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Abstract. Password-based authentication is the most widely used
authentication mechanism. One major weakness of password-based
authentication is that users generally choose predictable and weak pass-
words. In this paper, we address the question: How to best check weak
passwords? We model different password strength checking methods as
Password Ranking Algorithms (PRAs), and introduce two methods for
comparing different PRAs: the β-Residual Strength Graph (β-RSG) and
the Normalized β-Residual Strength Graph (β-NRSG). In our experi-
ments, we find some password datasets that have been widely used in
password research contain many problematic passwords that are not nat-
urally created. We develop techniques to cleanse password datasets by
removing these problematic accounts. We then apply the two metrics on
cleansed datasets and show that several PRAs, including the dictionary-
based PRA, the Markov Models with and without backoff, have similar
performances. If the size of PRAs are limited in order to be able to be
transmitted over the internet, a hybrid method combining a small dictio-
nary of weak passwords and a Markov model with backoff with a limited
size can provide the most accurate strength measurement.

1 Introduction

Password-based authentication is the most widely used authentication mech-
anism. Despite countless attempts at designing mechanisms to replace it,
password-based authentication appears more widely used and firmly entrenched
than ever [6,7,21]. One major weakness of password-based authentication is the
inherent tension between the security and usability of passwords [4,28]. More
precisely, secure passwords tend to be difficult to memorize (i.e., less usable)
whereas passwords that are memorable tend to be predictable. Generally indi-
viduals side with usability of passwords by choosing predictable and weak pass-
words [4,18,20,23,30].

To deal with this, the most common approach is to forbid the use of weak
passwords, or give warnings for passwords that are “somewhat weak”. This app-
roach requires an effective way to identify weak passwords. One way is to use
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password composition policies, i.e., requiring passwords to satisfy some syntac-
tical properties, e.g., minimum length and/or categories of characters. An alter-
native is to use proactive password checkers that are based on a weak password
dictionary [5,27,32]. More recently, probabilistic password models, which work
by assigning a probability to each password, were introduced [13,26,29,37].

How to best check weak passwords is still an open question. A study in
2014 [14] examined several password meters in use at popular websites and found
highly inconsistent strength estimates for the same passwords using different
meters. The report did not answer the question of which meter is the best, nor
what methods should be used to compare them. Designing an effective password
meter requires solving two problems: (1) How to accurately assess the strength
of passwords chosen by the users; and (2) How to communicate the strength
information to and interact with the users to encourage them to choose strong
passwords. These two problems are largely orthogonal. In this paper we focus
on solving the first problem.

We model different password strength assessing methods (including compo-
sition policies) as Password Ranking Algorithms (PRAs), which assign a rank to
every password. One state-of-the-art method for comparing PRAs is the Guess
Number Graph (GNG), which plots the number of guesses vs. the percentage of
passwords cracked in the test dataset. However, GNG measures only the total
density of the uncracked passwords, but not their distribution, which is critical
in assessing the effectiveness to defend against guessing attacks after deploy-
ing the PRA. To address this limitation of GNG, we propose the β-Residual
Strength Graph (β-RSG), which measures the strength of the β most common
passwords in the test dataset, after forbidding the weakest passwords identi-
fied by a PRA. When a PRA forbids a large number of passwords that users
are extremely unlikely to use, it performs poorly under β-RSG. To limit the
influence of these passwords, we also propose Normalized β-Residual Strength
Graph (β-NRSG), which ignores how passwords that do not appear in the testing
dataset are ranked. β-NRSG also has the advantage that we can use it to eval-
uate blackbox password strength services for which one can query the strength
of specific passwords, but cannot obtain all weak passwords.

Surprisingly, we observed that all PRAs perform significantly worse on pass-
word datasets from Chinese websites than on datasets from English websites,
because some of the most frequent passwords in the testing dataset are not
recognized as weak passwords by all the PRAs. Further investigation revealed
that these passwords are in all likelihood due to “fake accounts”, possibly cre-
ated by site administrators to artificially boost the number of registered users.
The evidences for this include that the user IDs associated with such passwords
look suspicious. These suspicious IDs fall in two categories: appending a counter
to a fixed prefix; and a large number of fixed-length strings that apparently look
random. While these datasets have been used in previous papers, we are the
first to report such fake accounts. We developed a data cleansing technique to
identify and remove such “fake” accounts in order to obtain a more accurate
evaluation.
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Our evaluation is based on the cleansed password datasets. We have com-
pared the Probabilistic Context-Free Grammar (PCFG) [37] method, Markov
models with and without backoff [13,26,29], blacklists based on training datasets,
the Combined method proposed by Ur et al. [34], password composition policies,
as well as two versions of zxcvbn [38]. We also how GNG, β-RSG, and β-NRSG
differ. We found that when one places no limit on the mode size, several meth-
ods including the blacklist approach, Markov Models, and the Combined method
have similar performance. When one wants to check the strength of passwords
on the client side, without sending passwords over the network, the model size
must be limited. We found that a blacklist with a limited size still provide the
most accurate strength measurement for the most popular passwords. However,
only a limited number of passwords are covered.

We then propose a new client-end PRA that uses a hybrid method; it uses
a small blacklist to assess the strength of most popular passwords, and evaluate
the other passwords based on a limited size Markov model with backoff. We
show that the hybrid method inherits the advantages of both methods, and
consistently outperform the other client-end PRAs.

The rest of this paper is organized as follows. We discuss related work
in Sect. 2. We propose metrics evaluate password ranking algorithms (PRAs)
in Sect. 3. The observation of suspicious accounts and the corresponding data
cleansing are described in Sect. 4 and the evaluation is reported in Sect. 5. Finally,
we conclude in Sect. 6.

2 Related Work

The quality of passwords has traditionally been measured using a combination
of standard password cracking tools, such as John the Ripper (JTR) [3], and ad
hoc approaches for estimating the information entropy of a set of passwords.

In 1990, Klein et al. [23] proposed the concept of a proactive password
checker, which checks the strength of newly created passwords and prevents
users from choosing weak passwords. Since then, multiple blacklist-based proac-
tive password checkers were proposed. Spafford et al. [32] and Bergadano et al. [5]
developed methods for filtering passwords based on efficiently stored password
dictionaries. Manber et al. [27] described an approach that refused not only exact
words in dictionaries but also passwords that are a single insertion, deletion, or
substitution from a dictionary word. Yan et al. [39] suggested that besides dic-
tionary checking, password checker should consider length and character types
of passwords as well.

In terms of entropy estimation, Florencio and Herley [18], Forget et al. [19],
and Egelman et al. [16] use the formula where the bit strength of a password is
considered to be log2

(
|Σ|len

)
for alphabet Σ. A more sophisticated approach,

known as the NIST guidelines [11], calculates password entropy using several
factors, including how many numbers, symbols, and uppercase letters are used
and where they appear.
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The effect of different password composition policies was studied by Koman-
duri et al. [25] and Kelley et al. [22] using probability model-based cracking tools.
They both suggested that passwords generated under the policy “Password must
have at least 16 characters” provides the best security.

In 2010, Weir et al. [36] measured the strength of password creation poli-
cies by using large-scale real-world datasets and showed that entropy values
would not tell the defender anything about how vulnerable a policy would be
to an online password cracking attack. They also showed that many rule-based
policies perform poorly for ensuring a desirable level of security. Instead, they
suggest measuring the strength of user-chosen passwords by password models
and rejecting passwords with high probabilities. Schechter et al. [31] also sug-
gested allowing users to choose any password they want, so long as it is not
already too popular with other users.

Probabilistic models of passwords work by assigning a probability to each
string. Some models divide a password into several segments, often by grouping
consecutive characters of the same category (e.g., lower-case letters, digits, etc.)
into one segment, and then generate the probability for each segment indepen-
dently. Examples include the model in [29], and the Probabilistic Context Free
Grammar (PCFG)-based approach developed in [37]. The PCFG approach was
later improved in [22,35]. A whole-string model, on the other hand, does not
divide a password into segments, e.g., the Markov chain model in [12,13]. Ma
et al. [26] showed that Markov chain model with backoff smoothing outperforms
PCFG models.

Dell’Amico and Filippone [15] proposed a method to estimate the number
of guesses needed to find a password using modern attacks and probabilistic
models. Given a probabilistic model, the strength of a passwords is estimated
by sampling from the model, i.e., generating random passwords according to the
probabilities assigned by the model. This motivates our work to find a way to
compare password models, as a better probabilistic model will produce a more
accurate estimation.

Recently, Ur et al. [34] compared cracking approaches used by researchers
with real-world cracking by professionals. They found that semi-automated
cracking by professionals outperforms popular fully automated approaches, but
can be approximated by combining multiple approaches and assuming the rank
of a password is its highest rank among the approaches examined.

Egelman et al. [16] examined the impact of password meters on password
selection and reported that the presence of meters yielded significantly stronger
passwords in a laboratory experiment. However, the meters made no observable
difference in a field study when creating passwords for unimportant accounts.
Ur et al. [33] also showed that scoring passwords stringently results in stronger
passwords in general. Komanduri et al. [24] showed that Telepathwords, which
makes realtime predictions for the next character that user will type, can help
users choosing stronger passwords.

In 2014, de Carné de Carnavalet and Mannan [14] examined several pass-
word meters in use at selected popular websites, and revealed how the meters
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work. They found gross inconsistencies, with the same password resulting in very
different strength across different meters.

In [38], zxcvbn, which is an open-source meter designed to run entirely in
clients’ browser, is proposed. zxcvbn decomposes a given password into pat-
terns, and then assigns each pattern an estimated “entropy”. The final password
entropy is calculated as the sum of its constituent patterns’ entropy estimates.
The algorithm detects multiple ways of decomposing a password, but keeps only
the lowest of all possible summations as an underestimate.

3 How to Compare PRAs

At the core of any password strength meter is a Password Ranking Algorithm
(PRA), which is a function that sorts passwords from weak (common) to strong
(rare).

Definition 1 (Password Ranking Algorithm (PRA)). Let P denote the
set of all allowed passwords. A Password Ranking Algorithm r : P → Rnk
is a function that maps each password to a ranking in Rnk, where Rnk =
{1, . . . , |P|}∪{∞}.

Intuitively, a password with rank 1 means that it is considered to be one of
the weakest password(s); and a password with rank ∞ means that it is considered
to be strong enough to not need a ranking. The above definition accommodates
PRAs that rank only a subset of all passwords as well as PRAs that rank some
passwords to be of equal strength. A password composition policy can be mod-
eled as a PRA that assigns a rank of 1 to passwords that do not satisfy the
policy, and ∞ otherwise. Probabilistic password models that assign a proba-
bility to each password can be converted into a PRA by sorting, in decreasing
order, the passwords based on their probabilities in the model. Arguably, this
captures the essential information for determining the strengths of passwords,
since both cracking passwords and choosing which passwords to forbid should
be done based on the ranking.

3.1 Guess Number Graph (GNG)

The state-of-the-art method for comparing PRAs is the Guess Number Graph
(GNG), which plots the number of guesses vs. the percentage of passwords
cracked in the dataset. A point (x, y) on a curve means that y percent of pass-
words are included in the first x guesses. When evaluating PRAs for their effec-
tiveness in cracking passwords, GNG is an ideal choice. For the same x value, a
PRA that has a higher y value is better. However, one limitation of GNG is that it
does not convey information regarding the distribution of uncracked passwords.
For example, suppose that two PRAs r1 and r2 both cover 40 % of passwords
after making 106 guesses. Under r1 there remain uncovered 5 passwords each
appearing 200 times and a large number of passwords that appear just once.
And under r2 there remain 500 passwords each appearing 2 times together with
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a similarly large number of passwords that appear just once. In this case, if we
decide to forbid the first 106 passwords that are considered weak and an adver-
sary is limited to 5 guess attempts per account (e.g., because of rate limiting),
the adversary can successfully break into 1,000 accounts based on r1, but only
10 accounts based on r2. Obviously, r1 is worse than r2, even though they look
the same under the GNG. Therefore, GNG is not appropriate for the effective-
ness of using a PRA for identifying and forbidding the usage of weak passwords,
especially since the primary objective of checking password strength is to defend
against online guessing attacks, as offline attacks are best defended against by
improving site security and by using salted, slow cryptographic hash functions
when storing password hashes.

3.2 The β-Residual Strength Graph (β-RSG)

To deal with the limitation of GNG, we propose to use the β-Residual Strength
Graph. Each PRA r corresponds to a curve, such that a point (x, y) on the curve
means that after forbidding what r considers to be the x weakest passwords, the
strength of the remaining passwords is y. For the choice of y, we use the effective
key-length metric corresponding to the β-success-rate, proposed by Boztaş [8]
and Bonneau [6], to measure the strength of the probabilities of the remaining
passwords, which we call the residual distribution.

More specifically, given a password dataset D, we use pD(w) to denote a
password w’s frequency in D, i.e., pD(w) = number of times w occurs in D

|D| . Given a
PRA r and a number x, let wi be the ith most frequent password in D that is not
among the x weakest passwords according to r. Then the β-Residual Strength
is computed as:

y = lg

(
β∑β

i=1 pD(wi)

)
,

Intuitively, β-RSG provides a measure of the strength of the remaining weakest
passwords after a certain number of weak passwords according to r are forbidden.
It translates the total frequencies of the β unremoved weakest passwords into
a bit-based security metric, which can be viewed as finding the entropy of a
uniform distribution where the probability of each element equals that of the
average of these β passwords.

We need to choose appropriate values for β. In [6], λ̃10 is used, which cor-
responds to an online attack setting where 10 guesses are allowed, which was
recommended by usability studies [9]. We adapt the setting.

3.3 The Normalized β-Residual Strength Graph (β-NRSG)

Password composition policies (such as the ones that require mixing letters with
digits and special symbols), when viewed as PRAs, tend to perform poorly under
the RSG, because they rule out a large number of passwords, e.g., all passwords
that consist of only letters. This demonstrates that one weakness of password
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composition policies is that they prevent some strong passwords (such as unpre-
dictable passwords consisting of only letters) from being used. However, one
may argue that this is not completely fair to them. The cost of forbidding a
strong (i.e., rarely used) password is that users who naturally want to use such
a password cannot do so, and have to choose a different password, which they
may have more trouble remembering. However, if users are extremely unlikely
to choose the password anyway, then there is very little cost to forbid it.

We thus propose a variation of RSG, which “normalizes” a RSG curve by
considering only passwords that actually appear in the testing dataset D. More
specifically, a point (x, y) on the curve for a PRA r means that after choosing
a threshold such that x passwords that appear in D are forbidden, the residual
strength is y. We call this the Normalized β-Residual Strength Graph (β-NRSG).
A NRSG curve can be obtained from a corresponding RSG curve by shrinking the
x axis; however, different PRAs may have different shrinking effects, depending
on how many passwords that are considered weak by the PRAs do not appear
in the testing dataset. Under β-NRSG, PRAs are not penalized for rejecting
passwords that do not appear in the testing dataset. A PRA would perform well
if it considers the weak (i.e., frequent) passwords in the dataset to be weaker than
the passwords that appear very few times in it. β-NRSG also has the advantage
that we can use it to evaluate blackbox password strength services for which
one can query the strength of specific passwords, but cannot obtain all weak
passwords. We suggest using both RSGs and NRSGs when comparing PRAs.

3.4 Client Versus Server PRAs

A PRA can be deployed either at the server end, where a password is sent to
a server and has its strength checked, or at the client end, where the strength
checking is written in JavaScript and executed in the client side inside a browser.
PRAs deployed at the server end are less limited by the size of the model. On
the other hand, deploying PRAs on the client side increases confidence in using
them, especially when password strength checking tools are provided by a third
party. Thus it is also of interest to compare the PRAs that have a relatively
small model size, and therefore can be deployed at the client end. We say a PRA
is a Client-end PRA if the model size is less than 1 MB, and a Server-end PRA
otherwise.

Table 1. Server-end PRAs and Client-end PRAs. Xc means reduced-size version of
model X in order to be deployed at the client side.

Server-end Markov Model [13], Markov Model with backoff [26], Probabilistic
Context-free Grammar [37], Google API, Blacklist, Combined [34]

Client-end zxcvbn1 [38], zxcvbn2 [38], Blacklistc, Markov Modelc, Markov Model
with backoffc, Hybrid
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3.5 PRAs We Consider

The PRAs that are considered in this paper are listed in Table 1. In Client-end
PRAs, the size of zxcvbn1, zxcvbn2 are 698 KB and 821 KB correspondingly. For
password models whose model sizes are adjustable, we make the model size to
be approximately 800 KB to have a fair comparison.

PCFG. In the PCFG approach [37], one divides a password into several seg-
ments by grouping consecutive characters of the same category (e.g., letters,
digits, special symbols) into one segment. Each password thus follows a pattern,
for example, L7D3 denotes a password consisting of a sequence of 7 letters fol-
lowed by 3 digits. The distribution of different patterns as well as the distribution
of digits and symbols are learned from a training dataset. PCFG chooses words
to instantiate segments consisting of letters from a dictionary where all words
in the dictionary are assumed to be of the same probability. The probability of
a password is calculated by multiplying the probability of the pattern by the
probabilities of the particular ways the segments are instantiated.

Markov Model. N -gram models, i.e., Markov chains, have been applied to
passwords [13]. A Markov chain of order d, where d is a positive integer, is a
process that satisfies

P (xi|xi−1, xi−2, . . . , x1) = P (xi|xi−1, . . . , xi−d)

where d is finite and x1, x2, x3, . . . is a sequence of random variables. A Markov
chain with order d corresponds to an n-gram model with n = d + 1.

We evaluate 5-gram Markov Model (MC5), as recommended in [26], within
Server-end PRAs setting. In order to fit the Markov Model into a Client-end
PRA, if we store the frequency of each sequence in a trie structure, the leaf
level contains 95n nodes, where 95 is the total number of printable characters.
To limit the size of Markov model to be no larger than 1 MB, n should be less
than 4. We use 3-order Markov Model MC3 in our evaluation.

Markov Model with Backoff. Ma et al. [26] proposed to use the Markov
Model with backoff to model passwords. The intuition is that if a history appears
frequently, then we would want to use that to estimate the probability of the
next character. In this model, one chooses a threshold and stores all substrings
whose counts are above the threshold, and use the frequency of these substrings
to compute the probability. Therefore, the model size of a Markov Model with
backoff depends on the frequency threshold selected. In this paper, we consider
two sizes of Markov Model with backoff by varying frequency threshold. We first
pick a relatively small threshold 25 (MCB25), as suggested in [26], to construct
a Server-end PRA.

For Client-end PRAs, similar to the Markov model, we record the model in
a trie structure, where each node contains a character and the corresponding
count of the sequence starting from the root node to the current node. We
measure the size of data after serializing the trie into JSON format. Table 3 shows
the size of the models trained on Rockyou and Duduniu dataset with different
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frequency thresholds. The size of the Markov Models with backoff when trained
on Duduniu dataset is significantly smaller than that of models trained on the
Rockyou dataset. This is primarily due to the difference in character distribution
between English and Chinese users. English users are more likely to use letters
while Chinese users are more likely to use digits. As a result, the most frequent
sequences in Rockyou are mainly constructed by letters while those in Duduniu
are mainly constructed by digits. The difference in the size of the models comes
from the different search space in letters and digits. In order to approximate the
size of the model to that of zxcvbn, we choose MCB1500 for English datasets
and MCB500 for Chinese datasets.

Dictionary-Based Blacklist. Dictionary-based blacklists for filtering weak
passwords have been studied for decades, e.g., [5,27,32]. Some popular web-
sites, such as Pinterest and Twitter, embed small weak password dictionaries,
consisting of 13 and 401 passwords respectively, on their registration pages. We
use a training dataset to generate the blacklist dictionary. The order of the pass-
words follows the frequency of passwords in the training dataset in a reversed
order. Assuming each password contains 8 characters on average, a dictionary
with 100,000 passwords is approximately 900KB. Such blacklist (Blacklistc) is
used in Client-end PRAs settings.

Combined Method. Ur et al. [34] proposed Minauto metric, which is the
minimum guess number for a given password across multiple automated cracking
approaches. We implement a password generator which outputs passwords in
the order of their corresponding Minauto. Passwords with smaller Minauto are
generated earlier. In the Combined PRA, the rank of a password is the order of
the passwords generated. In this paper, Minauto is calculated by combining 4
well-studied approaches: Blacklist, PCFG, Markov, and Markov with backoff.

Google Password Strength API. Google measures the strength of passwords
by assigning an integer score ranging from 1 to 4 when registering on their
website. We found that the score is queried via an AJAX call and the API is
publicly available1. We use this service to assess the strength of passwords. We
are not able to generate passwords and get the exact ranking as the underlying
algorithm has not been revealed.

Zxcvbn Version 1. Zxcvbn is an open-source password strength meter devel-
oped by Wheeler [38]. It decomposes a given password into chunks, and then
assigns each chunk an estimated “entropy”. The entropy of each chunk is esti-
mated depending on the pattern of the chunk. The candidate patterns are
“dictionary”, “sequence”, “spatial”, “year”, “date”, “repeat” and “bruteforce”.
For example, if a chunk is within the pattern “dictionary”, the entropy is esti-
mated as the log of the rank of word in the dictionary. Additional entropy is
added if uppercase letters are used or some letters are converted into digits or
sequences (e.g. a⇒@). There are 5 embedded frequency-ordered dictionaries:

1 https://accounts.google.com/RatePassword.

https://accounts.google.com/RatePassword
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7140 passwords from the Top 10000 password dictionary; and three dictionar-
ies for common names from the 2000 US Census. After chunking, a password’s
entropy is calculated as the sum of its constituent chunks’ entropy estimates.

entropy(pwd) =
∑

entropy(chunk i)

A password may be divided into chunks in different ways, Zxcvbn finds the way
that yields the minimal entropy and uses that.

Zxcvbn Version 2. In October 2015, a new version of zxcvbn was pub-
lished. Zxcvbn2 also divides a password into chunks, and computes a password’s
strength as the “minimal guess” of it under any way of dividing it into chunks.
A password’s “guess” after being divided into chunks under a specific way is:

l! ×
l∏

i=1

(chunki.guesses) + 10000l−1

where l is the number of the chunks. The factorial term is the number of ways
to order l patterns. The 10000(l−1) term captures the intuition that a password
that has more chunks are considered stronger. Another change in the new version
is that if a password is decomposed into multiple chunks, the estimated guess
number for each chunk is the larger one between the chunks’ original estimated
guess number and a min guess number , which is 10 if the chunk contains only
one character or 50 otherwise. While these changes are heuristic, our experimen-
tal results show these changes cause significant improvements under our methods
of comparison.

Hybrid Method. Observing the promising performance of dictionary methods
and the limited number of passwords covered (see Sect. 5.2 for details), we pro-
pose a hybrid PRA which combines a blacklist PRA with a backoff model. In
the hybrid PRA, we reject passwords belonging to a blacklist dictionary or with
low scores using the backoff model. To make the size of the PRAs consistent, we
further limit the size for both dictionary and backoff model. We chose to use a
dictionary containing 30 000 words, which takes less than 300KB. In order to
keep the total size of the model consistent, we used MCB2000 and MCB1000 for
English datasets and Chinese datasets, respectively.

4 Data Cleansing

Poor Performance of PRAs on Chinese Datasets. In our evaluation com-
paring PRAs, we observe that almost all PRAs perform poorly on some Chinese
dataset.

Figure 1 shows the results of an β-Residual Strength Graph(β-RSG) evalua-
tion on Xato (an English dataset) and 178 (a Chinese dataset). A point (x, y)
on a curve means if we want to reject top x passwords from a PRA, the residual
strength is y. It is clear that the residual strength for 178 is much lower than that
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Fig. 1. β-Residual Strength Graph(β-RSG) on original Xato and 178 datasets. A point
(x, y) on a curve means if we want to reject top x passwords from a PRA, the strength
of the remaining passwords is y.

of Xato. In 178 , even if 1 million passwords are rejected, the residual strength
is around or lower than 8 for all PRAs we examined, which means the average
of the remaining top 10 passwords’s probability is as high as 1

28 ≈ 0.39%. We
found that 12 out of the top 20 passwords in 178 were not among the first million
weakest passwords for any PRA. This led us to investigate why this occurs.

Evidences of Suspicious IDs. We found that the dataset contains a lot of sus-
picious account IDs which mostly fall in to two patterns: (1) Counter : a common
prefix appended by a counter; (2) Random: a random string with a fixed length.
Table 2 lists some suspicious accounts sampled from the 178 dataset, which we
believe were created either by a single user in order to benefit from the bonus
for new accounts, or by the system administrator, in order to artificially boost
the number users on the sites. Either way, such passwords are not representative
of actual password choices and should be removed.

Table 2. Examples of IDs in 178 Dataset.

Password Counter IDs (sampled) Random Ids (sampled)

zz12369 badu1; badu2; . . .; badu50 vetfg34t; gf8hgoid; vkjjhb49; 5t893yt8;
9y4tjreo; 09rtoivj; kdznjvhb

qiulaobai qiujie0001; qiujie0002; . . .;
qiujie0345

j3s1b901; ul2c6shx; a3bft0b8;
wzjcxytp; 7fmjwzg2; 0ypvjqvo

123456 1180ma1; 1180ma2; . . .;
1180ma49

x2e03w5suedtu; 7kjwddqujornc;
inrrgjhm2dh8r; 3u2lnalg91u9i;

Suspicious Account Detection. We detect and remove suspicious passwords
(accounts) using the user IDs and email addresses. Yahoo and Duduniu datasets
only have email address available. We first remove the email provider, i.e., the post-
fix starting from @, and then, treat the prefix of email addresses as account IDs.
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Table 3. Model size of Markov Model
with backoff using different frequency
threshold.

Train Frequency Threshold

25 200 500 1000 1500 2000

RockYou 18M 3.4M 1.7M 1M 712K 556K

Duduniu 7.8M 1.5M 604K 368K 268K 200K

Table 4. Number of accounts removed.

Dataset Yahoo Xato Duduniu CSDN 178

Removed 232 9577 9796 69317 1639868

Total 434131 9148094 7304316 6367411 8434340

Rockyou and Phpbb datasets are excluded in the following analysis, as we do not
have access to user IDs/emails.

We identify Counter IDs utilizing Density-based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [17]. DBSCAN is a density-based clustering algo-
rithm. It groups together points that are closely packed together (a brief overview
of DBSCAN is provided in Appendix A). In our case, each ID is viewed as a
point, and the distance between two IDs are measured by the Levenshtein dis-
tance, which measures the minimum number of single-character edits. Given a
password, we first extract all the corresponding IDs in the dataset, and then
generate groups of IDs, where the IDs in the same group share a common prefix
with length at least 3. The grouping is introduced to reduce the number of points
to be clustered, as calculating pairwise distance of a large number of data points
is slow. Next, we apply DBSCAN with ε = 1 and minPts = 5 to each group.
Finally, we label all IDs in clusters with size at least 5 as suspicious.

Random. IDs are identified based on probabilities of IDs, which are calculated
utilizing a Markov Model. Intuitively, Random IDs are ids whose probabilities
are “unreasonably small”. Observing that Random IDs are generally with the
same length and the probabilities of IDs can be approximated by lognormal
distribution (see Appendix B), we perform “fake” account removal for IDs with
the same length based on − log p, where p is probabilities of IDs. Note that in a
normal distribution, nearly all values are within three standard deviations of the
mean (three-sigma rule of thumb), we therefore, believe μ + 3σ is a reasonable
upper-bound for “real” IDs, where μ and σ are mean and standard deviation of
− log p, respectively.

In addition, if most of the IDs corresponding to a high-frequency password
P in dataset D are detected as suspicious, and P does not appear in password
datasets other than D, we remove all accounts associated with the P .

Table 5. Top 5 Passwords with Most Accounts Removed. pwdr/o means the original
count of pwd in the dataset is o, and r accounts are removed.

Rank Yahoo Xato Duduniu Csdn 178

1 1a1a1a1b131/131 klaster1705/1705 aaaaaa3103/10838 dearbook44636/44636 qiulaobai57963/57963

2 welcome101/437 iwantu885/885 1111111203/21763 xiazhili3649/3649 wmsxie12348258/49162

3 - 1232323q450/450 1234561076/93259 123456782222/212743 12345647536/261692

4 - galore393/393 9958123461/3981 1234567891482/234997 w2w2w235762/35762

5 - wrinkle1243/243 a5633168457/457 111111111301/76340 wolf863731909/31909



Comparing Password Ranking Algorithms on Real-World Password Datasets 81

Results of Cleansing. Table 4 lists the number of suspicious accounts removed.
In general, the suspicious accounts count for a small portion in English and
Duduniu datasets. However, the number of suspicious accounts detected in
CSDN and 178 datasets are significantly larger. In 178 dataset, about one fifth
accounts are suspicious. Table 5 lists the top 5 passwords with most accounts
removed in each dataset. Despite the accounts correspond to uncommon pass-
words, a significant number of accounts with popular passwords, such as 123456,
are removed as well. Evidences suggest that some datasets contain many waves of
creation of suspicious accounts, some using common passwords such as 123456,
as illustrated in Table 2.

5 Experimental Results

5.1 Experimental Datasets and Settings

We evaluate PRAs on seven real-world password datasets, including four datasets
from English users, Rockyou [1], Phpbb [1], Yahoo [1], and Xato [10], and three
datasets from Chinese users, CSDN [2], Duduniu, and 178 .

Some PRAs require a training dataset for preprocessing. For English pass-
words, we train on Rockyou and evaluate on (1) Yahoo + Phpbb; (2) Xato, as
Rockyou is the largest password dataset available. We combine Yahoo and Phpbb
datasets because the size of them are relatively small. For Chinese passwords,
the evaluation was conducted on any pair of datasets. For each pair, we trained
PRAs on one dataset and tested on the other. Because of the page limit, we only
present results of using Duduniu as the training dataset.

Probabilistic Password Models. For all probabilistic password models we
evaluate, we generate 108 passwords following the descending order of proba-
bilities. The order of the password generated is essentially the ranking of the
password in the corresponding PRA.

Blacklist PRAs. We directly use the training dataset as blacklist. Namely, in
the PRA, the ranking of a password is the order of its frequency in the training
dataset. We vary the size of blacklist by removing the lowest-rank passwords in
order to adjust the number of passwords rejected.

Zxcvbn. Zxcvbn was designed to evaluate entropy for passwords from English
speaking users only. When applied to Chinese datasets, we modify it by adding
a new dictionary of Chinese words. In addition, we implemented a password
generator which generate passwords in the order of entropy measured by the
model. The implementation details are in Appendix C.

5.2 Experimental Results

Figure 2 illustrates the Guess Number Graph (GNG), the β-Residual Strength
Graph (β-RSG), and the Normalized β-Residual Strength Graph (β-NRSG) eval-
uated on Xato and 178 datasets. The corresponding training datasets are Rock-
you and Duduniu, respectively. The evaluation on the other datasets leads to
similar results.
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Fig. 2. The Guess Number Graph (GNG), the β-Residual Strength Graph (β-RSG),
and the Normalized β-Residual Strength Graph (β-NRSG) evaluated on Xato and 178
datasets.
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Figure 2(a) and (b) show the evaluation of the Guess Number Graph (GNG).
Both Client-end and Server-end PRAs, except Google’s password strength
assessment from which we are not able to generate passwords, are measured.
We do not plot the Blacklist PRA with limited size, as it overlaps with the reg-
ular Blacklist PRA. We plot scatter points for zxcvbn to avoid ambiguity, since
it generates multiple passwords with the same entropy. A point (x, y) on a curve
means that y percent of passwords in the test dataset are included in the first x
guesses.

Figure 2(c) and (d) illustrate the β-Residual Strength Graph (β-RSG) for
β = 10. In the evaluation, we vary the number of passwords rejected x in PRAs
(i.e., passwords ranked as top x are not allowed). In the figures, a point (x, y)
on a curve means if we want to reject top x passwords from a PRA, the residual
strength is y. For a fixed x, a larger y indicates smaller portion of accounts will be
compromised within β guesses after rejecting x passwords. Comparing Fig. 1(b)
and Fig. 2(d), we can observe that the performance of PRAs on cleansed data
significantly boost, which confirm the need of data cleansing.

The Normalized β-Residual Strength Graphs (β-NRSG) for Server-end PRAs
are illustrated in Fig. 2(e) and (f), and the Client-end PRAs’ evaluation is shown
in Fig. 2(g) and (h). In addition to PRAs compared in GNG and β-RSG, we
evaluate the effect of composition policies and Google’s password strength API
as well. Three commonly used composition rules are examined. Composition rule
1 is adapted by Ebay.com, which ask for at least two types of characters from
digits, symbols and letter. Composition rule 2 is adapted by Live.com, which also
ask for two types of characters, but it further split letters into uppercase and
lowercase letters. Composition rule 3 is adapted by most of the online banking
sites (e.g. BOA). At least one digit and one letter are required.

Server-end PRAs. In general, Server-end PRAs (Blacklist, MC5, MCB25,
Combined) outperform Client-end PRAs (Hybrid, MC3, MCB1500/MCB500),
which confirms that a PRA’s accuracy grows with the size of its model, and
Server-end PRAs are recommended for websites where security is one of the
most important factors, e.g., online banks.

The Google password strength API, which is only evaluated in β-NRSG
(Fig. 2(e) and (f)) is the top performer on both English and Chinese datasets.
The three points from left to right in each graph illustrate the effect of forbidding
passwords whose score is no larger than 1, 2, and 3, respectively. In practice, all
passwords with score 1 are forbidden. The high residual strength indicates that
most of the high-frequency passwords are successfully identified.

For the other Server-end PRAs, the three metrics (Fig. 2(a)-(f)) all suggest
that several PRAs including the Blacklist PRA, the Markov Model with backoff
with a frequency threshold of 25 (MCB25) [26], the 5-order Markov Model [26],
and the Combined method [34] have similar performance, and they are almost
always on the top of the graphs, which is consistent with the results in the
previous works [15,26,34].

Client-end PRAs. From Fig. 2(g) and (h), it is clear that composition rules do
not help prevent weak passwords, as the corresponding points are far below the
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other curves. In addition, the composition rules generally reject more than one
tenth of passwords in the datasets, which might lead to difficulty and confusion
in password generation, and is not appropriate.

Among the other Client-end PRAs, the Blacklist PRA outperform the others
when the number of passwords rejected is small. However, because of the lim-
ited size, the small blacklist can only cover a small proportion of passwords (less
than 10,000) in the testing dataset. The reduced-size Markov models (MC3 and
MCBc) perform significantly worse than the corresponding Server-end models
(MC5 and MCB25), especially when the number of passwords rejected is rela-
tively large. The low order Markov models cannot capture most of the features
in the real passwords distribution and the strength measurement is not accurate.
MCBc performs similar to the Blacklist PRA when x is small, as the frequencies
of the most popular patterns are high enough to be preserved, with the cost of
losing most of the other precise information. As a result, the performance of
MC3 is better than MCBc with the growth of x.

A noticeable improvement of zxcvbn2 over zxcvbn1 can be observed in all the
three metrics (Fig. 2(a)-(d), (g), and (h)). The figures also suggest that zxcvbn is
not optimized for passwords created by non-English speaking users, as the per-
formance of the PRAs significantly drops in the evaluation on Chinese datasets.

The Hybrid Method. Observing the promising performance of Blacklist meth-
ods and the limited number passwords covered in the testing dataset, we pro-
pose a hybrid PRA which combines a blacklist PRA with a backoff model. In
the Hybrid PRA, we first reject passwords based on the order in the Blacklist,
and apply the backoff model after the Blacklist is exhausted. To make the size of
the PRA consistent, we further limit the size for both the Blacklist and Markov
Model with backoff. We set the frequency threshold to 2000 for the English pass-
word datasets and 1000 for the Chinese password datasets (see Table 3 for model
sizes). We further reduce the size of the Blacklist to 30,000 words, resulting in a
dictionary smaller than 300 KB. The total size of the hybrid model is less than
800KB. The figures (Fig. 2(a)-(d), (g), and (h)) show that the hybrid method
inherits the advantage of Blacklist PRA and Markov Model with backoff. Hybrid
method can accurately reject weak passwords, and can provide a relatively accu-
rate strength assessment for any passwords. As a result, it is almost always on
the top of all client-end PRAs, and is even comparable with Server-end PRAs
in β-RSG and β-NRSG measurements.

Differences Among the Three Metrics. Table 6 lists the y values in GNG
and β-RSG when x = 104 and x = 106. From the table, we can observe that
although the percentage of passwords cracked by PRAs significantly increase
from when rejecting ten thousand passwords to when rejecting one million pass-
words, the difference between y values in β-RSG is limited, especially for the top-
performing PRAs, such as the blacklist method. The different behavior between
GNG and β-RSG indicates that the percentage of passwords cracked, which is
shown in GNG, cannot infer the residual strength, which is the observation from
β-RSG. A high coverage and a low coverage in password cracking might result
in similar residual strength, as the most frequent remaining passwords might
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Table 6. y values of GNG and β-RSG when x = 104 and x = 106. Y+P stands for
Yahoo + Phpbb. β = 10

English Datasets Chinese Datasets

GNG RSG GNG RSG

Dataset Y+P Xato Y+P Xato CSDN 178 CSDN 178

x 10K 1M 10K 1M 10K 1M 10K 1M 10K 1M 10K 1M 10K 1M 10vK 1M

MC5 14% 34% 13% 36% 12.7 13.1 13.4 14.2 16% 26% 22% 36% 10.2 10.3 9.7 10.9

MC3 7.3% 21% 6.9% 24% 11.5 12.4 12.1 12.8 13% 23% 18% 33% 9.7 9.9 9.1 10.2

MCB25 16% 35% 14% 36% 12.8 13.2 13.5 13.9 17% 27% 23% 36% 10.3 10.4 9.9 10.4

MCBc 11% 22% 10.0% 25% 12.6 12.7 12.8 12.9 16% 25% 21% 33% 10.1 10.3 9.3 10.2

zxcvbn 0.7% 1.4% 0.5% 1.3% 10.1 10.8 10.0 11.0 0.1% 3.5% 0.3% 3.4% 6.6 7.1 7.0 7.5

zxcvbnv2 2.5% 13% 2.4% 13% 11.2 12.8 11.3 13.3 3.5% 11% 4.8% 9.8% 7.1 8.9 7.8 8.1

Blacklist 16% 38% 14% 38% 12.8 13.3 13.5 14.3 17% 26% 23% 35% 10.3 10.3 10.0 10.4

PCFG 2.2% 22% 3.9% 29% 10.2 11.9 10.6 12.0 16% 21% 15% 24% 9.7 9.8 8.3 8.7

Hybrid 16% 27% 14% 29% 12.8 13.0 13.5 13.9 17% 25% 23% 34% 10.3 10.3 10.0 10.4

Combined 13% 36% 13% 37% 12.8 13.2 13.2 14.3 17% 27% 22% 36% 10.3 10.3 9.5 10.5

be similar. The result from the table confirms that if the thread model is online
guessing attacks in which the number of attempts allowed by an adversary is lim-
ited, GNG cannot accurately measure the crack-resistency of PRAs, and β-RSG
is a more appropriate metrics in this use case. The low marginal effect in β-RSG
also indicates that websites might not need to reject too many passwords if the
major concern is online guessing attacks.

From Fig. 2, perhaps the most noticeable difference among the metrics is
the relative order of the PCFG method, two versions of zxcvbn, and the Hybrid
method, comparing with the other Client-end PRAs.

The PCFG method performs reasonably well in GNG, but poorly in β-RSG
and β-NRSG. While PCFG can cover many passwords in the testing datasets,
which leads to the low total density of passwords not cracked in GNG, some of the
high-frequency passwords remain uncovered. As a result, the residual strength
of PCFG is lower than most of the other PRAs.

On the other hand, the hybrid method and zxcvbn2 perform much better
in β-RSG and β-NRSG than in GNG. Although the high-ranking passwords in
the PRAs only include a relative low number of unique passwords in the testing
datasets, the popularly selected passwords are mostly covered. Therefore, after
rejecting the top-ranking passwords from the PRAs, an adversary can only break
into a limited number of accounts within a small number of guesses, which results
in a high residual strength.

Another observation is that the performance of the two zxcvbn PRAs, espe-
cially zxcvbn2 significantly boost in β-NRSG comparing with that in β-RSG.
The residual strength resulted by zxcvbn2 is even higher than the size-limited
Markov Models (MC3 and MCBc). The observation indicates that the relative
poor performance of zxcvbn in β-RSG is mainly due to the penalization from the
large number of passwords, which are extremely not likely to be used, generated.
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Overall, several Server-end PRAs including the Blacklist PRA, the Markov
Models, and the Combined method result in similar performances. The hybrid
method, which inherits the advantage of Blacklist PRAs and Markov Model with
backoff, outperform the other Client-end PRAs.

6 Conclusion

In this paper, we model different password strength checking methods (includ-
ing password strength meters) as Password Ranking Algorithms (PRAs), and we
introduce two metrics: the β-Residual Strength Graph (β-RSG) and the Normal-
ized β-Residual Strength Graph (β-NRSG), to compare them using real world
password datasets. In our evaluation, we find unreasonably high frequency of
some suspicious passwords. We remove the associated accounts by identifying
suspicious account IDs. We then, apply the metrics on cleansed datasets, and
show that dictionary-based PRA has similar performance with the sophisticated
PRAs. If the size of PRAs are limited in order to be fit into a client, a hybrid
method combining a small dictionary of weak passwords and a Markov Model
with backoff with a limited size can provide the most accurate strength mea-
surement.

Acknowledgement. This paper is based upon work supported in part by an IBM
OCR grant from IBM Research.

A DBSCAN

DBSCAN [17] is a density-based clustering algorithm. It groups together points
that are closely packed together. DBSCAN requires two parameters: ε and
the minimum number of points required to form a dense region minPts. It
starts with an arbitrary starting point that has not been visited. This point’s
ε−neighborhood is retrieved, and if it contains sufficiently many points, a cluster
is started. Otherwise, the point is labeled as noise. Note that this point might
later be found in a sufficiently sized ε−environment of a different point and hence
be made part of a cluster. If a point is found to be a dense part of a cluster,
its ε−neighborhood is also part of that cluster. Hence, all points that are found
within the ε−neighborhood are added, as is their own ε−neighborhood when
they are also dense. This process continues until the density-connected cluster is
completely found. Then, a new unvisited point is retrieved and processed, lead-
ing to the discovery of a further cluster or noise. Please refer to [17] for more
details.

B Lognormal Distribution in Entropy of IDs

Figure 3 shows CDF of − log10 p of all IDs with length 10, which is the most
frequently chosen ID length, from the 5 datasets containing IDs. For each dataset,
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Fig. 3. CDF of − log10 p. The dashed lines are CDF of normal distribution with the
same mean and standard deviation

we calculate probabilities of IDs utilizing 5-order Markov Model trained on itself.
The dashed lines in the graph illustrate CDF of normal distribution with the
same mean and standard deviation as the corresponding distribution. The figures
show that except 178 dataset, the distributions fits relatively well, especially for
English datasets. The difference between the distribution from Chinese datasets,
178 in particular, and the corresponding normal distribution is larger, we believe
the distribution is biased by the problematic IDs.

C Zxcvbn Password Generation and Modification

Password Generation. Zxcvbn was designed to evaluate password strength
only. We implemented a password generator following the logic, which takes an
input as the maximum entropy, and generate all passwords whose entropy is
less than that value. The password generation is a recursive depth-first search
process. We start from an empty string. In each iteration, we append a chunk
to the current string. If the current entropy is less than the maximum entropy
allowed, we record the password, and continue the recursion process. Note that
we might duplicated generate passwords as each password might have multiple
ways to be decomposed into patterns. Therefore, after the password generation,
we conduct a further post-processing step. If a password appears multiple times,
we keep the one with the lowest entropy, and then sort all the unique passwords
based on entropy.

In practice, an integer score from 0 to 4 is calculated from entropy and each
value is assigned with a description (e.g., Weak, Medium, Strong). Passwords
with entropy less than 20 are assigned with a score is 0, and are usually rejected.
We first tried to create all passwords within 20-bits of entropy. However, after
1 billion attempts, we still have not finished generating passwords start from
“mary”, which is the first word in female names dictionary. The number of
passwords considered as weak by zxcvbn is much larger than any of the known
weak password dictionary. Alternatively, we generated 10,478,853 unique pass-
words with entropy less than 4 for zxcvbn1, and 1,834,980 unique passwords with
entropy less than 12 for zxcvbn2.

Adapting Zxcvbn to Chinese Datasets. Zxcvbn is originally designed for
English speaking users, as it supports English words only [38]. In order to adapt
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the method for evaluating Chinese passwords, we create another dictionary for
evaluating Chinese passwords. We construct such a Chinese dictionary using
the Duduniu dataset. For each password in Duduniu, we first split the word into
chunks based on character types, e.g. letters, digits, and symbols. We then, count
the frequency of letter chunks after turning all letters into lower cases. Finally,
we generate the dictionary by outputing all the letter chunks that contains at
least three characters and with frequencies of at least 100 in the descending order
of their frequency. There are 5,553 words in the dictionary.

Table 7. Top 20 words in the new dictionary for zxcvbn.

Rank Words

1–10 asd woaini wang abc zhang liu qwe love qaz yang

11–20 chen zxc aaa wei www long lin xiao aaaaaa huang

Table 7 lists the first 20 words in order. Most of the common words used
are the syllables of last names in Chinese, e.g. wang, zhang, liu, etc. The rest
of them are either keyboard patterns or letter sequences. Not many English
words appears in the dictionary. There are many three letter combinations in
the dictionary, such as wjq, ljh, zjh. We believe these are initials of the syllables
in Chinese names. There is no need to construct separate name dictionaries as
the most common names are already covered.

We were able to generate 9,316,973 passwords with entropy less than 3 for
zxcvbn1, and 1,913,061 unique passwords with entropy less than 12 for zxcvbn2.
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