Server or a Backup Server In the event of an error with
these servers that cannot be resolved internally, the server is then shutdown. When
this shutdown occurs then the triggers created.



144 C. Sheridan and D. Whigham

Fig. 15.1 MODAcloud triggers



15 Operation Control Interfaces 145

15.5 Related Work

To be able to monitor and provide similar solutions that are presented here with
other Cloud providers external tools/programs using the Cloud providers APIs must
be used. To be able to match this functionality providers such as OnApp, VMWare
and OpenStack would have to look at using external API calls.

Within FCO and with the use of Triggers and FDL, FCO allows the ability to
run and monitor from within the platform rather than using external applications to
query using the API. The key benefit of this from a Cloud provider is the reduction
in the number of external API calls and the functionality works regardless of the
hypervisor/storage/network model underneath.

15.6 Conclusions

This chapter has provided an overview of the trigger technology developed by Flexi-
ant for use within theMODAClouds project. It has showcased the practical use of this
service within a real world example and the importance of such technology within
the MODAClouds solution. Detailed is the technology underpinning the triggers
technology and example triggers created that are freely available and open sourced.

References

1. Flexiant (2015) Software Features Tour. https://www.flexiant.com/flexiant-cloud-orchestrator/
2. Flexiant (2015) 3rd Party Plugins. https://www.flexiant.com/plugins/about-plugins/
3. Flexiant (2016) Flexiant Cloud Orchestrator Developer Guide. http://docs.flexiant.com/display/

DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
4. Ierusalimschy R, de Figueiredo LH, Celes W (2006) Lua 5.1 Reference Manual. http://www.

lua.org/manual/5.1/
5. Flexiant (2016) Introduction to Jade APIs. http://docs.flexiant.com/display/DOCS/

Introduction+to+Jade+APIs
6. IETF (2005) A Universally Unique IDentifier (UUID) URN Namespace. https://www.ietf.org/

rfc/rfc4122.txt

https://www.flexiant.com/flexiant-cloud-orchestrator/
https://www.flexiant.com/plugins/about-plugins/
http://docs.flexiant.com/display/DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
http://docs.flexiant.com/display/DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/
http://docs.flexiant.com/display/DOCS/Introduction+to+Jade+APIs
http://docs.flexiant.com/display/DOCS/Introduction+to+Jade+APIs
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt


146 C. Sheridan and D. Whigham

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	15 Operation Control Interfaces
	15.1 Introduction
	15.2 Language for Triggers Description
	15.3 Architecture of the Trigger Support
	15.4 Usage of Triggers to Enable Load Balancing
	15.5 Related Work
	15.6 Conclusions
	References


