Chapter 12
Modelio Project Management Server
Constellation

Antonin Abhervé and Marcos Almeida

12.1 Introduction

SOFTEAM is a French middle-sized company that provides the Modelio modelling
tool. Modelio.! is an enterprise-level open source modelling solution delivering func-
tionality for business, software and infrastructure architects. It is a comprehensive
MDE workbench tool supporting the UML2.x standard. Modelio provides a csentral
IDE which allows various languages (represented as UML profiles) to be combined
in the same model. Modelio proposes various extension modules, enabling the cus-
tomization of this MDE environment for different purposes and stakeholders.

The Team Work Manager is SOFTEAM’s solution to team collaboration in
Modelio. It allows Modelio users, after a minimal software and hardware invest-
ment, to efficiently share and work together on models stored in a central repository
accessible in a local network or in the Internet. It automates version control and con-
figuration management, making sure every developer has access to the last version
of the shared model and works on a uniform configuration. From the point of view of
the developer, a repository is divided into Projects, which contain: Model elements,
Extension modules used by the user and Configuration information. A repository
needs to be installed, configured and maintained by the users in private machines.
A SVN repository may store different projects and different teams may work in
the same repository. Developers use the Modelio desktop client to access a central
repository on a SVN like workflow: committing modifications to model elements,

Uhttp://www.modelio.org.

A. Abhervé (X)) - M. Almeida
Softeam Cadextan, 21 Avenue Victor Hugo, 75016 Paris, France
e-mail: antonin.abherve @softeam.fr

M. Almeida
e-mail: marcos.almeida@softeam.fr

© The Author(s) 2017 113
E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_12

http://www.modelio.org

114 A. Abhervé and M. Almeida

receiving updates from other users and using merges/locks to deal with concurrent
work.

By its participation on the MODACIouds project, SOFTEAM intended to move
its modelling services to the Cloud in order to relieve the burden for our clients
in supporting the necessary infrastructure. During the MODACIlouds project, we
developed a new version of this tool called Constellation [1, 2]. This service is
based on a Service-Oriented Architecture under which the TeamWork Manager is
provided as a service on the Cloud. By the beginning of the third year of the project
we started providing commercial services based on Constellation.

We hope that the “potentially infinite” resources available on the Cloud will make
tasks such as scaling the servers of a project up and out and moving between different
Cloud providers very easy to our customers. Additionally, activities such as mon-
itoring and adapting the installation hopefully will be able to be executed without
specialized knowledge in systems administration.

The MODACIouds provided features have an important role in fulfilling these
objectives. As we are going to present in the following sections, the role of MODA -
Clouds in Constellation is two-fold. At design time, MODAC]Iouds should support
design and implementation in a Cloud provider independent way, reducing develop-
ment costs, and increasing its flexibility. At run time, it should support the monitoring
and adaptation of the application to support its desired QoS levels.

This chapter is organised as follows. Section 12.2 presents the proposed architec-
ture of Constellation. Section 12.3 presents how we used MODACIlouds components
in building our case study. Finally, Sect. 12.4 presents our conclusions.

12.2 Proposed Architecture

In order to simplify this migration, the architecture of our Cloud solution relies
on the implementation of a component called Administration Server (Fig.12.1).
The Administration Server allows clients to create and manage user accounts, define
roles, and create modelling projects and associate users and roles to specific projects.
The Administration Server is designed as a JEE application which provides a web
accessible user interface support implemented with Java Server Faces 2 and service
behaviour supported by Entity Java Beans components. This application is linked
with an relational database to ensure persistency of application data.

The Administration Server can provision computing resources in order to maintain
the established level of quality of service. Cloud Services managed by a Adminis-
tration Server are delivered as Cloud-enabled applications. These applications are
deployed on the provisioned Cloud resource. Once deployed in Cloud resources,
services usually need to be configured and accessed by clients. The Administration
Server needs to make sure that the necessary projects, users and permissions have
been created and set up once a Cloud agent has been installed. Standard protocols are
used for both activities. Web Services enable the deployed agents to be configured.
Moreover, TCP/IP protocols will allow Modelio desktop based clients to connect to
an agent, independently from which Cloud it has been deployed.

12 Modelio Project Management Server Constellation 115

Service
Provisioning
Administration Service & Adaptation Cloud Provider

Controller =3
Meonitoring
(EJB) Information

Cloud Resources

Service WS | Service
Configuration

(Web Service)

Service
Configuration

Chient e X
(Web
Browser)

Fig. 12.1 The architecture of the administration server

External agents are independent applications that provide specific high resource
consuming services to Prototype of Constellation. Agents can be deployed on demand
on specific Cloud instances (IaaS or PaaS depending on their implementation). The
number of deployed agents may change in real time depending on the application
workload. Each agent implements a variable number of services called Workers,
which are executed when an agent receives a command from the Administration
Server.

The only dependency of this design to the specific Cloud provider is the com-
munication between the Administration Server and the Cloud provider in order to
deploy, monitor and eventually migrate services. The actual code to interact with
the Cloud provider is however encapsulated in a Web Service usually installed on
the Administration Server. This Web Service translates actual requests from the user
into specific requests to MODACIouds runtime components.

12.3 Use of MODAC]louds Design and Runtime
Components

12.3.1 Modelling with Creator 4Clouds

We used MODAC]louds Creator 4Clouds Functional Modelling tool to describe the
architecture of Constellarion’s Administration Server along with its modelling ser-
vices. We have also used this model as input to other design and runtime tools. During
the first MODAClouds phase we considered two kinds of services: SVN and HTTP

116 A. Abhervé and M. Almeida

T — I IDatabase

ice LE
\(O

\

—

1

L1 L i
CJ) L IReadOnlyModelFragment

IReadWriteSVNKModelFragment

Q WebService [|@ " 0 IReadOnly ” 6] ID. |
+ readProjectFirstPageDescription() + openProjecl() + partialRead() + databaseAccess()
* reaaCompI_s_reP_m;e_c:_an_ﬁgur_arm;l L= upt[alet] | +* apenPro_;ech(] ———]

Fig. 12.2 Case study CCIM modelling on the IDE

fragments. The first one provides a read-write model that is edited collaboratively,
while the second one provides read-only models that are shared among different
teams.

Figure 12.2 depicts the functional architecture of Constellation specified with the
MODACIouds IDE as a Cloud Computation Independent Model.

At the highest level, the CCIM shows the services that compose Constellation: the
Administration Server and the Administration Database connected by an interface
provided by the Administration Database and required by the Administration Server.

Still at the CCIM level, Fig. 12.3 shows the QoS constraints associated with the
most important operations provided by the Constellation modelling services. For

metric unit | aggregationType |rangeMin rangeMﬂl
HTTPAgentReadModelAverage | ResponseTime ms Average 5000
HTTPAgentReadModelPercentile I RespenseTime ms Percentile(thPercentile=85) 12000

metric | unitl aggregationType | rangeM'rnl rangeMax]
SVNAgentReadModelAverage ResponseTime ms Average 15000
SVNAgentReadModelPercentile ResponseTime ms Percentile(thPercentile=85) 30000
SVNAgentWriteModelAverage ResponseTime ms Average 60000
SVNAgentWriteModelPercentile ResponseTime ms Percentile(thPercentile=85) 300000

Fig. 12.3 CCIM QoS constraints on MODAClouds IDE

12 Modelio Project Management Server Constellation 117

SVN fragments, 155 is the target average time for reading model modifications,
and 60s is the target average time for writes. This considers that users make large
commits (i.e., containing a great number of model changes, and therefore expect to
obtain large change sets when they update). For HTTP models, 5s is the average
time for reading parts of the model, considering that users make infrequent accesses
to subparts of shared read-only models. Constraints on the 85th percentile are used
to define acceptable upper bounds for response times. These are set to 12s for HTTP
reads, and to 30s and 5 min for SVN reads and writes, respectively.

CPIM and CPSM models describe the deployment of the application at different
levels of abstraction, first in a Cloud provider independent way, and then in a Cloud
provider specific way. Figure 12.4 presents excerpts of the Constellation application
model described in MODACloudML at the three levels of abstraction in order to
illustrate the correspondence between the CCIM and the CPIM and CPSM models.

12.3.2 Multi-cloud Deployment with CloudML 4Clouds

The deployment model at CPIM level allows us to model the deployment of our
application by identifying the various components of our application deployment.

Cloud Computation Independent Model (CCIM)

ionS " o= ionD : 1
Q Adminstrationsecver Cﬁj———{O——';Q AdminiirotionDatabase G

IDatabase

Cloud Provider Independent Model (CPIM)
B adminServerd:Administrationode

o, a.uSer?ricH:'.m Y {b; &

Cloud Provider Specfic Model (CPSM)

g AdminSener: & L
Administrationode
——
<<ProviderWorkloadSpecification>> § Erodeior . i
i -
-
]
On-Demand Medium Instance On-Demand Standard Small DB Instance

Fig. 12.4 Three levels in IDE

118 A. Abhervé and M. Almeida

In this experiment, our efforts focused on better use of Cloud platforms through
the integration of PaaS services and the migration to a multi-Cloud deployment
solution. In a second step, we sought to take advantage of the support of multi-Cloud
environments allowed by the MODAC]Iouds project. We studied the best deployment
configuration for our application and selected three Cloud providers: Amazon EC2,
Flexiant and Amazon RDS.

Figure 12.5 describes the deployment of Constellation in a multi-Cloud context.
It shows an Administration Server and two agents, both of them in IaaS Cloud nodes.
The former in Amazon, the later in Flexiant. The database that stores administration
data is stored on a PaaS database, provided by Amazon RDS.

This development brings the following benefits:

e Allows us to scale the compute and storage resources available to our database to
meet Constellation needs.

e Provides the best reliability to our application with automated backups, DB snap-
shots and automatic host replacement capabilities.

e Provides predictable and consistent performance for I/O intensive transactional
database workloads.

12.3.3 Cost and Performance Analysis with SPACE 4Clouds

As part of MODACloudsML CCIM models, we provided models of how users inter-
act with Constellation, and of the performance of Constellation services when actu-
ally deployed on a virtual machines. We used SPACE4 Clouds to assess the costs and

agentianager2 : g
_,é] Agentianager |

@a2] i a2
2 3 b
On-Demand Mediam Instance P ISRz ol -"‘-_1
| o
. -
i R
fl&lﬂ&ﬂl&’ 2GB /2 CPU Server
] Agent! : AgeniNode [} ek

E———>$JsdRequired & [o

AREach 1ok JeeRequired

jeet: adServiced : v wa @Al yentManagert
WIT-a e a JEEContainer a .\cri.-‘:c.rrl--*ﬂvmlwabwlhrwﬂ_ . :’ﬁ‘i] Agentianager ﬂ_
a

jmsPiovidet - [msRequired1
HecReguired

o

On-Oemand Standard Small 08 Instance

Fig. 12.5 Constellation deployment in multi-cloud environments

12 Modelio Project Management Server Constellation 119

QoS the current architecture is able to provide on different Clouds, and in particular,
the maximum number of clients we can serve with the modelled architecture.

In addition, we devised a trial architecture for a new modelling service called
Conference Service to be implemented during the last year of the project, and com-
pared its QoS characteristics with the one implemented in the first two years of the
project. Differently from a SVN service, the conference service decouples the reading
and writing load on the system in different VMs that can be load balanced and Cloud
bursted independently. This is a typical example of advanced deployment configu-
rations Constellation needs to support. Our experiments showed that the Conference
Service is more scalable than the current solution.

The Fig. 12.6 presents the usage model of our users, obtained through observa-
tion of typical users. It considers users that connect to modelling through their full
workday. Five percent of the time they interact with Constellation, they connect to an
existing project, which is translated onto the sequence of calls we see on the top of the
figure. Ten percent of the time, they read updates from an SVN model, seventy-five
percent of the time they get data from HTTP fragments and ten percent of the time
they perform SVN commits.

In addition to usage models, we provided models of user workload throughout
the day (see the Fig. 12.7). We represented a typical business office workload, with
most of it concentrated around commercial working hours (8—12h and 13—17h).

SPACE 4Clouds allowed us to discover the peak number of users supported by this
architecture. Figure 12.8 shows the result of this analysis. We can see that the SVN
service supports around 250-300 users without breaking QoS constraints, while the
Conference service scales to almost the double number of users without breaking
constraints.

Branch

open HTTP fragment: call |

o 1 ° l readProjectfirstPageDescription ‘ openProject ‘
(57 reasCompieteProectContiguration Al

: I (i update
[open SV fragment: call openProject \

E e 7@

read SVN: call update

Test 10

o

Test 75

o | read HTTP: call @

Test 10

° i wirite SVN: call commit @

\

Fig. 12.6 Modelling constellation user’s behavior

120 A. Abhervé and M. Almeida

Daily proportion of arrival rate

£ o8 P .
£
i =
E 'y - .
o
g 04 P .
02 . 3
L 2 - - &> - - - - - > > * -
0
0 5 10 15 b 25

+— daily arrival rate

Fig. 12.7 Modelling constellation user’s workload

Baseline Updated Model
_ 40 _20
n L
w 20 r s o 10 -
-~ . ’
E 0 — = 0o ==7 bl il
o
ﬁ 50 100 150 200 250 300 350 400 450 500 £ 50 100150 200 250 300350 400450500
o [=]
. Peak Users & Peak Users
& &
- 5N Constraint = = = Conference Constraint

Fig. 12.8 Response time bottleneck estimations for SVN and conference services

12.3.4 Multi-cloud Monitoring and Management with
Energizer 4Clouds

Energizer 4Clouds provides valuable services for our case study, such as the man-
agement of the execution, intended as the set of operations to instantiate; run and
stop services on the Cloud; the monitoring of the running application and the self-
adaptation of the application, to ensure the fulfilment of the QoS goals.

When defining the final design of the Constellation case study, we were interested
in the best way to integrate the features provided by the platform into our application.
In the context of the Constellation case study, we are interested in the integration
of three aspects of Energizer 4Clouds: the monitoring platform, the self-adaptation
platform and the execution platform. Figure 12.9 presents the deployment model of
the Constellation case study including runtime platform components.

The Monitoring Platform allows us to monitor specific metrics collected from
business components of our case study deployed on different Cloud platforms. To
achieve this goal, we integrated five components into our architecture: three com-
ponentsfrom the monitoring platform and two components developed using the API

12 Modelio Project Management Server Constellation 121

MODACIouds Runtime Platform . 8 |8 Agent? ; Agentiode L)
mcsReg ‘agentManagerz
java2 ka2
meg imsHequired?
L - =ClientPort
mesReq s
\L Server
[Roniare 7 5
a3 e] L o £
T cata caiarforider2 _ Cha
dataProvider | dataCollector
(B AdminServer ; Adminisiratioahlods ™ M
dalaRequied | ;_! —— = |
data 4
|eeRequifed jaal java mﬂ:ﬂ
| jee1: § ‘AgeniManager
e JEEContainer 3
B——4 L b = \
. E
™ *hoRecuged I&P adServiced : 2,
! T ClientPort
e
> a| sl
eeRequired 5 I A
ImsPiovice1 |)
= i & -
pdbcRequired
=, ElctieniPon
P
7 constotatondaa

Fig. 12.9 MODACIouds runtime platform integration

provided by platform components. The role of these is to exploit monitoring data in
our application.

To exploit the monitoring platform, we have integrated two components based on
the API provided by the monitoring platform. These components ensure the interme-
diation between the monitoring platforms and business components of Constellation.
They allowed us to implement a Cloud vendor independent agent monitoring user
interface, and to integrate it to our commercial offering.

e Constellation Data Collector: To collect business metrics from Constellation
agents, we integrated into our architecture this extension of the monitoring plat-
form. Based on MODAC]Ilouds Data Collector API, this programme will collect
data about CPU, RAMS and Access Disk of each process managed by agents.

o Constellation Data Analyzer: Based on the REST API of MODACIouds Moni-
toring Manage, Constellation will incorporate a component to analyse, store and
display monitoring data according to a business point of view. This service will
be integrated into the Administration Server.

122 A. Abhervé and M. Almeida

12.4 Conclusion

Constellation can be presented as an advanced repository which stores the models
defined using the Modelio CASE tool and which provides several high-time consum-
ing services on the Cloud. Amonyg its services, we find the creation of collaborative
projects, the hosting of model fragments allowing teamwork, the management of a
Model Library catalogue or monitoring services applied to all these elements.

In this chapter, we presented the final version of the Project Management Server,
renamed, for commercial reasons to Constellation. The development of Constellation
started with the beginning of the MODAClouds project and by the end of it we have
a first version that started to be commercialized. The current commercial version of
Constellation is restricted to deployment on customer premises. We are confident
that, thanks to MODACIouds, its architecture is ready to the Cloud.

The Constellation case study integrated both design time and runtime components
from MODAC]Iouds in its design. Atdesign time, MODAC]louds supported the design
of the architecture of the application, and its early QoS analysis, in order to iden-
tify bottlenecks. At runtime, MODACIouds supported the multi-Cloud deployment,
management and monitoring of Constellation.

References

1. Almeida Da Silva MA, Abhervé A, Sadovykh A (2013) From the desktop to the multiclouds: the
case of ModelioSaaS. In: 15th international symposium on symbolic and numeric algorithms
for scientific computing (SYNASC), 23-26 Sep 2013, pp 462472

2. Desfray P (2015) Model repositories at the enterprises and systems scale the Modelio constella-
tion solution. In: 2015 3rd international conference on model-driven engineering and software
development (MODELSWARD), Feb 2015, pp IS-15

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	12 Modelio Project Management Server Constellation
	12.1 Introduction
	12.2 Proposed Architecture
	12.3 Use of MODAClouds Design and Runtime Components
	12.3.1 Modelling with Creator 4Clouds
	12.3.2 Multi-cloud Deployment with CloudML 4Clouds
	12.3.3 Cost and Performance Analysis with SPACE 4Clouds
	12.3.4 Multi-cloud Monitoring and Management with Energizer 4Clouds

	12.4 Conclusion
	References

