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Abstract. We address the problem of speeding up group computations
in cryptography using a single untrusted computational resource. We
analyze the security of an efficient protocol for securely outsourcing
multi-exponentiations proposed at ESORICS 2014. We show that this
scheme does not achieve the claimed security guarantees and we present
practical polynomial-time attacks on the delegation protocol which allow
the untrusted helper to recover part (or the whole) of the device secret
inputs. We then provide simple constructions for outsourcing group expo-
nentiations in different settings (e.g. public/secret, fixed/variable bases
and public/secret exponents). Finally, we prove that our attacks on the
ESORICS 2014 protocol are unavoidable if one wants to use a single
untrusted computational resource and to limit the computational cost of
the limited device to a constant number of (generic) group operations. In
particular, we show that our constructions are actually optimal in terms
of operations in the underlying group.

1 Introduction

The problem of “outsourcing” computation has been considered in various set-
tings since many years. The proliferation of mobile devices provides yet another
venue in which a computationally weak device would like to be able to outsource
a costly operation to a third party helper. Such devices do not usually have the
computational or memory resources to perform complex cryptographic opera-
tions and it is natural to outsource these operations to some helper. However, in
this scenario, this helper can, potentially, be operated by a malicious adversary
and we usually need to ensure that it does not learn anything about what it is
actually computing. The wild and successful deployment of cloud storage services
make users outsource their data, for a personal or commercial purpose. These
users actually have to trust their storage providers concerning the availability
of their data, and indeed outages happen regularly. Cryptographic primitives
are needed to convince customers that their platforms are reliable. Among such
primitives, provable data possessions [1] and proofs of retrievability [16] allow
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the storage cloud to prove that a file uploaded by a client has not been dete-
riorated or that it can be entirely retrieved. The computation needed on the
verification side by the client are highly “exponentiation-consuming”. Indeed,
the core operation of these cryptosystems is group exponentiation, i.e., comput-
ing ua from a group element u and an exponent a. The main goal of this paper
is to analyze new and existing protocols outsourcing group exponentiation to a
single untrusted helper.

Prior work. In 2005, Hohenberger and Lysyanskaya [14] provided a formal
security definition for securely outsourcing computations from a computationally
limited device to untrusted helpers and they presented two practical schemes.
Their first scheme shows how to securely outsource group exponentiations to
two, possibly dishonest, servers that are physically separated (and do not com-
municate). Their protocol achieves security as long as one of them is honest. In
2012, Chen, Li, Ma, Tang and Lou [8] presented a nice efficiency improvement
to the protocol from [14], but the security of their scheme also relies on the
assumption that the two servers cannot communicate.

Since this separation of the two servers is actually a strong assumption hard
to be met in practice, at ESORICS 2014 [27], Wang, Wu, Wong, Qin, Chow,
Liu and Tan proposed a protocol to outsource group exponentiations to a single
untrusted server. Their generic algorithm is very efficient and allows to outsource
multi-exponentiations with fixed or variable exponent and bases (that can be
public or secret).

Contributions of the paper. Our contributions are both theoretical and prac-
tical. Our first result is a practical attack on the protocol for outsourcing multi-
exponentiation proposed by Wang et al. [27]. Our attack allows to recover secret
information in polynomial time using lattice reduction. It shows that their solu-
tion is completely insecure. We later show in Theorem 2 that what they expected
to achieve (namely, to limit the computational cost of the limited device to a
constant number of (generic) group operations) is actually theoretically impos-
sible.

Our second contribution is the proposal of a taxonomy of exponentiation
delegation protocols and the associated simple yet precise and formal models
of protocols that allow a client C (or delegator) who wants to compute a multi-
exponentiation (which is a computation of the form

∏n
i=1 ui

ai for group elements
ui’s and exponents ai’s) to delegate an intermediate exponentiation to a more
powerful server S (or delegatee). The client’s contribution in the computation
is then only few multiplications of group elements and arithmetic operations
modulo the underlying group order. We consider in this work only prime-order
groups. Our taxonomy covers all the practical situations: the group elements can
be secret or public, variable or fixed, the exponents can be secret or public, and
the result of the multi-exponentiation can also be either public or secret. As an
example, a BLS digital signature [4] is a group element σ = h(m)a, where m
is the signed message, h a hash function, and a the secret key. The signature
computation can be delegated with our protocol for a public group element
(the hashed value of the message), a secret exponent (the secret key), and a
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public output (the signature). During an ElGamal decryption of a ciphertext
(c1, c2) = (gr,m · yr) (where m is the plaintext and y = ga is the public key),
one may want to securely delegate the computation of c1

a (to recover m as
c2/c1

a). Such an exponentiation can be delegated with our protocol for known
group element (c1), secret exponent (a) and secret result (c1a, in order to keep the
plaintext m secret). We propose a delegation protocol for each of the previously
mentioned scenarios. The latency of sending messages back and forth has been
shown to often be the dominating factor in the running time of cryptographic
protocols. Indeed, round complexity has been the subject of a great deal of
research in cryptography. We thus focus on the problem of constructing one-
round delegation protocols; i.e., where we authorize the client to call only once
the server S, and give him access to some pre-computations (consisting of pairs of
the form (k, gk)). We then consider their complexity, in terms of group operations
needed by the client to eventually get the desired result securely.

Our third and main contribution is the computation of lower bounds on the
number of group operations needed on the delegator’s side to securely com-
pute his exponentiation when it has access to a helper server. To give these
lower bounds, we analyze the security of delegation protocols in the generic
group model which considers that algorithms do not exploit any properties of
the encodings of group elements. This model is usually used to rule out classes
of attacks by an adversary trying to break a cryptographic assumption. We use
it only to prove our lower bounds but we do not assume that an adversary
against our protocols is limited to generic operations in the underlying group.
As mentioned above, these lower bounds tell us that our protocols are optimal
in terms of operations in the underlying group (in other words, they cannot be
significantly improved).

A summary of our results for outsourcing protocols for single exponentiation
is given in Table 1. For the ease of reference, all our results are collected in Table 2
given on page 16.

2 Preliminaries

Exponentiation Delegation: Definitions. The (multi-)exponentiations are
computed in a group G whose description is provided by an algorithm GroupGen,
which takes as input a security parameter λ. It provides a set params which con-
tains the group description, its prime1 order, say p, and one or many generators.
Let n be an integer, we denote by a (resp. u) a vector of n exponents ai ∈ Zp

(resp. group elements ui ∈ G). The aim of the protocols that follow is to compute∏n
i=1 uai

i , denoted as ua.
We consider a delegation of an exponentiation as a 2-party protocol between a

client C and a server S. We denote as (yC , yS , tr) ← (C(1λ, params, (a,u)),S(1λ))
the protocol at the end of which C knows yC and S learns yS (usually an empty
string). The string tr is the transcript of the interaction. In all our protocols, the
1 In this paper, following prior works, we consider only prime order groups, but most

of our results can be generalized to composite order groups.
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Table 1. Results Summary: � is the number of available pairs (k, gk), p = |G| and
Prot. means “Protocol” (p. 12). The given complexities are the number of operations
in G.

server will be very basic, since it will only perform exponentiations whose basis
and exponent are sent to him by the client. In [7], Cavallo et al. emphasized
the need for delegation of group inverses since almost all known protocols for
delegated exponentiation do require inverse computations from the client. They
presented an efficient and secure protocol for delegating group inverses. However,
our protocols do not require such computations and our lower bounds hold even
in groups in which inverse computation is efficient (and therefore does not need
to be delegated, see Remark 4).

To model the security notions, and to simplify the exposition, we describe
by a computation code β (which is a binary vector of length 4), the scenario
of the computation. Indeed, according to the applications, some of the data on
which the computations are performed may be either public or secret. In the
computation of ua, the vector of basis u, the vector of exponents a or the result
ua may be unknown (and especially to the adversary). The three first entries of
the code describe the secrecy of respectively u, a and ua: a 0 means that the
data is hidden to the adversary, and 1 means that the data is public. The last
entry indicates whether the base if fixed (f) or variable (v). For instance, the code
101v means that u is public, the exponent a is secret, and the result ua is public,
while the base is variable. Note that we consider the whole vectors (i.e., all of its
coordinates) to be either public or private, whereas we could imagine that, for
a vector u of exponents for instance, some of these could be public, and others
could be kept secret. The following notions should then be declined according
to these scenarios.



Privately Outsourcing Exponentiation to a Single Server 265

– Correctness. This requirement means that when the server and the client
follow honestly the protocol, the client’s output is actually the expected
(multi-)exponentiation.

– One-wayness. This natural security basically means that an attacker cannot
compute any secret data involved during the computation.

– Privacy. This indistinguishability-based security notion [7] captures that
given two secret inputs (even adversarially chosen), an “honest-but-curious”
adversary cannot tell which input was used (with a probability significantly
better than that of guessing).

We refer the reader to the paper full version [9] for formal definitions.

Remark 1. As mentioned in [6,10,18], a delegation protocol that does not
ensure verifiability may cause severe security problems. Even though our pro-
tocols are not verifiable, the computational lower bounds on the efficiency of pri-
vate outsourcing exponentiation protocols we prove in Sect. 5 readily imply that
these bounds also holds for verifiable protocols. In a forthcoming paper, we will
show how our methods can be extended to propose verifiable delegation protocols
and to improve corresponding efficiency lower bounds.

Generic Group Model. The generic group model (see [24] for details) is an
idealized cryptographic model where algorithms (generally adversaries) do not
exploit any properties of the encodings of group elements. They can access group
elements only via a random encoding algorithm that encodes group elements as
random bit-strings. Proofs in the generic group model provide heuristic evidence
of some problem hardness, but they do not necessarily say anything about the
difficulty of a specific problem in a concrete group [12].

Computations of pairs (gk, k). To outsource the computation of an expo-
nentiation in a group G of prime order p, (pseudo-)random pairs of the form
(gk, k) ∈ G×Zp are sometimes used to hide sensitive information to the untrusted
server. This looks like a “chicken-and-egg problem” but there exist several tech-
niques to make it possible for a computationally limited device to have such
pairs at its disposal, at a low cost. A trivial method is to load its memory with
many genuine (generated by a trusted party) random and independent couples.
In other settings, a mobile device with limited computing capabilities can pre-
compute “offline” such pairs at low speed and power. If the device can do a little
more computation, there exist other preprocessing techniques, that may depend
whether the base or the exponent varies.

We only mention here the main technique to produce these pairs. The key
ingredient is Boyko, Peinado and Venkatesan generator from [5]: the idea is to
store a small number of precomputed pairs (gαi , αi), and when a fresh pair is
needed, the device outputs a product gk =

∏
i∈S gαi with k =

∑
i∈S αi for a

random set S. It has then been improved by Nguyen, Shparlinski and Stern gen-
erator [20], that allows to re-use some αi in the product. This generator is secure
against adaptive adversaries and performs O(log log(p)2) group operations. For
some parameters, the generator from [20] is proved to have an output distribution
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statistically close to the uniform distribution. Obviously, these generators are of
practical interest only if the base g is fixed and used multiple times.

In the sequel we will assume that the delegator may have access to some
(pseudo-)random power generator B(·) that at invocation (with no input) out-
puts a single (pseudo)-random pair (gk, k) ∈ G×Zp where k is uniformly distrib-
uted in Zp (or statistically close to the uniform distribution). If the generator B(·)
is invoked several times, we assume that the output pairs are independent. In
order to evaluate the efficiency of delegation protocols, we consider explicitly the
query complexity to the generator B(·) (depending on the context, this can be
interpreted as storage of precomputed values, offline computation or use of the
generator from [20] and thus additional multiplications in G).

3 Attack on Wang et al.’s Algorithm from ESORICS
2014

Wang et al. proposed a generic algorithm to outsource the computa-
tion of several multi-exponentiations with variable exponents and vari-
able bases. Their algorithm, called GExp, takes as input a list of tuples
(({ai,j}1≤j≤s; {ui,j}1≤j≤s))1≤i≤r and computes the list of multi-exponentiations
(
∏r

j=1 u
ai,j

i,j )1≤i≤s. It is claimed that this algorithm is secure in a strong model
where the computation is outsourced to a single untrusted server [27, Theo-
rem 1]. We will show that GExp can be broken in polynomial time using lattice
reduction if two (simple) exponentiations are outsourced with the same expo-
nent, which is the case in the scenario of proof of data possession presented in
[27, Section 4]. This means that GExp does not achieve the claimed security.

Description of Wang et al.’s protocol. The setting of GExp is the following:
G is a cyclic group of prime order p, and g is a generator. For 1 ≤ i ≤ r and
1 ≤ j ≤ s, ai,j are uniform and independent elements of Z∗

p, and ui,j are random
elements from G. They assume the ai,j ’s, the ui,j ’s and the result are secret (and
the ui,j are variable, i.e. β = 000v with our notations). The protocol is divided
into three steps:

– Step 1. The delegator C generates four random pairs (αk, μk)1≤k≤4 where
μk = gαk (using a pseudo-random power generator). A Υ -bit element χ is
randomly picked (for some parameter Υ ). Then, for all 1 ≤ i ≤ r and 1 ≤ j ≤
s, the elements bi,j are randomly picked in Z

∗
p. It sets2

ci,j = ai,j − bi,jχ mod p (1)

θi = (α1

s∑

j=1

bi,j − α2) + (α3

s∑

j=1

ci,j − α4) mod p. (2)

and wi,j = ui,j/μ1 and hi,j = ui,j/μ3.

2 Note that the protocol from [27] can also be described without inversion in the group
G but to help the reader familiar with this paper, we use the same description.
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– Step 2. The second step consists in invoking the (untrusted) delegatee S for
some exponentiations. To do so, C generates (using a (pseudo-)random power
generator) r + 2 random pairs (gti , ti)1≤i≤r+2 and queries (in random order)
S on
• (gti , θi/ti) to obtain Bi = gθi for all 1 ≤ i ≤ r,
• (gtr+1 , θ/tr+1) to obtain A = gθ with θ = tr+2 − ∑r

i=1 θi mod p,

•
{

(wi,j , bi,j) to get Ci,j = (ui,j/μ1)bi,j

(hi,j , ci,j) to get Di,j = (ui,j/μ3)ci,j
for 1 ≤ i ≤ r and 1 ≤ j ≤ s.

– Step 3. It consists in combining the different values obtained from S to
recover the desired multi-exponentiations. In particular, an exponentiation
to the power χ is involved. The protocol to be efficient, needs χ not too large.

Simple attack. Suppose that a delegation of a single exponentiation ua, for u
and a secret, is performed using Wang et al.’s protocol. If a is a secret key, an
element of the form ha is likely to be known by the adversary, together with h
(one can think of a public key in a scenario of delegation of BLS signatures [4], for
instance)). In this case, as the attacker sees an element of the form c = a − bχ
(see Eq. (1)) and knows b (cf. Step 2), he can compute hc which is equal to
ha ·(hχ)−b, so that recovering χ can be done by computing the discrete logarithm
of (ha/hc)b−1

in base h. Using a baby-step giant-step algorithm, this can be done
in 2Υ/2 operations, which contradicts [27, Theorem 1].

Main attack. The crucial weakness of this protocol is the use of this small
element χ which hides the exponents. The authors suggest to take it of bit-
size Υ , for Υ = 64. We will show that it cannot be that small since it can
be recovered in polynomial time if two exponentiations with the same expo-
nent are outsourced to the server S. The scenario of our attack is the follow-
ing: two exponentiations of the form GExp((a1,1, . . . , a1,s); (u1,1, . . . , u1,s)) and
GExp((a1,1, . . . , a1,s); (u′

1,1, . . . , u
′
1,s)) are queried to S. The exponentiations are

computed with the same exponents. This is typically the case in the first appli-
cation proposed in [27, Section 4.1] to securely offload Shacham and Waters’s
proofs of retrievability [23].

For the sake of clarity, it is sufficient to focus on the elements that mask the
first exponent a1,1. An attacker will obtain (see Step 2) b1,1, b′

1,1, c1,1 and c′
1,1

such that c1,1 = a1,1 − b1,1χ mod p and c′
1,1 = a1,1 − b′

1,1χ
′ mod p. Subtracting

these two equations gives a modular bi-variate linear equation:

b1,1X − b′
1,1Y + c1,1 − c′

1,1 = 0 mod p (3)

which has χ and χ′ as roots, satisfying χ ≤ X and χ′ ≤ Y , for some X and Y
which will be larger that 2Υ , say 264. We show that it is (heuristically) possible
to recover in polynomial time any χ and χ′ that are lower than

√
p.

Solving this bi-variate polynomial equation with small modular roots can
be done using the well-known Coppersmith technique [11]. Finding small roots
of modular bi-variate polynomials was studied in [17], but his method is very
general, whereas we consider here only simple linear polynomials. The following
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lemma, inspired by Howgrave-Graham’s lemma [15] suggests how to construct
a particular lattice that will help to recover small modular roots of a linear
polynomial in Z[x, y]. We denote as ‖ · ‖ the Euclidean norm of polynomials.

Lemma 1. Let g(x, y) ∈ Z[x, y] be a linear polynomial that satisfies

– g(x0, y0) = 0 mod p for some |x0| < X and |y0| < Y ,
– ‖g(xX, yY )‖ < p/

√
3.

Then g(x0, y0) = 0 holds over the integers.

Let us write a bi-variate linear polynomial as P (x, y) = x + by + c, with
b, c ∈ Zp, which has a root (x0, y0) modulo p satisfying |x0| < X and |y0| < Y .
It suffices to divide by b1,1 the polynomial from Eq. (3) to make it unary in the
first variable. Lemma 1 suggests to find a small-norm polynomial h(x, y) that
shares its root with the initial polynomial P (x, y). To do so, we construct the
matrix whose rows are formed by the coefficients of the polynomials p, pyY and
P (xX, yY ) in the basis (1,X, Y ). Using the LLL algorithm [19], we can find a
small linear combination of these polynomials that will satisfy Lemma 1. Indeed,
this matrix has determinant p2XY and an LLL reduction of the basis of the
lattice spanned by the rows of M will output one vector of norm upper bounded
by 23/4(det(M))1/3. We expect the second vector to behave as the first, which
is confirmed experimentally.

To obtain two polynomials which satisfy Lemma1, we need the inequality
23/4(det(M))1/3 < p/

√
3, i.e. XY < 3−3/2 · 2−9/4p. If g(x, y) = g0 + g1x + g2y

and h(x, y) = h0 + h1x + h2y are the polynomials corresponding to the shortest
vectors output by LLL, we can recover (x0, y0) as

x0 =
X(h0g2 − g0h2)

g1h2 − h1g2
and y0 =

Y (h0g1 − h1g0)
g2h1 − h2g1

.

As a consequence, this method makes it possible to recover in polynomial time
any values χ and χ′ that mask the secret value a1,1 if they are both below

√
p.

The complexity of Nguyen and Stehlé’s LLL is quadratic [21], in our case it
is O(d5 log(3/2 log(p))2), with d = 3. Then a1,1 can be computed as a1,1 =
c1,1 + b1,1χ mod p. The scheme from [27] is therefore completely insecure.

Remark 2. One could fix this issue in Wang et al.’s protocol by using a larger Υ
(such that the value χ is actually uniformly distributed over Zp). This would make
the protocol not more efficient for the delegator than the actual computation of a
single exponentiation. However, even this inefficient protocol would not achieve
the privacy security notion as explained in the paper’s full version [9, §C].

4 Generic Constructions for Privately Outsourcing
Exponentiation

We focus on protocols for outsourcing a single exponentiation (u, a) �→ ua. Pro-
tocols for outsourcing multi-exponentiations are given in the full version of the
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paper [9]. As mentioned in the introduction, round complexity is the main bot-
tleneck in improving the efficiency of secure protocols due to latency, and we
consider only 1-round delegation protocols.

Protocols for fixed base exponentiation are probably folklore (e.g., see [18]
for a verifiable variant of the protocol corresponding to the computation code
β = 001f) but remain unpublished (to the best of our knowledge). Protocols
for variable base exponentiation seem to be new and are inspired by Gallant,
Lambert and Vanstone’s decomposition algorithm [13] (see below).

We recall that each case is referred to as its computation code β (see Sect. 2).
All these protocols are secure in the (indistinguishability) privacy notion defined
in [9], in the information-theoretic sense.

Theorem 1 (see [9]). Let GroupGen be a group generator, let λ be a security
parameter and let G be a group of prime order p output by GroupGen(λ). Let
(C,S) be one client-server protocol for the delegated computation of the exponen-
tiation ua described in Protocols 1 – 8 (for the corresponding computation code
β ∈ {0, 1}4 given in their description). The protocol (C,S) is unconditionally
(τ, 0)-private against an honest-but-curious adversary for any time τ .

Tools. In our protocols, we use two classical algorithms. The first one (Algo-
rithm 1) computes the multi-exponentiation

∏t
i=1 gxi

i , for g1, . . . , gt ∈ G

and x1, . . . , xt ∈ N by using the simultaneous 2w-ary method introduced by
Straus [26]. The minimal cost (which depends on w) is 
(1 + o(1)) multiplica-
tions overall, where 
 denotes the maximal bit-length of the xi’s. The method
looks at w bits of each of the exponents for each evaluation stage group multi-
plication (where w is a small positive integer), (see [2] for details).

Algorithm 1. Multi-Exponentiation by Simultaneous 2w-ary method
Input: g1, . . . , gt ∈ G, x1, . . . , xt ∈ N with � = maxi∈{1,...,t}�log xi� and

xj =
∑��/w�−1

i=0 ei,j2
wi ∈ N and ei,j ∈ {0, 2w − 1} for i ∈ {0, . . . , ��/w� − 1} and

j ∈ {1, . . . , t}
Output: gx1

1 · · · gxt
t ∈ G

for all non-zero t-tuples E = (E1, . . . , Et) ∈ {0, . . . , 2w − 1}t do
gE ←∏1≤i≤t gEi

i � Precomputation stage
end for
h ← 1G

for i from ��/w� − 1 to 0 do
h ← h2w

E ← (ei,1, ei,2, . . . , ei,t)
h ← h · gE � Multiply h by table entry gE =

∏
1≤k≤t g

ei,k

i

end for
return h

Let p be a prime number and a ∈ Zp. Let s ≥ 1 be an integer and ρ =
(ρ1, . . . , ρs) ∈ Z

s
p. An s-dimensional decomposition of a with respect to ρ is an

s-dimensional vector α = (α1, . . . , αs) ∈ Z
s
p such that

〈α,ρ〉 := α1ρ1 + · · · + αsρs = a mod p.
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It is well-known that if the scalars ρi for i ∈ {1, . . . , s} have pairwise differ-
ences of absolute value at least p1/s, then there exists a polynomial-time algo-
rithm which on inputs a and ρ outputs an s-dimensional decomposition α ∈ Z

s
p

of a with respect to ρ such that 0 ≤ αi ≤ C ·p1/s for i ∈ {1, . . . , s} (for some small
constant C > 0). To find this “small decomposition” of a, the algorithm applies
a lattice reduction algorithm (such as the LLL-algorithm) to produce a short
basis of the Z-lattice of dimension s + 1 spanned by the vectors (p, 0, 0, . . . , 0),
(ρ1, 1, 0, . . . , 0), (ρ2, 0, 1, . . . , 0), . . . , (ρs, 0, 0, . . . , 1) and applies Babai rounding
algorithm [3] to find a nearby vector in this lattice from (a, 0, . . . , 0) (see [25]
for details). In the following, we will refer to this second algorithm as the GLV
Decomposition Algorithm (GLV-Dec for short) since the method was first intro-
duced by Gallant, Lambert and Vanstone [13] to perform group exponentiations
with endomorphism decomposition.

4.1 Constructions for Outsourcing Fixed Base Exponentiation

When the base u is fixed, one can assume that C can use a pseudo-random
power generator for u. As described in Sect. 2, this generator B is invoked with
no input and outputs a single (pseudo)-random pair (uk, k) ∈ G×Zp where k is
uniformly distributed in Zp (or statistically close to the uniform distribution).
If the generator B(·) is invoked several times, we assume that the output pairs
are independent.

Trivial Cases. Obviously, the case 111f (everything public) is trivial (sim-
ply ask in clear to the delegatee S the computation of ua as S(u, a)) and the
case 110f does not make sense (public inputs and private output), as well as the
case 011f (secret base) in the prime order setting.

Cases where the Base is Secret (0∗∗f). If everything is secret (case 000f),
it is easy to delegate the computation of ua for any exponent a using Protocol 1.
The delegator computation amounts to two invocations of the generator B and
one multiplication in G, with only one exponentiation delegated to S.

Even if the exponent is public (case 010f), Protocol 1 remains the best
possible in terms of multiplications in G (with only one invocation to S) since
there is only one multiplication and it is needed to hide the private result.

If the result is public (case 001f), one can propose the improved Protocol 2,
which needs only one invocation of the pseudo-random power generator and no
multiplication in G, with only one exponentiation delegated to S.

Cases where the Base is Public (1∗∗f). If the result is public (case 101f),
Protocol 2 remains the best possible in terms of multiplications in G (with only
one invocation to S) since no multiplication is needed.

If the result is secret (case 100f), Protocol 3 is the best possible in terms
of multiplications in G since it only needs one invocation of the pseudo-random
power generator and one multiplication in G (needed to hide the private result
of the exponentiation), with only one exponentiation delegated to S.
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4.2 Constructions for Outsourcing Variable Base Exponentiation

We consider the case when C wants to delegate the computation of ua but with a
variable u. One cannot assume that C can use a pseudo-random power generator
for u but we can still suppose that it can use a pseudo-random power generator
for a fixed generator g that we still call B with the same properties as before.

Trivial Cases. As above, the case 111v (everything public) is trivial (simply ask
in clear to the delegatee S the computation of ua as S(u, a)) and the case 110v
does not make sense (public inputs and private output), as well as the case 011v
(secret base) in the prime order setting.

Cases where the Base is Public (1∗∗v). We first consider the case where
the variable base u can be made public but not the exponent nor the result
(case 100v). We propose a family of protocols depending on a parameter s that
perform the computation of ua by delegating s exponentiations to a delegator
and log(p)/(s + 1) operations in G.

This family of protocols is given in Protocol 5 and the specific case s = 1
is Protocol 4. Note that these protocols do not make use of the pseudo-random
power generator for g. Unfortunately, the efficiency gain is only a factor s and
if the number of delegated exponentiations is constant the delegator still has to
perform O(log p) operations in G.

These protocols are actually optimal in terms of operations in G, as shown
in Theorem 2. Obviously, we can also use these protocols if we allow the result
ua to be public (case 101v) and the optimal result of Theorem 2 show that even
in this easier setting, the protocol cannot be improved.

Cases where the Base is Private (0∗∗v). We can use this protocol family to
construct another delegation protocol for the corresponding cases where the base
is kept secret (000v and 001v). We obtain Protocol 6 that makes two invocations
of the pseudo-random generator for g and requires the delegation of one further
exponentiation compared to Protocol 5 (and Protocol 4). We do not actually
know if these protocols are optimal but the gap is rather tight (see Table 2).

Constructing an outsourcing protocol in these cases with only one exponen-
tiation delegation (or proving it is impossible) is left as an open problem.

We can also use this protocol if we allow the exponent a to be public (010v).
However, in this case one can improve it with Protocol 7 where the delegator
performs only a constant number of group operations in G. In this case, one can
also improve it with Protocol 8 where the delegator makes only one call to the
delegatee, but at the price of a O(log(p)) number of group operations in G.

Remark 3. In [7], Cavallo et al. presented two other protocols for outsourc-
ing private variable base and public exponent exponentiation. The first one [7,
§4, p. 164], recalled in Protocol 9, achieves only the basic security requirement
(i.e., in the sense of one-wayness instead of indistinguishability). It relies on a
subset-sum in a group and in order to achieve a stronger privacy notion, the del-
egation scheme actually becomes less efficient for the delegator than performing
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the exponentiation on its own. The second scheme is much more efficient since
the delegator computation is constant but it requires a stronger pseudo-random
power generator B that outputs pseudo-random triples of the form (gr, gar, r).
In particular, this second protocol can only be used for fixed values of the public
exponent a.

Protocol 1: 000f (and 010f)

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

(ur, r) ← B(·) (us, s) ← B(·)
t ← (a − s)/r mod p
h ← S(ur, t mod p)
return h · us

Protocol 2: 001f (and 101f)

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

(uk, k) ← B(·)
h ← S(uk, a/k mod p)
return h

Protocol 3: 100f

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

(uk, k) ← B(·)
h ← S(u, a − k mod p)
return h · gk

Protocol 4: 100v (and 101v)

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

T ← �√p�
h ← S(u, T )
a0 = a mod T
a1 = a div T � Euclidean division:

a = a1 · T + a0
return ua0ha1 � using Alg. 1

Protocol 5: 100v (and 101v)

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

T ← �p1/s+1�
for i from 1 to s do

hi ← S(u, T i)
end for
temp ← a
for i from s down to 0 do

ai = temp div T i

temp = temp − ai · T i

end for
� a = as · T s + · · · + a1T + a0

return ua0
∏s

i=1 h
ai
i � using Alg. 1

Protocol 6: 000v (and 001v)

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

(gk1 , k1) ← B(·) ; (gk2 , k2) ← B(·)
v ← u · gk1

h1 ← va � delegated with Prot. 5
h2 ← S(g,−ak1 − k2 mod p)
return h1 · h2 · gk2

Protocol 7: 010v

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

(gr, r) ← B(·) ; (gs, s) ← B(·)
(gt, t) ← B(·)
k ← (t − ra)/s mod p
h1 ← S(u · gr, a) ; h2 ← S(gs, k)
return h1h2gt

Protocol 8: 010v

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

(gr, r) ← B(·)
for i from 1 to s do

(gti , ti) ← B(·)
end for
(k0, k1, . . . , ks) ←
GLV-Dec(1, t1, . . . , ts,−ra mod p)

� with ki ≤ p1/(s+1)

h1 ← S(u · gr, a)
h2 ← gk0 (gt1)k1 . . . (gts )ks � Alg.1
return h1h2

Protocol 9: 010v from [7]

Input: u ∈ G, a ∈ Zp

Output: ua ∈ G

for i from 1 to s do
gi

R←− G

end for
I R←− Pm({1, . . . , s}) � random

subset of cardinal m of {1, . . . , s}
gs+1 ← u ·∏i∈I gi

for i from 1 to s do
hi ← S(gi,−a)

end for
hs+1 ← S(gs+1, a)
return hs+1 ·∏i∈I hi



Privately Outsourcing Exponentiation to a Single Server 273

5 Complexity Lower Bound for One-Round Protocols

We focus on studying protocols with minimal interaction, namely the delegator
is allowed to delegate the computation of several group exponentiations but it
must send all of them to the delegatee in only one communication round. Indeed,
interactions over computer networks are usually the most time consuming oper-
ations (due to lagging or network congestion) and it is very important to study
protocols which require the minimal number of rounds to complete. In the full
version [9], we also present complexity lower bounds for multi-round protocols.

By “lower bounds”, we mean that the number of calls to the delegatee ora-
cle S and to the pseudo-random power generator B are fixed, and that we con-
sider the number of group operations. Concerning the first part of Table 2, the
bounds come from the protocols given in Sect. 4, since at least one call to the
group oracle is mandatory when the result is private (the delegator C needs to
do at least one computation after having received a public result from the dele-
gatee oracle S). The cases 101v and 100v are then dealt with in Theorem2. For
all these cases, the protocols proposed in Sect. 4 are thus actually optimal. As
for Case 010v, the lower bound for a unique call to S is proven in Theorem 3,
whereas Protocol 7 gives a (constant) upper bound in case we allow a second call
to S. Finally, the lower bounds for Cases 001v and 000v come from the equiv-
alent bounds for Cases 101v and 100v, since the variable base is furthermore
assumed to be secret.

In what follows, and as mentioned above, we use the generic group model to
prove these lower bounds. We model the different operations as follows:

– The group oracle G takes as inputs two encodings σ1 = σ(h1) and σ2 = σ(h2)
and outputs the encoding σ3 such σ3 = σ(h1h2) (see [24]).

– The pseudo-random power generator B outputs pairs (t, σ(gt)) where the
scalar t is picked uniformly at random in Zp (independently for all queries).

– The delegatee oracle S takes as inputs an encoding σ0 = σ(h) and a scalar x
and outputs the encoding σ′

0 = σ(hx) (i.e. σ−1(σ′
0) = σ−1(σ0)x).

In order to prove our complexity lower bounds, we make use of the following
simple lemma (whose proof is provided in the paper full version [9]):

Lemma 2. Let GroupGen be a group generator, let G be a group of prime order p
output by GroupGen and let A be a generic algorithm in G. If A is given as inputs
encodings σ(g1), . . . , σ(gn) of groups elements g1, . . . , gn ∈ G (for n ∈ N) and
outputs the encoding σ(h) of a group element h ∈ G in time τ , then there exists
positive integers α1, . . . , αn such that h = gα1

1 . . . gαn
n and max(α1, . . . , αn) ≤ 2τ .

The following theorems assert that for the cases 101v and 100v, the protocols
proposed in Sect. 4 are actually optimal in terms of calls to S and G.

Theorem 2. Let GroupGen be a group generator and let (C,S) be one client-
server protocol for the delegated computation of the exponentiation ua for the
corresponding computation code β = 101v. We assume that the delegator C is a
generic group algorithm that uses
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– c log(p) + O(1) generic group operations (for all groups G of primer order p
output by GroupGen(λ)) for some constant c,

– 
 = O(1) queries to the (private) pseudo-random power generator B
– and only 1 delegated exponentiation to the delegatee S
If c < 1/2, then (C,S) is not private: there exists an algorithm running in
polynomial-time such that Pr[bit ← Exppriv(A) : bit = 1] ≥ 1 − λO(1).

Proof. For the ease of exposition, we present a proof for the simple case s = 1
where the delegator C outsources only one exponentiation to the delegatee S.
The complete proof is given in the full version of the paper [9]. We assume that
C gets as input two encodings σ(u), σ(g) of two group elements u and g and
one scalar a in Zp and outputs the encoding σ(ua) of the group element ua by
making q queries to the group oracle G, 
 queries to the (private) pseudo-random
power generator B and 1 query to S.

We assume that q = c log p + O(1) with c < 1/2 and we prove that it is not
possible for C to compute σ(ua) in such a way that the delegatee S learns no
information on a. More precisely, we construct a polynomial-time adversary A
for the privacy security notion. The adversary chooses a group element u and two
scalars (a0, a1) ∈ Z

2
p. For the sake of simplicity, we assume that the adversary

picks (a0, a1) ∈ Z
2
p uniformly at random among the scalars of bit-length log(p)

and u uniformly at random in G. The challenger picks uniformly at random a
bit b ∈ {0, 1} and sets a = ab. The delegator runs the delegation protocol with
inputs u and a and delegates one exponentiation to the adversary acting as the
delegatee. The adversary has to guess the bit b.

Let us denote (t1, σ(gt1)), (t2, σ(gt2)), . . . , (t�, σ(gt�)) the pairs obtained from
the pseudo-random power generator B by the delegator C. Since B takes no inputs
and outputs independent pairs, we can assume without loss of generality that the
delegator C makes the 
 queries to B in a first phase of the delegation protocol.
We denote (σ(h), x) the unique pair encoding of group element/scalar made
by C to the delegatee S (which is executed by the adversary A in an “honest-
but-curious” way). Using generic group operations, C can only construct the
corresponding group elements such that:

h = uα′ · gκ′ · gt1γ′
1 · · · gt�γ′

� (4)

for some scalars (α′, κ′, γ′
1, . . . , γ

′
�). We denote k = hx the response of S. Eventu-

ally, the delegator C outputs the encoding σ(ua) of the group element ua. Again,
using generic group operations, it can only construct it as

ua = uαgκ · gt1γ1 · · · gt�γ�kδhε (5)

for some scalars (α, κ, γ1, . . . , γ�, δ, ε). If we assume that q = c log n + O(1) (and
in particular q = o(

√
p)), the delegator C is not able to compute the discrete

logarithm of u in base g. This means that necessarily the exponent of g in
Eq. (5) cancels out. Recall that k = hx, h being constructed as in Eq. (4). Thus,
taking only the discrete logarithms of powers of u in base u of this equation, we
obtain

a = α + εα′ + δα′x mod p (6)
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We denote τ1 the number of group operations performed by C in the com-
putation of h described in Eq. (4) and τ2 the number of operations in the com-
putation of ua described in Eq. (5). By assumption, τ1 + τ2 ≤ c log p + O(1).
Furthermore, since C only used generic group operations, we have (by Lemma 2)
α′ ≤ 2τ1 , α ≤ 2τ2 , δ ≤ 2τ2 and ε ≤ 2τ2 . If we note ρ1 = α + εα′ and ρ2 = δα′,
Eq. (6) becomes a = ρ1 + xρ2 mod p, where x is known to the adversary,
ρ2 = δα′ ≤ 2τ12τ2 = 2τ1+τ2 ≤ pc+o(1) and ρ1 = α + εα′ ≤ 2τ1 + 2τ12τ2 ≤ pc+o(1).

The adversary A can then try to decompose a0 and a1 as ai = ρi,1 + xρi,2

mod p, with ρi,1, ρi,2 ≤ pc+o(1). For ab = a, the decomposition algorithm pro-
vided in the paper full version [9] (which generalizes the main attack on Wang
et al.’s protocol) will recover ρb,1 and ρb,2 in polynomial time. However, for a
given x and a random a1−b of bit-length log(p), there is only a negligible probabil-
ity that such a decomposition exists (less than pc+o(1)×pc+o(1) = p2c+o(1) = o(p)
scalars can be written in this way). Thus, the adversary can simply run the
decomposition algorithm mentioned above on (a0, x) on one hand and on (a1, x)
on the other hand and returns the bit b for which the algorithm returns a
“small decomposition” on input (ab, x). By the previous analysis, its advantage
is noticeable.

Remark 4. It is worth mentioning that even in (generic) groups where division
is significantly less expensive than multiplication (such as elliptic curves or class
groups of imaginary quadratic number fields), this lower bound (as well as the
following ones) still holds (see the paper full version [9] for details).

Protocol 7 shows that it is possible to delegate a secret base, public exponent
exponentiation with only a constant number of operations if the delegator can
delegate at least two exponentiations. Theorem 3 asserts that if the delegator is
only allowed to delegate one exponentiation then Protocol 8 is almost optimal in
this setting. More precisely, we show that the delegator has to perform at least
O(log(p)) group operations if it delegates only one exponentiation and makes at
most a constant number of queries to the pseudo-random power generator B.
Due to lack of space, the proof is provided in the full version of the paper [9].

Theorem 3. Let GroupGen be a group generator and let (C,S) be one client-
server protocol for the delegated computation of one exponentiation for the com-
putation code β = 010v. We assume that the delegator C is a generic group
algorithm that uses

– c log(p) + O(1) generic group operations (for groups G of order p output by
GroupGen(λ)),

– 
 = O(1) queries to the (private) pseudo-random power generator B
– and only 1 delegated exponentiation to the delegatee S
If the constant c satisfies c < 1/(
+2), then (C,S) is not private: there exists an
algorithm running in time O(pc/2+o(1)) s.t. Pr[bit ← Exppriv(A) : bit = 1] = 1.
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6 Conclusion and Future Work

All our results on (one-round) secure delegation of group exponentation are col-
lected in Table 2. In addition, we also provide protocols and lower-bounds for
multi-exponentiations and lower bounds for multi-round delegation of exponen-
tiation protocols in the paper full version [9]. As a future work, understanding
the relationship between computational efficiency and memory usage is vital
when implementing delegation protocols. In particular, it is interesting to pro-
pose efficient delegation protocols and to improve our lower bounds in settings
where the memory complexity of the delegator is limited.
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