Chapter 1
Introduction

Elisabetta Di Nitto and Dana Petcu

1.1 Context

Cloud computing is a major trend in the ICT industry. The wide spectrum of avail-
able Clouds, such as those offered by Microsoft, Google, Amazon, HP, AT&T, and
IBM, just to mention big players, provides a vibrant technical environment, where
even small and medium enterprises (SMEs) use cheap and flexible services creating
innovative solutions and evolving their existing service offer. Despite this richness
of environments, Cloud business models and technologies are characterized by crit-
ical issues, such as the heterogeneity between vendor technologies and the resulting
lack of interoperability between Clouds. In this setting a number of challenges for
systems developers and operators can be identified, especially for SMEs that have
limited resources and do not have the strength to influence the market. In particular:

e Vendor Lock-in [1, 2]. Cloud providers offer proprietary solutions that force
Cloud customers to decide, at the early stages of software development the design
and deployment models to adopt (e.g., public vs. hybrid Clouds) as well as the
technology stack (e.g., Amazon Simple DB vs. Google Bigtable).

¢ Risk Management. There are several concerns when selecting a Cloud technology
such as payment models, security, legal and contractual, quality and integration
with the enterprise architecture and culture.

E. Di Nitto ()
Politecnico di Milano - DEIB, Piazza L. da Vinci, 32, 20133 Milan, Italy
e-mail: elisabetta.dinitto @polimi.it

D. Petcu (X))

Institute e-Austria TimiSoara and West University of TimiSoara,
B-dul Vasile Parvan 4, 300223 TimiSoara, Romania

e-mail: petcu@info.uvt.ro

© The Author(s) 2017 1
E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_1



2 E. Di Nitto and D. Petcu

e Quality Assurance. Cloud performance can vary at any point in time. Elastic-
ity may not ramp at desired speeds. Unavailability problems exist even when
99.9 % up-time is advertised (e.g., Amazon EC2 and Microsoft Office 365 outages
in 2011).

The above issues can be addressed by enabling companies to develop their appli-
cations for multiple Cloud targets, by offering them proper tools to analyze the risks,
performance and cost of various solutions and identify the ones that best suit the
needs of the specific case, and by supporting a multi-Cloud deployment of appli-
cations to ensure a level of availability that is greater than the one offered by each
specific Cloud. In this context, within the MODACIouds project, we focused on the
following objectives:

e Deliver an advanced software engineering model-driven approach and an Inte-
grated Development Environment (IDE) to support systems developers in building
and deploying applications, together with related data, to multi-Clouds spanning
across the full Cloud stack (Infrastructure as a Service, shortly IaaS, Platform as
a Service, shortly PaaS, and Software as a Service, shortly SaaS).

e Define quality measures, monitoring mechanisms, prediction models, and adaptive
policies to provide quality assurance in Clouds and multi-Clouds.

e Provide support to costs and risks analysis to increase trust in Clouds.

e Develop an integration framework between design tools and run-time.

e Create relevant and complex case studies for the entire risks assessment and soft-
ware engineering methodologies.

e Analyze and validate project outcomes through case studies.

e Ensure distribution of project results via dissemination activities on relevant pub-
lication channels, training, and standardization.

e Provide community-based open source solutions supporting the full applications
life-cycle.

In this chapter we provide a motivation for the adoption of a multi-Cloud approach
and of amodel-driven, quality aware development and operation paradigm (Sect. 1.2),
offer a brief overview of related work (Sect.1.3), introduce the MODAC]Ilouds
approach and toolset (Sects. 1.4 and 1.5), and, finally, define the goals of this book
(Sect. 1.6).

1.2 Motivation

The main drivers for exploiting a multiple Cloud approach can be of various nature,
from the need to avoid dependence from a single provider to the need to follow local
constraints and laws, to the opportunity to replicate software in order to enhance
availability. The main factors we have identified are summarized in Fig.1.1. In the
figure we distinguish between those drives that imply the simultaneous usage of
services from multiple Clouds and those that are more concerned with the possibility



1 Introduction 3

Consume different services Ensure backup-ups to
for their particularities not deal with disasters or
provided elsewhere scheduled inactivity

Enhance own Cloud resource and
service offers, based on
agreements with other providers

Avoid the dependence
on only one external
provider

Follow the constraints,
like new locations or
laws

Simultaneous usage
of services from
multiple Clouds

Serial usage of
services from
multiple Clouds

Act as intermediary

riving forces
for multiple
Clouds

Replicate applications/services
consuming services from
different Clouds to ensure their
high availability

React to changes of
the offers by the
providers

Deal with the peaks in service
and resource requests using
external ones, on demand basis

Optimize costs or
improve quality of
services

Fig. 1.1 Drivers for multi-Cloud adoption

of preparing a software system to be run on multiple Clouds but still using a single
Cloud at a time during operation.

To exemplify concrete needs in an industrial context, we refer to the case of a
small company that we call MODAFIN, specialised in IT applications for financial
services. Its main product line is a proprietary solution for stock market operations,
cash administration, and lending management.

MODAFIN most profitable activities are software customization and life-cycle
management for this product line.

Customisation involves development of custom modules to accommodate new
functional requirements. Moreover, it includes application integration with existing
databases and legacy business systems at the customer’ site.

Life-cycle management needs to assure high-availability for real-time computa-
tions during market hours, scalability and low operational costs for batch analytic
workloads running after-hours. MODAFIN fulfills these quality requirements with
a capacity management consultancy team following the application life-cycle.

The consultancy team has been working for a long time at the customers’ site,
where the system is deployed in the operation environment. Thanks to the diffusion
of the Cloud, however, new needs have arisen. At night, some customers want to
run their batch analytic workloads at the cheapest operational costs of Amazon on-
spotinstances. During the day, they expect calculation engines to ramp-up computing
power at an unprecedented pace when the stock market gets volatile. Moreover, some
customer applications are collecting and processing stock market data directly on the
Cloud using PaaS datastore services such as Google Bigtable or Amazon SimpleDB.
At the same time, customers are cutting spending in consultancy services for life-
cycle management as they are relying more and more on SaaS services.

To remain competitive, MODAFIN solution must evolve addressing all above
requirements. To do so, the Company needs to apply advanced software engineering
methodologies revising both the software development process and its life-cycle
management services:



4 E. Di Nitto and D. Petcu

e Itneedstodevelop a solution that can be executed on a broad spectrum of customers
TaaS/Paa$, also supporting Cloud bursting, that is, the ability to move part of the
system on a different Cloud to manage pick of traffic when needed.

e It must develop a flexible architecture for the system so that it could be adapted to
new Cloud offers emerging in the next 5—10 years to adapt to changes of context
and requirements.

e Itneeds libraries and connectors to integrate various data storage tools and services
to address different needs in terms of performance, data locality, scalability and
the like.

e It needs simple to use tools to perform what if analyses and optimizations on the
system configuration in order to allow for the fulfillment of the required QoS.

e It needs a multi-Cloud environment for execution, which supports monitoring,
smart load balancing, scale-in and out on several Clouds to avoid that availability
or performance outages of a single Cloud provider would turn into a disaster for
MODAFIN’s own business.

All above needs result not only in the adoption of a multi-cloud approach, but also
in the exploitation of a proper development and operation set of tools and methods,
which are specifically built to support multi-Cloud.

Within the MODAC]louds approach we have experimented with model-driven
development enhanced with the possibility of exploiting models not only as part of
design but also as part of the runtime. In this case the system model becomes a live
object that evolves with the system itself and can be used to send back to the design
time powerful information that enables a continuous improvement of the system. In
new terms, this approach goes into the direction of offering a valid tool to support
DevOps, that is, the ability to support development and operation in a seamless way.

1.3 Related Work

Model-driven engineering (MDE) allows developers to build the system at various
level of abstractions. It is often summarized as “model once, generate anywhere” and,
as such, becomes particularly relevant when it comes to provisioning and deployment
of applications and services across multiple Clouds, as well to migration of source
code and data from one service provider to another.

Services Oriented Architecture (SOA) related technologies are often used to define
Cloud-enabled applications without going into the fine details of deployment. Ser-
vices are often modeled by means of general purpose languages such as UML.
Service-specific languages have also been designed for SOA approach (e.g. SoaML'").
USDL? goes even further, by allowing designers to specify, beside services and their

Uhttp://www.omg.org/spec/SoaML/1.0/Beta2/.
Zhttp://www.w3.0rg/2005/Incubator/usdl/.


http://www.omg.org/spec/SoaML/1.0/Beta2/
http://www.w3.org/2005/Incubator/usdl/

1 Introduction 5

interfaces, non-functional aspects of these services (e.g. pricing, legal, certification,
documentation).

Other approaches are related to the specific concept of Web Service: WSDL3
enables the specification of a list of services, interfaces, data types and orchestration
processes at a syntactical level, OWL? is a semantic Web language which enables
the specification of the semantics of the services, besides their syntax. Both these
approaches do not allow for the description of non-functional requirements and
constraints. However, they can be complemented with the OMG UML profile for
QoS, QFTP, which allows a designer to specify QoS requirements and to connect
them to service descriptions.

While the above approaches are Cloud-agnostic, modeling concepts and technolo-
gies for supporting provisioning, deployment and adaptation of applications in the
Cloud have been recently developed. They exploit the uniform interfaces provided by
various libraries for application deployment and control at run-time. We can mention
here the most successful ones: jclouds,® libcloud,” §-cloud® or fog.” For example,
the jclouds model includes the description of nodes with metadata (like CPU, RAM,
security policy), parameters (like minCPU, OS type) and a set of commands to be
executed on nodes, as well as on the groups of nodes to be managed together.

Most of the above mentioned libraries are providing a common access to multiple
Clouds, but are dependent on the programming language. Typically, they provide a
code-based model of the infrastructure and do not offer any mechanism for automatic
provisioning and deployment of applications on the Clouds. Moreover, they work at
the IaaS level and do not expect applications and services to be presented in terms
of models. To fill this gap, MODACIouds offers a complete set of model-based tools
from design to deployment and run-time control of the applications.

Recently, several frameworks for managing multi-Cloud services and applications
have been developed. They provide capabilities for the provisioning, deployment,
monitoring, and adaptation of applications without being language-dependent. We
mention here three of them: Cloudify,'® Scalr!! and CloudFoundry.'? For example,
the Cloudify model for deploying applications includes recipes for information like:
(1) required infrastructure and how it should be used, (ii) clusters of service instances
that make up an application tier, (iii) configuration (including provisioning and scal-
ing rules) of an application and the services it is made of, (iv) probes used to monitor
the status of the system. These frameworks are important to optimise performance,

3http://www.w3.org/TR/wsdl.
“hitp://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.
Shttp://www.omg.org/spec/QFTP/.

Shttp://jclouds.apache.org.

http://libcloud.apache.org.

8http://deltacloud.apache.org.

http://fog.io.

Ohttp://www.cloudify.org.

Uhttp://scalr.com.

http://www.cloudfoundry.org.


http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.omg.org/spec/QFTP/
http://jclouds.apache.org
http://libcloud.apache.org
http://deltacloud.apache.org
http://fog.io
http://www.cloudify.org
http://scalr.com
http://www.cloudfoundry.org

6 E. Di Nitto and D. Petcu

availability, and cost of multi-Cloud systems. However, they do not come with any
structured guideline/methodology, thus, developers and operators are typically left
hacking at code level rather than engineering multi-Cloud systems following a struc-
tured tool-supported methodology.

The models @runtime paradigm, often used in MDE, proposes to leverage mod-
els during the execution of adaptive software systems to monitor and control the
way they adapt. This approach enables the continuous evolution of the system with
no strict boundaries between design-time and runtime activities. Models @runtime
provides an abstract representation of the running system causally connected to the
underlying state of the system which facilitates reasoning, simulation and enactment
of adaptation actions. A change in the running system is automatically reflected in
a model of the current system. A modification applied to this model can be enacted
on the running system on demand. Thanks to the use of models, well-defined inter-
face are provided to monitor the system and adapt it. The models also provide a
way to measure the impact of changes in the system and analyse them before their
enactment on the running system. In MODACIouds we adopt the models @runtime
concept in order to tame the complexity of adaptation and ease the reasoning process
for self-adaptation.

MODACIouds was developed together with two siblings projects, PaaSage and
ARTIST. The scope of PaaSage!® was to extend application models with annota-
tions concerning platform and user’s goals and preference. The language used for
this is called Cloud Application Modelling and Execution Language (CAMEL).
CAMEL integrates various domain-specific languages using the Eclipse Modelling
Framework. Within this context, PaaSage has extend and adapt MODAClouds’
CloudML to support model-based provisioning and deployment of Cloud-based
systems. CloudML is used also by the ARTIST initiative,'"* which offers a set of
methods and tools for an end-to-end assisted migration of legacy software to the
Cloud. ARTIST followed an earlier initiative, REMICS' which proposed a leap
progress in legacy systems migration to Service Clouds by providing a model driven
methodology and tool following the Architecture Driven Modernization concept
(use knowledge discovery to recover application models and rebuild the applications
following the discovered models).

The MONDO initiative'® focused not on MDE for Clouds, but on Clouds for MDE:
aiming to achieve scalability in MDE, MONDO provided an integrated open-source
and Cloud-based platform for scalable model persistence, indexing and retrieval facil-
ities, support for collaborative modelling, and parallel execution of model queries
and transformations, and an Eclipse-based developer workbench that include tool-
ing for developing queries and transformations, for querying model indexes, and for
constructing large models and domain specific languages. The HEADS initiative.'”

Bhttp://www.passage.eu.
http://www.artist-project.eu.
Dhttp://www.remics.eu.
10http://www.mondo-project.org.
17http://www.heads-project.eu.


http://www.passage.eu
http://www.artist-project.eu
http://www.remics.eu
http://www.mondo-project.org
http://www.heads-project.eu

1 Introduction 7

leveraged MDE to provide an open-source Integrated Development Environment
(IDE) supporting the collaboration between platform experts (platform for mobile
devices, sensors, smart objects, etc.) and Cloud-based service developers and includ-
ing adomain specific modeling language and a methodology for the specification, val-
idation, deployment and evolution of software-intensive services distributed across
the future computing continuum (composed of a wide set of heterogeneous plat-
forms).

1.4 The MODACIlouds Approach

Figure 1.2 shows an overview of the MODAC]louds development approach. In partic-
ular, it shows how an application is designed and packaged for deployment according
to a Cloud-tailored model-driven approach. Software designers start from defining
the application structure and the corresponding Quality of Service (QoS) require-
ments at the Cloud Independent Model level (CIM). In the example shown in the
figure, the application is composed of three components, two of which are further
decomposed in sub-components. Availability and response time requirements are
defined and associated to two of the application components. At this level there is
no reference to specific Cloud services and resources as the focus is exclusively on
the high level design of the application itself.

From the CIM level description the designer moves then to focus on introducing
Cloud-specific aspects at the Cloud-Provider Independent Model level (CPIM). At
this level, he/she may decide, for instance, to select a certain class of database service
(e.g., key-value NoSQL) and certain kinds of computational and memory resources.
All these are then associated to the application logic elements they contribute to
realize. At this point the developer can start running the MODACIouds QoS analysis
tool that, based on the defined QoS requirements and on the typical characteristics
of the selected kinds of Cloud resources and services, can provide some feedback
about the realizability of the application on specific Clouds and can suggest possible
optimizations.

As soon as the designer is satisfied with the specified solution, he/she can move
to the Cloud-Provider Independent Model level (CPSM) from where he/she can
finalize the selection of specific providers and services/resources for the application,
run more precise QoS analyses and, finally, generate proper deployment, monitoring
and self-adaptation scripts to support the runtime phases.

In all analysis and design phases, the application designers as well as the decision
makers from the company can be supported in the definition of risks and benefits for
the application and in the identification of the candidate Cloud services and resources
based on these.

Finally, at runtime, the models defined at design time are exploited to monitor
and manage the application by enabling smart self-adaptation. Moreover, the val-
ues of specific metrics characteristic for the running applications are collected and
passed to the development team that can exploit them to fine-tune the application.



8 E. Di Nitto and D. Petcu

CIM Goal Verification & validation of requlrements
QoS property analysis

I
1
1
1
1
1
1
1
[l
[
[
1
[
[

Availability
24h/day i

Goal: Cloud Independent
Model Representation
spanning across all
.___abstraction layers

Reliable ¥

Resource B C

High perf. Large memory
Resource L Resource

CPIM

Deploy B
on Public

{Goal: Cloud Specmc
———————————— iCode Representation;

B-1
VM-Large CPU
Instance

A1
VM-Small CPU

Inst. numb. >2

Fig. 1.2 Model-driven development in MODACIlouds

As described in Chap. 10, this enables the adoption of a DevOps approach [3] that
supports development and operation in a coherent manner.

1.5 The MODACIlouds Toolbox

The MODACIouds model-driven approach is supported by the MODAC]Iouds Tool-
box (see Fig.1.3). The toolbox helps lowering existing barriers between Develop-
ment and Operations Teams and helps embracing DevOps practices within IT teams.


http://dx.doi.org/10.1007/978-3-319-46031-4_10

1 Introduction 9

Space
DataMapping .
— = CloudML

MODACIouds

salotians fas
Multi-Cloud DevOps

Creator i
© Venves _'%'-:--l'\ )
. Energizer

Tools 10 erergite operations wish
Mulsi Clowd Agliry Do Monitaring
end Sell Adupration that sesmie sty
integrate with Dav Tenm 10 allow

batter

ond mest business needs

Fig. 1.3 MODACIouds toolbox

Thanks to it, organizations of any size can Build and Run Cloud Applications driven
by business and technical needs and quality requirements. The toolbox is comprised
of the following elements: (1) Creator 4Clouds, an Integrated Development Environ-
ment (IDE) for high-level application design; (2) Venues 4Clouds, a decision support
system that helps decision makers identify and select the best execution venue for
Cloud applications, by considering technical and business requirements; (3) Ener-
gizer 4Clouds, a Multi-Cloud Run-time Environment energized to provide automatic
deployment and execution of applications with guaranteed Quality of Service (QoS)
on compatible Multi-Clouds.'®

Creator 4Clouds, in turn, includes plugins focusing on (i) analysing the QoS/cost
trade-offs of various possible application configurations (Space 4Clouds”¢"), (ii)
mapping high level data models into less expressive but more scalable NoSQL,
(ii1) deploying the resulting application on multi-Cloud by exploiting the CloudML
language. Overall, Creator 4Clouds is a unique tool supporting design, development,
deployment and resource provisioning for multi-Cloud applications. It limits lock-
in and provides features to assess the QoS guarantees required by the application.
Moreover, it offers support to the definition of the application SLA.

I8 All these tools are available as open source, see http://www.modaclouds.eu/software/.


http://www.modaclouds.eu/software/

10 E. Di Nitto and D. Petcu

Energizer 4Clouds includes the frameworks to support monitoring (Tower
4Clouds) and self-adaptation (Space 4Clouds??*), together with utilities that per-
form ancillary tasks in the platform (ADDapters 4Clouds). Energizer 4Clouds is one
of the few approaches that addresses, in a single framework, the needs of opera-
tors willing to run their applications in a multi-Cloud environment. Through Tower
4Clouds, operators are able to perform complex monitoring and data analyses from
multiple sources. Moreover, thanks to Space 4Clouds for Ops, it identifies and actu-
ates proper self-adaptation actions that take into account the current and foreseen
state of the system under control.

We have included in the design of the MODAC]Iouds architecture what we call
Feed-Back Loop technologies that extend capabilities offered by Creator, Venues and
Energizer 4Clouds. Thanks to the Feed-Back Loop approach, Tower 4Clouds con-
nects with Creator 4Clouds and Venues 4Clouds, respectively. The first connector
is responsible for providing developers and the QoS engineers with the perspec-
tive of the application behavior at runtime to improve the development process and
incorporate DevOps techniques and tools into the process. The second connector
allows Venues 4Clouds to adapt its knowledge base according to real live data. This
helps in offering to users an updated vision of services quality for future recommen-
dations. The capability of the runtime to influence the design time is in line with
current research and is a very important feature to empower multi-Cloud application
developers.

1.6 Book Objectives

The objective of this book is to: (i) present the methods and tools composing the
MODACIouds solution as well as the business needs they address, and (ii) to show
their validity and utility through four industrial cases. The presentation will highlight
both development and operation aspects and the way they are integrated to support
a DevOps approach.

References

1. Gartner (2012) 2012 Cloud Computing Planning Guide

2. Forbes (2011) Cloud computing’s vendor lock-in problem: why the industry is taking a step
backward

3. Debois P (2011) DevOps: a software revolution in the making? J Inf Technol Manage



1 Introduction 11

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.


http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Related Work
	1.4 The MODAClouds Approach
	1.5 The MODAClouds Toolbox
	1.6 Book Objectives
	References


