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Abstract. Third-party libraries are widely used in Android applica-
tion development. While they extend functionality, third-party libraries
are likely to pose a threat to users. Firstly, third-party libraries enjoy
the same permissions as the applications; therefore libraries are over-
privileged. Secondly, third-party libraries and applications share the
same internal file space, so that applications’ files are exposed to third-
party libraries. To solve these problems, a considerable amount of effort
has been made. Unfortunately, the requirement for a modified Android
framework makes their methods impractical.

In this paper, a developer-friendly tool called LibCage is proposed, to
prohibit permission abuse of third-party libraries and protect user pri-
vacy without modifying the Android framework or libraries’ bytecode.
At its core, LibCage builds a sandbox for each third-party library in
order to ensure that each library is subject to a separate permission set
assigned by developers. Moreover, each library is allocated an isolated
file space and has no access to other space. Importantly, LibCage works
on Java reflection as well as dynamic code execution, and can defeat
several possible attacks. We test on real-world third-party libraries, and
the results show that LibCage is capable of enforcing a flexible policy on
third-party libraries at run time with a modest performance overhead.

1 Introduction

Android application developers are becoming increasingly dependent on third-
party libraries, to simplify and speed up development or improve performance.
However, when developers import third-party libraries, they often pay most
attention to what abilities third-party libraries provide, regardless of their risks.
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Third-party libraries differ from system libraries in that it is difficult to guaran-
tee their security.

Third-party libraries may pose a threat to users. First, as the permission
system of Android is application-level, when an application is installed, both the
host application and third-party libraries in it share the same permissions [1,2].
What’s worse, some libraries may request more permissions than they need to
complete their jobs [3]. This obviously violates the Principle of Least Privilege
[4,5], which suggests that every program (module) should run with the least
set of privileges necessary to complete a specific job. As a result, third-party
libraries may abuse some permissions to collect user data [6,7]. Second, the host
application and third-party libraries share the same internal storage, meaning
that third-party libraries can operate the application’s internal files, which may
lead to a privacy leak.

Several approaches have been proposed to separate third-party libraries’
permissions from the host application’s permissions. Based on process isola-
tion, some approaches [1,8–13] achieve permission separation by isolating the
untrusted third-party library into another process. Compac [2] proposes an
approach that enforces component-level access control on applications, while
enabling developers to assign different permissions to each third-party library.
FLEXDROID [14] provides in-app privilege separation for applications, with
which developers can grant permissions to third-party libraries and also spec-
ify how to change their behavior after detecting a privacy violation. However,
these pervious approaches require modifications to the Android framework or
the applications (or libraries), which determines that they cannot be adopted
widely. Aside from this, some of them are unable to solve the problem of libraries
having the ability to steal the application’s internal files.

Some work [15–17] has presented a sandbox based on application virtualiza-
tion, to enforce a fine-grained permission control on applications at run time.
However, these approaches cannot be applied to the case of third-party libraries
since they target the whole application, and make no distinction between the
host application and third-party libraries.

In this paper, we present LibCage, a friendly tool to help developers isolate
third-party libraries from the host application in terms of permission and file
space. Within the context of the host application, LibCage builds a sandbox for
each library. First, each sandbox is assigned to a permission set by developers, so
its library cannot perform privileged operations beyond these permissions. Our
prototype focuses primarily on the dangerous permissions, which may carry a
risk to user data. In fact, LibCage can be extended to support all permissions.
Second, each sandbox has its own file space, and its library cannot operate files
beyond this space. LibCage doesn’t modify the Android framework or libraries,
and thus it can be deployed widely. It also works on some unusual situations, such
as dynamic loading or Java reflection. It doesn’t require developers to modify the
existing code or change the way in which they use third-party libraries. All they
need to do is integrate LibCage into their projects, create some configurations
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and initialize LibCage. To the best of our knowledge, LibCage is the first solution
to introduce a fine-grained sandbox on third-party libraries.

The contributions of this paper can be summarized as follows:

1. We present a novel approach to isolating each third-party library in an inde-
pendent sandbox, ensuring that each library has a separate permission set and
an isolated file space. Our approach covers Java and native libraries while
eliminating the necessity of modifying the Android framework or libraries’
bytecode.

2. We implement the prototype named LibCage, using which developers can
assign a different permission set to each third-party library, and allocate each
library an isolated internal file space.

3. We systematically evaluate the generality, effectiveness and performance over-
head of LibCage. Results show that LibCage can effectively enforce a flexible
security policy on any third-party libraries while introducing an acceptable
performance overhead.

2 Android Security and Related Work

2.1 Android Security

Android provides several mechanisms to ensure the security of user data and
device resources. We describe several main mechanisms as follows.

Application Sandboxing. Android adopts the Linux sandbox mechanism.
When an application is installed, Android will give it an unique Linux user
ID (UID). Each application runs in its own isolated process and doesn’t have
the privilege to interact with other processes directly (as can happen through
IPC mechanism).

Permission System. By default, an application doesn’t have any permissions
to do privileged things, e.g., getting the location information. In order to be
privileged, an application must explicitly declare the related permissions. On
devices running Android 5.1 or lower, an application asks for users’ approval at
installation. Users either grant all the permissions to it or cancel the installation.
Once an application is installed, it can use the permissions at any time and users
can not revoke any permissions unless they uninstall it, which is called All-or-
Nothing. To remedy this situation, Android 6.0 introduces dynamic permission
assignment, which demands that an application should request permissions at
run time and allows users to revoke any permissions at any time.

File Access Control. Android devices have two file storage areas, i.e., internal
and external storage. External storage is world-readable, which means that all
applications have access to files in this storage. By contrast, internal storage
is private. When an application is installed, the system will assign an internal
storage to it and this internal storage is accessible only by this application.
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Operating files in the external storage requires the permission READ EXTERNAL S-
TORAGE or WRITE EXTERNAL STORAGE, while operating files in the internal storage
requires no permissions.

It is worth mentioning that under the current permission model, permissions
are assigned at the application level, so the incorporated libraries and the host
application have exactly the same permissions. It is impossible to grant per-
missions to only part of an application. Moreover, the libraries and the host
application share the same internal file space, and libraries’ access to internal
files is out of the system’s control.

2.2 Related Work

In this section, we describe related work in two categories: permission separation
for third-party libraries and fine-grained sandboxing for applications.

Permission Separation for Third-Party Libraries. To separate the per-
missions of third-party libraries from the host application’s permissions, several
approaches have been proposed. AdSplit [8] and AFrame [9] isolate an advertise-
ment library into another Activity (also in a different process) by extending
the Android framework. In order to display both the advertisement and the host
application, AdSplit allows two activities to share the screen, while AFrame
supports embedded activities. Leveraging bytecode rewriting, Dr. Android and
Mr. Hide [10] moves the untrusted code from the host application into another
application. Targeting advertisement libraries, AdDroid [1] integrates advertise-
ment libraries into the Android framework, introducing new advertising API and
corresponding permissions. SanAdBox [12] diverts advertisement libraries into
standalone applications with separated permissions.

Focusing on native libraries, NativeGuard [11] automatically repackages the
target application and divides it in two: the client application, which holds the
Java code and the resource; and the service application, which takes the native
libraries. NativeProtector [13] isolates native libraries in a similar way to Native-
Guard, and further performs fine-grained control of native libraries by instru-
menting them and intercepting their calls.

These approaches achieve permission separation based on process isolation.
They also provide storage isolation, ensuring the isolation of third-party libraries’
file space. By contrast, Compac [2] enforces component-level access control on
applications by extending Android’s permission model. Developers and users
can use it to assign different permissions to each component (e.g., third-party
library). Based on hardware fault isolation, FLEXDROID [14] extends Android’s
permission system to provide in-app privilege separation for applications. With
FLEXDROID, developers can grant permissions to third-party libraries and also
can specify how to control their behavior after detecting a privacy violation. How-
ever, Compac and FLEXDROID don’t provide storage isolation. Additionally,
these work (a comparison can be seen in Table 1) require either modifications
to the Android framework or the applications’ (or libraries’) bytecode, and thus
they cannot be employed widely.
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Table 1. A comparison of some related work

Target No
framework
modification

No
bytecode
rewriting

Permission
separation

Storage
isolation

AdSplit Ad lib ✗ ✓ ✓ ✓

AFrame Ad lib ✗ ✓ ✓ ✓

Dr. Android and
Mr. Hide

All libs ✓ ✗ ✓ ✓

AdDroid Ad lib ✗ ✓ ✓ ✓

SanAdBox Ad lib ✓ ✗ ✓ ✓

NativeGuard Native lib ✓ ✗ ✓ ✓

NativeProtector Native lib ✓ ✗ ✓ ✓

Compac Java lib ✗ ✓ ✓ ✗

FLEXDROID All libs ✗ ✓ ✓ ✗

LibCage All libs ✓ ✓ ✓ ✓

Fine-Grained Sandboxing for Applications. Several work has proposed
a fine-grained sandbox to constrain the run-time permissions or behaviors
of applications without modifications to the Android framework. Based on
application virtualization and process-based privilege separation, Boxify [15]
runs untrusted applications in a de-privileged, isolated process (leveraging the
isolatedProcess1 feature). AppCage [16] confines the run-time behaviors of
applications by interposing and regulating an application’s access to sensitive
APIs. Specifically, AppCage builds a dex sandbox by hooking into the appli-
cation’s instance of Dalvik Virtual Machine to confine the access to sensitive
framework APIs, and native sandbox leveraging software fault isolation (SFI)
[19] to ensure that native libraries cannot escape the sandbox. NJAS [17] loads
and executes the code of a given application within the context of a monitoring
application and achieves sandbox by means of system call interposition (using
ptrace mechanism).

However, these sandboxes cannot be applied to confining the permissions of
third-party libraries, because they target the entire application without making
any distinction between behaviors of the host application and of third-party
libraries. Apart from this, they are unable to control file access.

3 Design

3.1 Objectives

Third-party libraries are not sufficiently trustworthy, though they enable some
features and abilities developers desire. In this paper, we focus on the following
threats introduced by untrusted third-party libraries:
1 IsolatedProcess is an attribute of a service. If set to true, the service will run

under a special process that is isolated from the rest of the system and has no
permissions [18].
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T1. Permission Sharing. As discussed in Sect. 2.1, at run time, the incorpo-
rated third-party libraries and the host application share the exact same per-
missions. If a library is malicious, then it may abuse the permissions, and steal
private information. Some surveys [14] have shown that even benign libraries
may use the host application’s permissions without documenting them.

T2. File Exposure. Third-party libraries and the host application occupy the
same internal file space, so that all the internal files are exposed to third-party
libraries. This may result in untrusted libraries grabbing the application’s files,
which store the user data.

In this paper, we aim to provide a tool for helping developers eliminate the
threats above. We identify the following objectives:

O1. Permission Separation. Developers can assign permissions to each third-
party library, so that the library will not enjoy all of the host application’s
permissions.

O2. File Space Isolation. Each library is allocated an isolated internal file
space and has no access to other file space (e.g., the host application’s internal
space).

O3. No Framework or Library Modification. For greater usability, our
approach does not rely on any modifications to the Android framework or third-
party libraries.

O4. Least Manual Effort for Developers. Our approach only requires min-
imal manual effort on the part of developers, such as permission configuration.

3.2 Approach

We isolate each third-party library by creating a sandbox for it within the host
application’s context (depicted in Fig. 1). The key insight is that we add a per-
mission checker in an application, whose job is to validate a library’s permissions
when this library tries to perform a sensitive operation (sensitive operations are
those related to collecting user privacy, such as accessing the contact data). In
addition, checker is responsible for judging whether a library’s access to a file
is legal. If we detect that a library tries to perform an over-privileged operation
(i.e., an operation beyond its permissions) or access files not belonging to it,
we will block this operation. And thus we can confine the libraries’ run-time
permissions and control their file access.

The main challenge is how to monitor third-party libraries’ behaviors. Based
on system call interception, we interpose their invocations to sensitive methods
or functions (In this paper, methods mean the framework APIs and functions
refer to the system C native functions) and redirect these invocations to our mon-
itoring proxies. In this way, we can monitor all sensitive invocations of libraries.
Since the host application, libraries and our tool are in the same process, inter-
ception doesn’t rely on modification to the Android framework or the code of
these libraries (O3: �).
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Fig. 1. Our library sandbox

The next challenge we encounter is how to safely block an operation of a third-
party library. In fact, blocking an illegal operation directly will cause unexpected
results (e.g., crash of the library, or even the entire application). In our system,
we block an illegal operation in the following way. We first classify all sensitive
methods and functions into two categories by the return type (void or not). For
those methods or functions without a return result, the proxies simply return,
so that the original invocations cannot proceed. For those methods or functions
with a return result, the proxies return a mock value to avoid a crash. A mock
value will not result in a privacy leak. Thus we can prohibit a permission by
blocking the corresponding operation (O1: �).

Since external file access is controlled by permissions related to file opera-
tions, we only consider the internal file access here. In order to isolate third-party
libraries’ internal file space, we allocate each library an internal space under the
path of the application’s internal space. If this library tries to create a new file in
the application’s internal space, we will change the file’s path to its own space.
Therefore all files that belong to a library reside in this library’s internal space.
If the library attempts to access files beyond its space, we deny the attempt
(O2: �).

Having described our idea, we now present the architecture of our tool named
LibCage at a high level (depicted in Fig. 2). LibCage is composed of four entities:
Interceptor, Controller, Checker and Policy.xml file.

Fig. 2. The architecture of LibCage

Interceptor is responsible for intercepting the calls to the Android framework
APIs or system C functions and redirecting them to Controller. For greater
efficiency, the interception will be done automatically once an application starts.
Controller handles the redirected calls and acts as a mandatory proxy between
third-party libraries and the framework APIs or system C functions. Controller
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queries Checker as to whether a call is legal. If a call is permitted, Controller
will call back the original method or function. Otherwise, Controller blocks this
call.

Checker’s job is to judge whether a third-party library has the permission
to perform related operations according to the Policy.xml file. To do this, it
maintains a mapping between methods or functions and permissions required by
these methods or functions. It also determines whether an internal file access is
legal.

Policy.xml is a configuration file under the assets folder, describing the
dangerous permissions an application declares and the permissions assigned to
each third-party library. Developers can set flexible security policies on third-
party libraries by configuring this file.

Libcage doesn’t require much manual effort; all developers need to do is incor-
porate LibCage into their projects, configure the Policy.xml, and add some code
to initialize LibCage. When an application starts, LibCage will automatically
sandbox each library used in this application (O4: �).

In reality, a third-party library may contain Java code and native code (i.e.,
using JNI). In fact, LibCage works on this library as well because regardless of
how Java code interacts with native code, both of them are under the control of
LibCage (They cannot directly call the framework APIs or system C functions).
If a library consists of Java code and native code, we assign the same permissions
to them, and allocate them the same internal file space.

3.3 Policy

LibCage ensures that a third-party library runs in an independent sandbox with
only the permissions developers grant, while other over-privileged operations are
denied. We are interested primarily in the dangerous permissions [20] (listed in
Table 3 in the Appendix), since they may carry a risk to user data. For example,
the READ CONTACTS permission allows an application to read contacts, which
could be abused by a malicious third-party library, resulting in a leak of user
privacy. In fact, our approach can be easily extended to support all permissions;
it simply requires more engineering effort.

As described above, LibCage relies on system call interception, including calls
to Java methods and native functions. We intercept all methods or functions
related to the dangerous permissions. Similar to [21], we identify the Java meth-
ods and the permissions required by these methods. For example, the method
getDeviceId() requires the permission READ PHONE STATE. We also dig out the
native methods related to the dangerous permissions, such as functions used to
operate files2 and ioctl function, through which an IPC is sent [22].

LibCage can be used to enforce a flexible policy on third-party libraries.
When using LibCage, developers need to list the dangerous permissions, specify
the information of third-party libraries, and assign a separate permission set to

2 Technically, operating an internal file doesn’t require any permissions. According to
the file path, LibCage distinguishes whether the file being operated is internal.
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Fig. 3. An example of configuring the Policy.xml file

each library. This is done by configuring the Policy.xml file3. Figure 3 illustrates
the process.

In this example, the application has the READ CONTACTS and ACCESS COAR-
SE LOCATION permissions. We want to use a third-party library, which consists of
a Java library4 whose package name is lib.pacakge.name and a native library
whose name is nativelib.so. We have assigned the ACCESS COARSE LOCATION
permission to this library. At run time, this library (both the Java part and
native part) can access the location information, but won’t be able to read
users’ contact data. Moreover, an isolated internal file space is allocated to this
library, and the library only has access to that space.

4 Implementation

4.1 Interceptor

Interceptor’s job is to interpose third-party libraries’ calls to target methods or
functions and dispatch them to Controller. This takes place once an application
starts (before any third-party libraries call target methods or functions). We
implement the interception on both the Java library and native library.

Java Library. Interception is implemented by manipulating the internal data
structures of target methods. At present, the Android system has two different
runtimes: Dalvik on previous versions and Android Runtime (ART) which is
introduced in Android 4.4 and set default after 5.0 [23]. Since the implementa-
tion on ART and Dalvik is similar, here we only describe the implementation
on ART. ART maintains a data structure called Class (a C++ data struct)
and a structure called ArtMethod for each method declared in this class. When
a method is called, ART searches for the Class related to the class in which

3 In our system, a permission name is shortened by removing the prefix. For example,
the full name of READ SMS is android.permission.READ SMS.

4 A Java library may include several packages or native libraries; for a package or
native library, developers should add a tag.
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Fig. 4. Intercepting getDeviceId()

method on ART
Fig. 5. Intercepting fopen function on
the native library

this method is declared, and then the corresponding ArtMethod, which will be
executed. By manipulating the data structure of a target method, LibCage inter-
poses all calls to this method and redirects them to Controller.

Figure 4 shows an example of intercepting the getDeviceId() method, which
provides access to the unique device ID (which can be used to identify a
user). To interpose this method, Interceptor obtains the pointer of the related
ArtMethod in the Class of TelephonyManager class and replaces it with the
pointer of getDeviceIdProxy() method. As a result, when a library tries to
call getDeviceId() method, this invocation is actually redirected to getDevi-
ceIdProxy() method.

Once we manipulate a target method, all calls to this method in the same
process will be interposed, which means that the interception is once for all (we
don’t need to deal with the libraries one by one). Since that Java code can’t
directly modify the process memory, we implement the interposition in C++
code and compile them to a native library.

Native Library. Similar to the traditional Linux model, Android native
libraries are relocatable ELF (Executable and Linkable Format) files, which will
be mapped into the process’s address when loaded [22]. For the sake of mem-
ory and code size, these libraries adopt the dynamic linking mechanism. If a
library imports an external function, the .got.plt table will contain a respective
stub. This imported function will be resolved when the library is loaded and its
address will be saved in its stub in the .got.plt table. When an imported func-
tion is called, the system first retrieves its address from its stub in the .got.plt
table and then executes the code. This indirection can be exploited to implement
interception neatly. It’s sufficient to replace the stub of an external function in
the .got.plt table with the pointer to our monitoring function [24], so that calls
to this function will be intercepted and redirected to our function.

Figure 5 shows an example of intercepting fopen function, which is used to
open a file. To intercept the calls to fopen function, LibCage replaces its address
in .got.plt table with the address of fopenProxy function, a proxy function defined
in Controller. As a consequence, when Nativelib.so tries to call fopen function,
this invocation is actually redirected to the fopenProxy function.



468 F. Wang et al.

Modifying the .got.plt table of one native library differs from interception on
Java libraries in that it will not affect other native libraries. In order to interpose
all untrusted native libraries’ sensitive calls, LibCage manipulates their .got.plt
tables one by one.

4.2 Controller

Controller is responsible for taking over the redirected calls and handling the
results of these calls. Thanks to Interceptor, all sensitive calls are forwarded
to Controller, which is a mandatory layer between third-party libraries and
framework APIs or system C functions. To correctly handle the redirected call
from Interceptor, Controller contains a proxy method or function for each target
method or function.

Java Library. Usually, one Java method call carries two important pieces of
information: the receiver object, representing which object calls this method
(except for the static method), and the passed parameters. After obtaining
this information from a redirected call, Controller queries Checker whether this
call should be permitted or denied. If this call is permitted, Controller calls
back the original method with the receiver object and the passed parameters.
Otherwise, Controller blocks this call.

As previously mentioned, all libraries’ calls to a target method are inter-
cepted. We first identify the caller by analyzing the stack trace. If it is the host
application, Controller calls back the original method immediately. Otherwise,
it’s a third-party Java library. Controller gets this library’s package name and
further queries Checker what to do next.

Native Library. Similar to how Controller works on Java libraries, Controller
first gets the passed parameters of the redirected calls (native functions don’t
have the concept of receiver object). Then it identifies who the caller is by
analyzing the back trace. If it’s the host application, Controller calls back the
original function immediately. Otherwise, it’s a native library, and Controller
decides whether to call back the original function or to block this call by asking
Checker.

4.3 Checker

Checker judges whether a call from a third-party library to a method or func-
tion is legal or not based on the permissions assigned to this library by develop-
ers. Developers grant permissions to each third-party library by configuring the
Policy.xml file in the assets folder (A demonstration can be seen in Fig. 3).

Checker maintains a Java HashMap, of which the key is the name of a method
or function, and the value is the permission required by the method or function.
For example, getDeviceId() method maps to the READ PHONE STATE permis-
sion. When Controller queries whether a call is legal, Checker searches for the
permission set assigned to this library by parsing the Policy.xml file, and judges
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whether the permission the call requires is contained in the permission set. If it
is, the operation is defined as legal.

When Checker decides whether a file access is permitted, it first identifies
whether the file being operated is in internal storage, according to the file path.
If this file is located in external storage, Checker judges whether the library
is assigned the right permission. If so, this file operation is legal. If the file is
located in internal storage, Checker judges whether it is in the isolated file space
allocated to the library. If so, this file operation is legal.

5 Evaluation

In this section, we describe how we evaluate LibCage in terms of generality,
effectiveness, and the performance overhead it brings. These experiments are
performed on Samsung Galaxy Note 5, running 5.1.1, and MI 3, running 4.4.4.

5.1 Generality

First, we tested the generality of LibCage on various Android versions. Different
Android versions may have different DVM or ART internal data structure. For
example, the ArtMethod structure in Android 5.1 differs from that in Android
5.0. To adapt to the changes of DVM (or ART) in different versions, LibCage
maintains different data structures for different versions. We tested on 4.0, 4.1,
4.2, 4.3, 4.4, 5.0, 5.1, 6.0, and the results showed that LibCage works well on
these versions.

Second, we assert that LibCage can be applied to an arbitrary library.
LibCage covers both Java libraries and native libraries. However, there are
thousands of libraries in the real world, some of which may be programmed
in an unusual way, such as dynamic loading or Java reflection. We describe how
LibCage deals with these situations.

Dynamic Loading. Some Java libraries may use dynamic loading to execute
external DEX (Dalvik executable format) files at run time. LibCage works in
this situation too, because the loaded code still needs to call the sensitive APIs
which are interposed by LibCage.

Java Reflection. Some Java libraries may use Java reflection to hide the actual
API they are calling. To deal with this situation, LibCage intercepts the key
method invoke, which is used in reflection to call a method. By analyzing the
redirected call to invoke method, LibCage obtains the actual calling method. If
LibCage determines that this call is over-privileged, it will block the call.

We have tested these unusual situations, and the results were successful.

5.2 Effectiveness

In order to evaluate the effectiveness of our prototype, we developed several
libraries, including Java libraries and native libraries, performing some sensi-
tive operations related to the dangerous permissions (listed in Table 3 in the
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Appendix) and some file operations. The test application also declared all the
permissions needed to perform these operations. We then defined a set of secu-
rity policies and used LibCage to enforce these policies on the test libraries.
Results showed that LibCage can limit the run-time permissions of third-party
libraries and also showed that LibCage can forbid a library’s attempt to access
files beyond its file space.

To better demonstrate the results, we tested LibCage on third-party libraries
from real world. First, we downloaded 250 applications from the “Top free in
Android Apps” chart in Google Play [25], regardless of their categories. We then
decoded these APK files and collected the top 10 third-party libraries (depicted
in Fig. 6). The detailed permissions they require are listed in Table 4 in the
Appendix. Some of these libraries require two levels of permissions: mandatory
permissions (developers must list these) and optional permissions (used to pro-
vide more functionality; developers can list these optionally).

Fig. 6. Popularity of the top 10 libraries in our dataset

We developed a test application with these libraries and execute it manually.
First, we enforced a normal policy on each library, that is, we granted all the
required permissions to these libraries while the application’s other permissions
are prohibited. The results were exciting. LibCage forces these libraries to run
with only their own permissions, without rendering them dysfunctional.

Second, we enforced a more rigid policy on the libraries. Note that some
of them require optional permissions. For example, Flurry and InMobi require
the ACCESS FINE LOCATION permission, which can be used to track a user. We
tested these libraries without granting them optional permissions, though the
host application still listed those permissions (If the host application doesn’t
list these optional permissions, these libraries obviously cannot use them. In this
test, we checked whether LibCage could cut off the libraries’ optional permissions
even when they were available), and the results also showed that these libraries
worked well.

These tests showed that LibCage can confine the run-time permissions of
third-party libraries and can also cut off unnecessary permissions.
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5.3 Performance Overhead

We also evaluated the run-time performance overhead introduce by LibCage. We
measured the time required to complete a method or function invocation with
and without LibCage. For Java libraries, we tested on these operations in relation
to the dangerous permissions (see Table 3 in the Appendix), including querying
contacts, getting location, and getting device ID. For native libraries, we tested
on some functions used to operate files. The results are shown in Table 2.

Table 2. Overhead introduced by LibCage

Operation Without LibCage With LibCage Overhead

Java method Read SMS (100 runs) 2539ms 2720ms 7.14%

Get location (1 k runs) 949ms 981ms 3.40%

Get device ID (1 k runs) 397ms 423ms 6.59%

Query contacts (100 runs) 2885ms 3076ms 6.63%

Delete a file (1 k runs) 2539ms 2720ms 7.29%

Open camera (10 runs) 1292ms 1332ms 3.11%

Record an audio (10 runs) 2374ms 2395ms 0.88%

Native function Open a file (10 runs) 1333ms 1383ms 3.75%

Edit a file (200 runs) 119ms 125ms 5.33%

Read a file (10 runs) 103ms 110ms 7.13%

Intercepting calls to Java method or native function imposes an overhead
less than 10 %, among which the highest is 7.15 % and the lowest is 0.88 %. For
a single method or function invocation, the overhead is less than 4 ms, which
is so negligible that users can’t perceive it. We believe that this overhead is
acceptable.

5.4 Security Analysis

In this section, we explore some possible attacks to bypass or subvert LibCage
and describe how we defend against them.

Manual Resolution. A native library can link the system C libs manually, get
the pointer of the target function, and call the function through this pointer. In
this case, the .got.plt table of the library doesn’t contain the stub of this function,
so LibCage becomes invalid. To remedy this situation, LibCage interposes the
dlsym function, which is used to resolve (get the address of) a function. Then
LibCage can know which function is being resolved. LibCage will return the
address of the proxy function if this function is sensitive, and thus the call to
this function is interposed. Then the operation can continue as usual.

Privilege Escalation. LibCage judges whether a library’s behavior is over-
privileged according to the Policy.xml file. One concern is that a library may
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tamper with this file, and then its privilege can be escalated up to the applica-
tion’s privilege (that is, it may access all permissions). In fact, the Policy.xml
file cannot be modified by any libraries at run time, meaning that no libraries
can bypass the permission check, since files in the assets folder are read-only.

Modify Mapped Bytecode. A library may change the loaded code by writing
the mapped bytecode. LibCage foils this attack, since the functions used to
manipulate memory (e.g., mmap function, used to map files into memory and
mprotect function, used to specify the protection level for a memory page) are
interposed and this attempt is denied.

6 Discussions

In our work, we focus on dangerous permissions, since our goal is to protect
user privacy. In fact, LibCage can be easily extended to support all permissions.
It’s just a matter of engineering efforts. Our approach can limit the run-time
permissions of third-party libraries and cut off their additional permissions which
are unnecessary to complete their jobs. However, developers still need to list
all permissions required by a third-party library in the Manifest file. Our next
objective is to eliminate this need.

Moreover, the crash of a third-party library will result in the breakdown of
the entire application, which is undesirable for both developers and users. [19]
proposed software fault isolation (SFI) to make sure that faults in one module
cannot render a software system unreliable. Based on SFI, several work [26,27]
has been done to sandbox untrusted native libraries. In our future work, we will
adopt the idea of software fault isolation to ensure that crashes of third-party
libraries cannot influence the availability of the host application.

7 Conclusion

The security of third-party libraries has attracted much attention because of
their prevalence in recent years. In this paper, we proposed a novel sandbox for
third-party libraries, which ensures that each library runs in a respective sand-
box. Each sandbox is assigned to a separate permission set by developers and
its library cannot carry out privileges beyond this permission set. In particu-
lar, developers can cut off the unnecessary permissions of a third-party library.
Further, each sandbox is allocated an isolated file space while its library has no
access to any other space. We have implemented this approach in a tool called
LibCage and evaluate it in terms of generality, effectiveness and performance.
The results show that LibCage can be adopted to any library, its effectiveness
is remarkable, and the performance overhead it introduces is negligible.
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A Appendix

A.1 The Dangerous Permissions

Table 3 lists the dangerous permissions and the corresponding descriptions.

Table 3. Dangerous permissions LibCage enforces

Permission group Permission Description

CALENDAR READ CALENDAR Read calendar data

WRITE CALENDAR Edit calendar data

CONTACTS READ CONTACTS Read a contact

WRITE CONTACTS Edit or delete a contact

LOCATION ACCESS FINE LOCATION Get fine location

ACCESS COARSE LOCATION Get coarse location

PHONE READ PHONE STATE Read phone state

CALL PHONE Make a phone call

READ CALL LOG Read call logs

WRITE CALL LOG Edit or delete call logs

SMS SEND SMS Send a SMS

READ SMS Read a SMS

RECEIVE SMS Receive a SMS

STROGE READ EXTERNAL STORAGE Read a file

WRITE EXTERNAL STORAGE Edit or delete a file

CAMERA CAMERA Take a picture or video

MICROPHONE RECORD AUDIO Record an audio

A.2 Interception on DVM

Different from Android Runtime (ART), Dalvik Virtual Machine (DVM) main-
tains a data structure called ClassObject (a C data struct) for each Java class
and a structure (called Method) for each method declared in this class. When
a method is called, DVM searches for the ClassObject related to the class in
which this method is declared, and then the corresponding Method, which will
be executed. Similar to the implementation on ART, we manipulate the data
structure of a target method, and replace its pointer with the pointer of data
structure of the proxy method.
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A.3 The Details of Test Third-Party Libraries

Table 4 lists the details of permissions required by third-party libraries we tested
on (�: mandatory permission, O: optional permission, ×: not required).

Table 4. The details of permissions required by third-party libraries in our dataset
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AdMob × × × × × × × × × × × × ×
Flurry O × O × × × × × × × × × × ×
Unity × × × × × × × × × × × × × × ×
Facebook × × × × × × × × × × × × × ×
Fmod × × × × × × × × × × × × ×
Chartboost × × O × × × × × O × × ×
InMobi O O × × × × × × × × O O O
Google Gson × × × × × × × × × × × × × ×
MoPub O O O O O O O O × × × ×
Google Analytics × × × × × × × × × × × × ×
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