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Abstract. The verification of security compliance with respect to secu-
rity standards and policies is desirable to both cloud providers and users.
However, the sheer size of a cloud implies a major challenge to be scalabil-
ity and in particular response time. Most existing approaches are either
after the fact or incur prohibitive delay in processing user requests. In
this paper, we propose a scalable approach that can reduce the response
time of online security compliance verification in large clouds to a prac-
tical level. The main idea is to start preparing for the costly verification
proactively, as soon as the system is a few steps ahead of potential oper-
ations causing violations. We present detailed models and algorithms,
and report real-life experiences and challenges faced while implementing
our solution in OpenStack. We also conduct experiments whose results
confirm the efficiency and scalability of our approach.

Keywords: Proactive compliance verification · Cloud security · Audit-
ing · OpenStack

1 Introduction

The widespread adoption of cloud computing as the replacement of traditional
IT solutions is still being hindered by various security concerns [5]. In particu-
lar, the multi-tenant and self-service nature of clouds usually implies significant
operational complexity, which may prepare the floor for misconfigurations and
vulnerabilities leading to violations of security compliance. Therefore, the secu-
rity compliance verification w.r.t. security standards, policies, and properties,
is desirable to both cloud providers and users. Evidently, the Cloud Security
Alliance (CSA) has recently introduced the Security, Trust & Assurance Reg-
istry (STAR) for security assurance in clouds, which defines three levels of cer-
tifications (self-auditing, third-party auditing, and continuous, near real-time
verification of security compliance) [7].
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However, the sheer size of clouds (e.g., a decent-size cloud is said to have
around 1,000 tenants and 100,000 users [23]) implies one of the main challenges
in verifying security compliance, specifically the scalability and response time.
To that end, existing approaches can be roughly divided into three categories (a
more detailed review of related work will be given in Sect. 6). First, the retroactive
approaches (e.g., [17,18]) catch compliance violations after the fact, which means
they cannot prevent security breaches from propagating or causing potentially
irreversible damages (e.g., leaks of confidential information or denial of service).
Second, the intercept-and-check approaches (e.g., [3,21]) verify the compliance
of each user request before either granting or denying it, which may lead to
a substantial delay to users’ requests, as will be further illustrated later in this
section. Third, the proactive approaches in [3,21] verify user requests in advance,
which, however, assume the sequence of such requests is known beforehand.

In this paper, we propose a scalable approach for proactive verification of
security compliance in large clouds, by avoiding the limitations of the last two
approaches mentioned above (i.e., intercept-and-check and proactive). Specifi-
cally, unlike both existing approaches, we start to prepare for the costly verifi-
cation proactively, as soon as the system is N -step (N is an integer) ahead of
the operations causing compliance violations (namely, critical operations), such
that the actual verification of critical operations is reduced to a simple search in
a pre-computed table (namely, watchlist), causing negligible delay.

To illustrate the idea, Fig. 1 compares how user requests are processed under
a typical intercept-and-check approach and under our solution, respectively. In
the upper timeline, an intercept-and-check approach intercepts and then verifies
the update port user request against the desired security property1. The state of
the art, as reported in [3], would take over four minutes for checking the current
cloud (medium-size) state to determine whether the request should be granted
or denied. Extrapolating such a result to a larger cloud would result in hours
of delay, which is clearly infeasible. On the other hand, as depicted in the lower
timeline, our approach works very differently. It proactively conducts a set of pre-
computations distributed among N -steps ahead of the actual occurrence of the
critical operation (update port). These pre-computations incrementally prepare
the needed information for efficiently verifying the critical operation later on,
and consequently the actual verification only takes six milliseconds, instead of
four minutes [3], as shown in the timeline.

The main contributions of our paper are as follows:

– To the best of our knowledge, the proposed proactive verification approach is
the first solution that can reduce the response-time of online security compli-
ance verification in large clouds to a practical level (e.g., the response time is
about 8.5 ms for a large cloud with 100,000 virtual ports).

– We devise dependency models to capture the relationships between various
management operations and related security properties, for both the identity

1 Here we consider the “no bypass” security property for the anti-spoofing mechanisms
in the cloud, which can be violated by real world vulnerabilities (e.g., OpenStack
vulnerability [20]).
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and access management service and the virtualized infrastructure in clouds,
which serve as the foundation of our approach.

– We provide detailed methodology and algorithms. We also report real-life
experiences and challenges faced while implementing our solution in Open-
Stack [22].

– We conduct experiments to evaluate the performance of our solution, and the
results confirm the efficiency and scalability to be practical for large clouds.

– Finally, our solution goes inline with the continuous monitoring-based certi-
fication, which is the most demanding level specified by CSA [7].

Fig. 1. Comparison of the execution time of our solution with the intercept-and-check.

The paper is organized as follows. Section 2 describes the threat model fol-
lowed by our running example and the dependency models for the virtualized
infrastructure, and for the access control management service. Section 3 details
our methodology. Section 4 provides the implementation details and experimen-
tal results. Section 5 discusses different aspects of our approach. Section 6 sum-
marizes related works and compares them with our approach. Section 7 concludes
the paper providing future research directions.

2 Models

Here, we give the threat model and present the dependency models.

2.1 Threat Model

We assume that the cloud infrastructure management systems (a) may be trusted
for the integrity of the API calls, event notifications, and database records (exist-
ing techniques on trusted computing may be applied to establish a chain of trust
from TPM chips embedded inside the cloud hardware, e.g., [1]), and (b) may
have implementation flaws, misconfigurations and vulnerabilities that can be
potentially exploited by malicious entities to violate security properties specified
by the cloud tenants. The cloud users including cloud operators and agents (on
behalf of a human) may be malicious.

Though our framework may catch violations of specified security properties
due to either misconfigurations or exploits of vulnerabilities, our focus is not



50 S. Majumdar et al.

to detect specific attacks or intrusions. We assume that, before our proactive
approach is launched, an initial auditing is performed and potential violations are
resolved. However, if our solution is added from the commencement of a cloud,
obviously no prior security verification is required. This work focuses on attacks
directed through the cloud management interfaces and more specifically cloud
management operations (e.g., create/delete/update tenant, user, VM, etc.). Any
violation bypassing the cloud management interface is beyond the scope of this
work. To make our discussions more concrete, the following shows an example
of in-scope threats based on a real vulnerability.

Running Example. Real world vulnerabilities such as the one in Open-
Stack [20]2, can be exploited to bypass anti-spoofing mechanisms. These mecha-
nisms are implemented in OpenStack using firewall rules enforcing tenants’ layer
3 network isolation. Figure 2 shows the attack scenario to exploit this vulner-
ability. The exploit consists in changing the device owner (step 3 in Fig. 2) of
an instance’s port to a string starting with the word network, right after the
instance is created (steps 1 & 2) and just before security group gets attached to
it (race condition). As a result, the firewall rules of the compute node are not
applied to that port, since it is treated as a network owned port. Consequently,
a malicious tenant can launch IP, MAC, and DHCP spoofing attacks (step 4).

Fig. 2. An exploit of a vulnerability in OpenStack [20], leading to bypassing the anti-
spoofing mechanism.

2.2 Dependency Models

Figure 3 illustrates the two dependency models that we derive for an OpenStack-
managed cloud covering virtual infrastructure (Fig. 3(a)) and user access control
(Fig. 3(b)). Each dependency model can be used for proactively auditing multi-
ple security properties. We validate these dependency models based on extensive
study of OpenStack APIs from different related OpenStack services (e.g., Neu-
tron, Nova, and Keystone) and Open vSwitch. For the user access control model,
2 OpenStack [22] is an open-source cloud infrastructure management platform.
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Fig. 3. Dependency models: (a) cloud infrastructure and (b) access control
management.

we are inspired by the OSAC model by Tang et al. [32]. To better explain the
usefulness of these models, we start by providing an example on how the cloud
infrastructure dependency model (see Fig. 3(a)) allows us to relate actual man-
agement operations/events happening in the cloud to the “no bypass” security
property presented in Sect. 2.1.

Example 1. According to the attack scenario presented in Fig. 2, the critical
management operation that leads to the violation of the “no bypass” security
property is update port. The model in Fig. 3(a) includes port (vertex 15) and
VM (vertex 17). The vertex 16 is a specific vertex grouping a port and a sub-
net pair. The update port operation is related to the entity port (vertex 15 in
Fig. 3(a)). As it can be seen in Fig. 3(a), update port depends on other oper-
ations such as create port (edge (12,15)) and create VM (edge 16, 17).
More precisely, create VM attaches a port (vertex 15) on a subnet (vertex
14) to a VM (vertex 17).

As the create port and create VM operations are closely related to the
actual critical operation (update port), our model captures this dependency
relationship and aids to avoid the security violation by starting preparation from
the create port operation. Furthermore, these operations in turn depend on
the existence/creation of a subnet, a network and a tenant. This induces a chain
of dependencies between a set of events that could be related to this security
property.

Formally, the dependency model is a graph G = (V,E), where vertices
Vi are individual cloud entities (e.g., user, role, tenant, port, VM, etc.) or
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groups of entities (e.g., (port, subnet) pair) and edges Eij are dependency
relationships between connected vertices. These relationships are activated by
events/operations in the cloud (e.g., create/delete port, attach VM to a (port,
subnet) pair, etc.). We use edges’ attributes to store information on which secu-
rity property are associated with the events that are related to the edge and on
the type of this event per property. We define four kinds of relationships. We
use different types of edges (unidirectional, bidirectional, or non-directional) to
differentiate the following relationships based on their semantics.

– Precedence relation, represented by a unidirectional edge, such that Eij =
(Vi, Vj) denotes that the entity Vi must exist before being able to create
entity Vj within Vi.

– Association relation, represented by a bidirectional edge, such that Eij =
(Vi, Vj) denotes that entities Vi and Vj should both exist (i.e., created) to be
able to make any association between them.

– Mapping relation, represented by a non-directional edge, such that Eij =
{Vi, Vj} denotes a correspondence relationship between entities Vi and Vj

existing in different layers in the cloud.
– Reflexive relation (not represented in the graph), representing a relation from

a node to itself such as updating attributes of the node.

We leverage the knowledge captured by these dependencies to appropriately
identify the intercepted events, relate them to the security property, identify
their roles in the context of proactive compliance verification, and determine
the distance to a critical state. More details are provided in Sect. 3. It is worth
noting that these models are static and do not depend on the execution context
of the cloud. They consist of a relatively small set of entities and relationships.
For example, for Neutron, Nova, and Keystone services, we enumerated only 86
different entities and about 400 events that are relevant to configuration changes
and management.

Table 1 enlists an excerpt of the security properties supported by the cloud
infrastructure dependency model. Here, we categorize events mainly into two
types: critical event (CE) and watchlist event (WE). A CE (e.g., update port)
potentially leads to the violation of the associated property. A WE corresponds to
an event that impacts the content of the watchlist associated with the security
property (e.g., create port and create VM). The third type of event is the
trigger event (TE), which is neither critical nor watchlist-related, however is
useful to determine the distance to a critical state. Note that an event may have
multiple types considering different security properties. For example, create
VM is a WE event for the no bypass property, but it is of type CE for the no
co-residency property.

3 Proactive Verification of Security Compliance (PVSC)

In this section, we detail our solution to proactively verify security violation and
enforce compliance in the cloud.
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3.1 Overview

We devise a novel approach, namely Proactive Verification of Security Compli-
ance (PVSC ), that proactively conducts a set of pre-computations distributed
along N-step ahead of the occurrence of a critical operation, where N is a para-
meter tailored for each considered security property and defined as the expected
minimal distance to a critical state, which corresponds to the minimal number
of operations from the current state. Note that this distance is called minimal
as operations related to security properties may be interleaved with unrelated
operations. In PVSC, the pre-computations incrementally prepare the needed
conditions to preserve security compliance, and are stored in watchlists. These
watchlists are used to detect violations of security properties when critical oper-
ations are about to occur. To measure N-step and avoid state explosion, we
leverage abstract dependency models described in Sect. 2.2.

An overview of this solution is depicted in Fig. 4. Initially, data from the
dependency models and the initialized watchlists (generated with the watchlist
contents mentioned in Table 1 for each security property) are pre-computed and
stored in databases. PVSC uses this data to efficiently intercept and identify rel-
evant operations (Interceptor & Matcher) but only blocks the critical ones. This
data would be also used together with cloud context information to estimate the
minimal distance towards the violation (N-step Evaluator). By identifying the
type of intercepted operations and their impact on security properties, we elab-
orate different watchlists that are progressively updated (Watchlist Updater).
These watchlists are consulted to evaluate the impact of a critical operation
(Violation Detector). According to the later decision, the critical operation can
be realized or blocked to preserve security compliance.

Table 1. An excerpt of the security properties supported by the cloud infrastructure
model with their corresponding critical and watchlist events, and the watchlist contents.

Property Critical event (CE) Watchlist event

(WE)

Watchlist per tenant

No bypass [6] update port (15,15)
create VM (16,17)

Ports except VM ports
create port (12,15)

Port consistency [6,12] create vPort (21,20) create port (12,15) Ports at tenant layer

No abuse of resources [6]

create VM (16,17),

create vNet (14,19)

create VM (16,17),

create vNet (14,19)
Counters for VM/vNet

delete VM (16,17),

delete vNet (14,19)

Common port ownership [6] attach port to a

router (16,18)

create router (3,18) Router-tenant pair

Port isolation [6,12] add vPort to vNet

(19,20)

create vNet (14,19) vNets in a subnet

No co-residencya [6,12]
create VM (16,17), create VM (16,17) Hosts with no

migrate VM (17,22) migrate VM (17,22) conflicting VMs
aThis property requires tenant-specific policy additionally
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Fig. 4. An overview of our proactive solution.

3.2 Methodology

PVSC consists of two phases: an initialization phase that is performed offline only
once and a run-time verification phase, which is performed online but proactively.

Figure 5 depicts a detailed overview of PVSC. The initialization phase is
mainly meant to pre-process data from different sources. Once the initialization
phase is completed, the run-time detection phase serves at intercepting cloud
operations, proactively finding out whether considered security properties are
about to be compromised, determining the distance N (where N is the number
of steps) towards critical states, and acting on re-enforcement towards preserving
security compliance. In the following, we describe each phase and other related
components of our approach in more details.

Initialization Phase. This phase collects initial data from the cloud infrastruc-
ture and pre-processes the data in order to prepare the ground for the run-time
phase. For each security property, all dependency models are to obtain: (i) the
involved cloud entities, (ii) the related abstract-events with their types, and (iii)
all possible values of N . Pre-computing all needed information from the depen-
dency models at the initialization phase avoids tracing the models at run-time,
which fosters better efficiency. Following we describe different tables we leverage
during the initialization phase.

– Property-WL: specifying the content of watchlist for each security property
to aid watchlist initialization.

– Event-operation: mapping events to different operations in different cloud
environment to easily integrate different cloud implementations and used as
input to the initialization phase.

– Property-N-thresholds: mapping the specified security properties and their
associated thresholds (denoted as N -th), where thresholds are security prop-
erty specific and inputs from the administrators.

– Model-event: relating each security property with the elements of the depen-
dency models including the events with their types.

– Model-N-property: storing all possible values of N (denoted as N -cp) for
each property.
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Fig. 5. A detailed overview of PVSC composed of an one-time initialization phase and
a run-time verification phase.

Example 2. Figure 6 shows the outcome of the initialization phase for the
no bypass property. The traversal of the dependency model using the identi-
fied property and searching in the attributes of the corresponding edges allow
identifying that, for the considered property, create port and create VM are
of type WE and update port is of type CE. This information is stored in
the Model-event table. Other events of type TE such as create network,
create subnet are not shown for brevity. The Event-operation table shows
that the create port event corresponds to the neutron port-create operation
in OpenStack. The minimal distance from the critical event at which our solution
should react is (N -th = 3), as shown in the Property-N-thresholds table. The
Model-N-property table stores all possible computed values of N taking into
account the security property and the dependency model. Finally, the watchlist
is initialized for the no bypass property based on data collected from the cloud.

Fig. 6. The result of the initialization phase for the no bypass property.
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Fig. 7. A part of the cloud infrastructure dependency model annotated with all possible
values of N that is relevant to the no bypass property.

For each tenant, the watchlist is populated with the list of virtual ports that are
not attached to a VM as in the Property-WL table.

Precomputation of N consists in traversing the dependency graph for each
security property from the edge corresponding to its critical event backward
until reaching the root node of the graph, finding out all dependent events and
entities and storing precomputed values of N for each possible configuration in
the Model-N-property table. A configuration is an abstract state that allows to
determine whether the entities that the security properties depend on, actually
exist. The minimal distance to the critical event from the root node is the total
number of events that the critical event depends on. This distance represents
N -max, the maximal value of N from which we can apply our proactive app-
roach for this property. The minimum value of N is 1 and it corresponds to the
configuration where the next event to be observed is possibly the critical event.

Example 3. For the no bypass property, the Model-N-property table stores
five entries that cover all possible values of N and the associated configuration
(See Fig. 7). For instance, if only a tenant already exists (vertex 3) without yet
any network, subnet, ports, and VMs, we need to observe at least 5 events before
being able to intercept the critical event update port. If we observe an event
for the creation of network within this tenant (i.e., edge (3, 12)) without yet any
subnet, ports, and VMs, the minimal distance to see the update port event
would be N = 4. The event preceding update port is the create VM (i.e., edge
(16, 17)) event, and the minimal distance is 1.

Run-Time Computation. At run-time, our system intercepts all opera-
tion performed in the cloud, but only blocks those which are matched with
the critical events. Matching operation with an event consists in querying the
Event-operation table. For those critical events, the corresponding operations
are halted only during compliance verification, which consists in searching a
set of values (e.g., values of the operation’s parameters) in the corresponding
watchlist. The verification decision is either to allow the operation to continue
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Fig. 8. An excerpt of runtime verification of the no bypass property.

or apply the planned enforcement approach as specified by the administrator.
Being able to intercept all operations, including the non-critical ones as soon as
they are executed allows progressively updating watchlists, without impacting
the performance of the cloud. At each matched non-critical events (WE or TE),
our system updates the estimated current minimal distance to violation, namely
N -cp, for the related property using the N-step evaluator. The latter collects
contextual data from the cloud and uses it to query the table of precomputed
values of N , namely Model-N-property. When the value of the estimated cur-
rent distance to violation becomes equal to the threshold value, the watchlist
corresponding to the security property is updated using data from the cloud
regardless of the event type to ensure that its content is up-to-date, hence allow-
ing appropriate detection. For N -cp < N -th, whenever a WE-type operation is
encountered, the watchlist is directly updated using the values of the parameters
of the intercepted operations.

The N-step evaluator evaluates at run-time the value of N , whenever a
non-critical event concerning a given security property has been matched with
the intercepted operation. First, the related context data is then gathered from
the cloud to determine whether the status of the dependent entities. The evalu-
ator uses this information and the security property in focus to make a specific
query to the Model-N-property table, to collect the value of N corresponding
to the current context.

Example 4. Figure 8 illustrates the run-time workflow for the no bypass prop-
erty assuming that a tenant, a network and a subnet already exist.

To rectify the situation described in the running example, our solution incre-
mentally builds a watchlist with ports that are not attached to VMs, and verifies
the update port operation with this watchlist. Firstly, we intercept the create
port 1187 operation, identifies the event type (which is WE), and measure the
value of N (= 3) respectively from the Model-event and Property-N-threshold
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tables. Since the create port event is a WE event for the no bypass prop-
erty and evaluating N results in N -cp = N -th = 3, we add port1187 to the
watchlist without blocking it. Secondly, we intercept create VM127 attached
to port1187 operation and measure N similarly. Then, port1187 is removed
from the watchlist, as it is now attached to VM127. Finally, after intercepting the
update port(port1187, deviceOwner, network) operation and measuring N,
we identify that this is a CE event. Therefore, we verify with the watchlist with
blocking the operation, find that port1187 is not in the watchlist, and hence
PVSC recommends denial of this operation to preserve the no bypass property.

4 Proof of Concept in OpenStack

This section describes how we integrate PVSC into OpenStack and presents our
experimental results.

4.1 Implementation

We detail the implementations of both the initialization and the runtime detec-
tion phases.
Background. OpenStack [22] is an open-source cloud infrastructure manage-
ment platform that is being used almost in half of private clouds and significant
portions of the public clouds (see [8] for detailed statistics). Keystone [22] is
the OpenStack identity service for authentication and authorization. Keystone
implements the RBAC model [28]. Neutron [22] provides tenants with capabili-
ties to build networking topologies through the exposed APIs. Nova [22] is the
OpenStack project designed to provide on-demand access to compute resources,
and relies on VMs.

Initialization Phase. Firstly, we map all operations in OpenStack API [25]
corresponding to the events that are relevant to the monitored security proper-
ties. During this phase, we store our pre-computated results and tenant-specific
watchlists in a MySQL database; which allows us to efficiently query OpenStack
cloud data, which is also stored in databases. Our Python scripts derive the asso-
ciation between the model provided in Fig. 3 and the security properties, and
populate our database by adding the dependency information and the values of
the precomputed N . Additionally, we capture the current state of the OpenStack
cloud by collecting data from the Keystone, Neutron and Nova databases.

Run-Time Phase. Firstly, the Interceptor module, which is implemented in
Python, intercepts operations based on the existing intercepting methods (e.g.,
audit middleware [24]) supported in OpenStack. Events are primarily created via
the notification system in OpenStack; Nova, Neutron, etc. emits notifications in
a JSON format. Here, we leverage the audit middleware in Keystone, which
was previously supported by pyCADF [4], to intercept Keystone, Neutron and
Nova events by enabling the audit middleware and configuring filters. After
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intercepting an operation, its details (e.g., name and parameters) are processed
by our Matcher module to determine the criticality of the current operation,
and later forwarded to our MySQL stored procedures (e.g., N-step evaluator,
Watchlist updater and Violation detector). The N-step evaluator measures the
distance from any possible violation. Based on the outcome of both the Matcher
and N-step evaluator modules, any of the following is processed: (i) the Watchlist
updater adds the parameter(s) of the current operation to the watchlist database,
(ii) the Violation detector searches the current values of the parameter(s) in the
corresponding watchlist, and (iii) forward the decision (e.g., allow or deny) to
the cloud based on the enforcement options.

4.2 Experimental Results

In this section, we discuss time and memory requirements of PVSC.

Experiment Settings. All experiments are conducted on the OpenStack setup
inside a lab environment. Our OpenStack version is Liberty with Keystone API
version v3 and Neutron API version v2. There are one controller node and three
compute nodes, each having Intel i7 dual core CPU and 2 GB memory with
the Ubuntu 14.04 server. Based on a recent survey [23] on OpenStack, we simu-
lated an environment with maximum 100,000 users, 10,000 tenants, 500 domains,
100,000 VMs, 40,000 subnets, 20,000 routers and 100,000 ports. We conduct the
experiment for 10 different datasets varying the most important factor and fixing
others to the largest value, e.g., for the no bypass property, both the number
of ports (from 10,000 to 100,000 with the gap of 10,000) and the number of
tenants (from 1,000 to 10,000 with the gap of 1,000) are varied, as the content of
the watchlist is tenant-specific and a list of ports. For the common ownership3

property, the number of tenants is varied from 1,000 to 10,000 with the gap of
1,000 having 5 roles in each tenant. We repeat each experiment 100 times.

Results. The objective of the first set of experiment is to demonstrate the time
efficiency of our proactive solution. Intercepting operations to identify the type of
operation, which is the minimum time we need to black for all operations (CE and
WE, and all others), is taking constant time (0.266 ms) (INT in Fig. 9(a)). More-
over, calculating N-step (NSE in Fig. 9(a)) completes in constant time (0.133 ms
for the largest datasets) for theno bypass (NB) property, and in quasi constant time
(varying from0.773 ms to 0.794 ms) for the commonownership (CO)property.Vio-
lation detector blocks only critical operation for a maximum extra delay of 8.2 ms
(VD in Fig. 9(b)) for the largest dataset. Figure 10(a) shows the required execution
time to pre-compute the watchlists for the no bypass and common ownership prop-
erties are 5,000 ms and 5,400 ms respectively, for our largest dataset. As expected,
the watchlist pre-computation step, which involves access to the cloud databases,
requires comparatively longer time.However, this step is performedonlyduring the

3 This property allows users to hold only the roles that are defined within their
domains [6,12].
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initialization phase. Any later update of the watchlist is performed incrementally,
and takes few milliseconds. Figure 10(a) depicts the execution time for the largest
dataset (10,000 tenants and 100,000 ports), and shows that preparing watchlist is
comparatively time consuming and beneficial to perform proactively, as we spend
about 5,400 ms in preparing watchlist during initialization though the subsequent
enforcement takes only 8 ms per critical operation call at run-time.

Fig. 9. Time duration (in ms) for different modules (INT: Interceptor, NSE: N-step
evaluator, VD: Violation detector) of PVSC for the common ownership (CO) and no
bypass (NB) properties by varying the number of tenants. The number of ports is also
varied from 10,000 to 100,000, and each tenant contains 5 roles. Time required for the
steps: (a) intercepting operations, evaluating N-step, and (b) detecting violations.

In the second part of the experiment, we measure the memory cost for the
watchlists. Figure 10(b) depicts that the memory requirement increases quasi
linearly with the dataset size. We are able to restrict the watchlist size in few

Fig. 10. (a) Time required (in ms) for preparing watchlist for different properties
varying the number of tenants at the initialization step. (b) Memory requirement (in
MB) for watchlists processing for different properties by varying the number of tenants.
Number of ports is also varied from 10,000 to 100,000, and each tenant contains 5 roles.
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Table 2. Comparing execution time (in ms) between PVSC and our alternative imple-
mentation of intercept-and-check for the no bypass property.

Number of
ports

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Intercept-and-
check

60,200 107,209 184,230 237,245 317,252 357,261 407,268 437,271 455,276 480,277

PVSC 5.928 6.09 6.916 7.016 7.496 7.815 8.024 8.14 8.453 8.501

MBs by choosing the content of the watchlist carefully. Therefore, we show that
our approach improves the execution time without excessive memory costs. We
store roles and corresponding tenants for the common ownership property, and
only ports for the no bypass property.

Table 2 compares the execution time of PVSC and our alternative imple-
mentation of intercept-and-check, in which after detecting a critical event we
collect data from the cloud and start verifying security properties using a SAT
solver (e.g., Sugar [31]). We observe that verifying with the intercept-and-check
approach including data collection takes 15 seconds (for common ownership) to
8 min (for no bypass) for our largest dataset. Therefore, each critical operation
would experience long response time. Contrarily, PVSC experiences maximum
response time of 8.5 ms. Our solution only permits allowed actions, hence any
further accuracy evaluation is irrelevant.

5 Discussions

As our experiment results shown in the Sect. 4.2, PVSC can verify security prop-
erties for large size cloud in only few seconds at run time. There could be some
cases when the pre-computed information used at run-time needs to be updated.
The cases are when a change in the cloud dependency or in the cloud manage-
ment API specifications occurs, or when extending verification to new secu-
rity properties. In these cases, the PVSC initialization must be repeated. Even
though the initialization can take several minutes, this task can be executed in
parallel with run time verification and the pre-computed information updated
instantly to minimize the impact on verifications at run time. Note that there
are few cases where the pre-computation needs to be repeated and those cases
regarding management API changes in the cloud are by nature not frequent.

Our PVSC algorithm needs only few seconds for run time verifications, this
response time is satisfactory when the management operations are manually
done by the administrators. But in the case of batch execution for manage-
ment operations as described in [3], when these operations are executed in short
intervals and if the subsequent operations impact the same watchlists, then it
could imply the need for updating the same watchlists between two operations.
Figure 11 depicts how events occur before the watchlist is prepared. This watch-
list update takes some time and then increases the response time for PVSC at
run time. However, the worst case response time for watchlist preparation is less
than 6 s for the largest dataset according to our experiments. Comparing this
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Fig. 11. Our proactive analysis approach with a batch of user requests.

time with the intercept-and-check naive approach (requiring few minutes) and
Weatherman [3] (requiring few hours), we consider the costs of our approach to
be reasonable even for large data centers. As future work, to address this use
case we consider maintaining a scheduler including an event queue with differ-
ent threads for different tasks in order to prepare concurrently watchlists and
therefore reduce the response time in this case.

In this work, we cover structural properties involving cloud management
operations (e.g., creating a tenant, granting a role, assignment of instances to
physical hosts and the proper configuration of virtualization mechanisms). The
properties involving session/context specific data are not yet considered. In our
running example, if the malicious tenant can somehow successfully bypass the
firewall rules and launch a spoofing attack, our solution cannot yet detect such
spoofing attacks. As our solution relies on the information reported through the
management interface, any verification by extracting the information from the
actual infrastructure components (e.g., virtual or hardware) is not covered in
this paper and considered as a potential future work.

6 Related Work

Auditing security compliance in the cloud has recently been explored. For
instance, Solonas et al. [30] detect illegal activities in the cloud only based on
collected billing data in order to preserve privacy. In [17,18], formal auditing
approaches are proposed for security compliance checking in the cloud. Unlike
our work, those approaches can detect violations only after they occur, which
may expose the system to high risks.

VeriFlow [14] and NetPlumber [13] monitor network events and check net-
work properties and policies at runtime to capture bugs before or as soon as they
occur. They rely on incremental calculations to achieve the runtime verification.
These works focus on operational network properties (e.g., black holes and for-
warding loops) in traditional networks, whereas our effort is oriented toward
preserving compliance with structural security properties that impact isolation
in cloud virtualized infrastructures.

Various mechanisms and concepts for designing security service-level-
agreement-based cloud monitoring services have been discussed in [27]. Cloud-
Sec [11] and CloudMonatt [33] propose VM security monitoring. Our work cov-
ers a larger spectrum of properties (beyond the scope of VMs) that require
collecting data from various sources. In addition, unlike intercepting security
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measurements, we intercept multiple kinds of events and assess their impact on
the cloud system before applying them. In [26], a host-based secure active mon-
itoring mechanism, where protected hooks into untrusted VMs are installed to
intercept malicious events, is proposed. Once a malicious action is intercepted,
the control is transferred to security tools running on a trusted VM. They detect
unwanted operations initiated by malicious softwares; whereas, our contribution
is at a higher level covering events initiated by potentially untrusted users.

Proactive security analysis has been explored for software security enforce-
ment through monitoring programs’ behaviors and taking specific actions (e.g.,
warning) in case security policies are violated. Many state-based formal models
are proposed for those program monitors over the last two decades. First, Schnei-
der [29] modelled program monitors using an infinite-state-automata model
to enforce safety properties. Those automata recognize invalid behaviors and
halt the target application before the violation occurs. Ligatti [15] builds on
Schneider’s model and defines a more general program monitors model based
on the so called edit/security automata. Rather than just recognizing execu-
tions, edit automata-based monitors are able to suppress bad and/or insert new
actions, transforming hence invalid executions into valid ones. Mandatory Result
Automata (MRA) is another model proposed by Ligatti et al. [9,16] that can
transform both actions and results. Narain [19] proactively generates correct
network configurations using the model finder Alloy.

Our work further expands the proactive monitoring approach into cloud envi-
ronments differing in scope and approach.

Weatherman [3] is the most closely related work to ours. Aiming at mitigat-
ing misconfigurations and enforcing security policies in a virtualized infrastruc-
ture, Weatherman has both online and offline approaches. Their online approach
intercepts management operations for analysis, and relays them to the manage-
ment hosts only if Weatherman confirms no security violation caused by those
operations. Otherwise, they are rejected with an error signal to the requester.

The work defines a realization model, that captures the virtualized infrastruc-
ture configuration and topology in a graph-based model. The latter is synchro-
nized with the actual infrastructure using the approach in [2]. Two major limi-
tations of this proposition are: (i) the model capturing the whole infrastructure
causes a scalability issue for the solution, and (ii) the time consuming operation-
checking that should be performed on the emergence of each event, makes secu-
rity enforcement not feasible for large size data centers. Our work overcomes
these limitations using dependency models, which are not context-dependent,
and the pre-computation steps, which considerably reduce the response-time.

Congress [21] is an OpenStack project offering both online and offline pol-
icy enforcement approaches. The offline approach requires submitting a future
change plan to Congress, so that the changes can be simulated and the impacts of
those changes can be verified against specific properties. In the online approach,
Congress first applies the operation to the cloud, then checks its impacts. In case
of a violation, the operation is reverted. However, the time elapsed before revert-
ing the operation can be critical to perform some illicit actions, for instance,
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transferring sensitive files before loosing the assigned role. Foley et al. [10] pro-
vide an algebra to assess the effect of security policies replacement and composi-
tion in OpenStack. Their solution can be considered as a proactive approach for
checking operational properties violations, whereas our work targets the runtime
verification of structural security property violations.

7 Conclusion

The near-real-time and scalable verification of security compliance with respect
to security standards and policies is important to both cloud providers and
users. In this paper, we proposed a scalable proactive approach that can sig-
nificantly reduce the response-time of online security compliance verification in
large clouds. To this end, we devised dependency models to capture the relation-
ships between different virtual infrastructure and management operations based
on related security properties. We use this dependency model for incrementally
pre-compute the needed information for efficiently verify the management oper-
ations. We provided a proof of concept in OpenStack, one of the most popular
cloud management platforms. Our experiment results show our proactive app-
roach can be used for security compliance verification in large data centers with
short response time. We believe this approach based on dependency models
usage at verification time can be extended to other security properties and pro-
vide basis for new ways of handling proactive security compliance verification.

As future directions, we intend to deal with concurrent critical management
operations; which may require a parallel or distributed approach. We will also
investigate the feasibility of our solution for all security properties such as those
related to network forwarding functionality with access control lists and routing
policies.
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