Mobile Application Impersonation Detection
Using Dynamic User Interface Extraction

Luka Malisa®™), Kari Kostiainen, Michael Och, and Srdjan Capkun

Institute of Information Security, ETH Zurich, Ziirich, Switzerland
{luka.malisa,kari.kostiainen,srdjan.capkun}@inf.ethz.ch,
michael.och@alumni.ethz.ch

Abstract. In this paper we present a novel approach for detection of
mobile app impersonation attacks. Our system uses dynamic code analy-
sis to extract user interfaces from mobile apps and analyzes the extracted
screenshots to detect impersonation. As the detection is based on the
visual appearance of the application, as seen by the user, our approach
is robust towards the attack implementation technique and resilient to
simple detection avoidance methods such as code obfuscation. We ana-
lyzed over 150,000 mobile apps and detected over 40,000 cases of imper-
sonation. Our work demonstrates that impersonation detection through
user interface extraction is effective and practical at large scale.

Keywords: Mobile - Visual - Repackaging - Phishing - Impersonation

1 Introduction

Mobile application visual impersonation is the case where one application inten-
tionally misrepresents itself in the eyes of the user. Such applications impersonate
either the whole, or only a small part of the user interface (Fig.1). The most
prominent example of whole Ul impersonation is application repackaging; the
process of republishing an app to the marketplace under a different author. It’s
a common occurrence [39] for an attacker to take a paid app and republish it
to the marketplace for less than it’s original price. In such cases, the repackaged
application is stealing sales revenue from the original developers.

In the context of mobile malware, the attacker’s goal is to distribute a mali-
cious application to a wide user audience while minimizing the invested effort.
Repackaging a popular app, and appending malicious code to it, has become a
common malware deployment technique. Recent work [40] showed that 86 % of
analyzed malware samples were repackaged versions of legitimate apps. As users
trust the familiar look and feel of their favourite apps, such a strategy tricks the
user into believing that she is installing, and interacting with, a known app.

Application fingerprinting [4,12,14-16,36-38,41] is a common approach to
detect repackaging. All such works compare fingerprints extracted from some
feature of the application, such as their code or runtime behaviour. However,
an adversary that has an incentive to avoid detection can easily modify all such

© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part I, LNCS 9878, pp. 217-237, 2016.
DOI: 10.1007/978-3-319-45744-4_11

218 L. Malisa et al.

ii Visual Impersonation —l

Lf Whole UL —l l— Partial UI —l
L— Repackaging —l Other Phishing Other
(e.g., steal design)
Revenue Malware
Redirection Deployment

Fig. 1. Taxonomy of mobile app visual impersonation. Existing works primarily focused
on detecting repackaging. Our goal is to detect all types of impersonation.

features without affecting the appearance of the app, as seen by the user. For
example, an attacker can obfuscate the app by adding dummy instructions to the
application code. Code comparison approaches would fail because the new fin-
gerprint would be significantly different, and we demonstrate that such detection
avoidance is both effective and simple to implement.

Instead of impersonating the whole UI, malicious apps can also impersonate
only a small part of the UI by, e.g., creating a fake login screen in order to
phish login credentials. Phishing apps that target mobile banking have become
a recurring threat, with serious incidents already reported [26,28]. Prior works
on repackaging detection and common malware detection [4,13,24,31,32] are
ill-suited for detecting such phishing cases as the malicious apps share little
resources with the original, they don’t exhibit specific system call patterns, nor
do they require any special permissions—they only draw to the device screen.

Due to these inherent limitations of previous detection techniques, we pro-
pose a conceptually different approach. Our goal is to design an impersonation
detection system that is resistant to common detection evasion techniques (e.g.,
obfuscation) and that can be configured to efficiently detect different types of
impersonation; from repackaging (whole UT) to phishing (partial UT). We observe
that, for visual impersonation to succeed, and irrespective of possible modifica-
tions introduced to the app, the adversary must keep the runtime appearance
of the impersonation app close to the original. A recent study [19] showed that
the more the visual appearance of a mobile app is changed, the more likely the
user is to become alarmed. We propose a detection system that leverages this
unavoidable property of impersonation.

Our system complements existing fingerprint-based approaches, runs on the
marketplace and can analyze large amounts of Android apps using dynamic
analysis and visual comparison, prior to their deployment onto the market. Our
system runs the app inside an emulator for a specified time (e.g., 20 min), dynam-
ically explores the mobile app user interface and extracts screenshots using GUI
crawling techniques. If two apps have more than a threshold amount of screen-
shots in common (either exact or near matches), the apps are labeled as an
instance of impersonation. In contrast to previous works, we do not base our
detection on some easily modified feature of the app’s resources, but rather on
the final visual result of executing any app—the screenshot presented to the user.
As a result, our system is robust towards attacker introduced perturbations to
either application resources, or to the way the Ul is created—as long as the

Mobile Application Impersonation Detection 219

application looks the same at runtime, our system will detect the impersonation.
No prior detection schemes offer this property.

To realize a system that is able to analyze a large number of apps, we
had to overcome technical challenges. The existing GUI crawling tools [2,20,22]
require application-specific knowledge or manual user input, and are therefore
not applicable to automated, large-scale analysis. To address those challenges, we
developed novel GUI crawling techniques that force the analyzed app to draw its
user interface. Our system requires no user input, no application-specific knowl-
edge, it supports the analysis of native applications, and thus enables automated
analysis of apps at the scale of modern application marketplaces. Our system
uses locality-sensitive hashing (LSH) [10] for efficient screenshots retrieval.

To evaluate our system, we dynamically analyzed over 150,000 applica-
tions downloaded from Google Play and other mobile app markets. Our system
extracted approximately 4.3 million screenshots and found over 40,000 cases of
impersonation; predominantly repacks (whole UI) but also apps that imperson-
ate only a single registration screen (partial UI). These experiments demonstrate
that impersonation detection through dynamic user interface extraction is effec-
tive and practical, even in the scale of large mobile application marketplaces.

To summarize, our main contributions are:

— We demonstrate that existing impersonation detection techniques can be easily
avoided.

— We propose a novel approach for impersonation detection based on dynamic
analysis and user interface extraction that is robust towards the way the adver-
sary implements impersonation.

— We built a detection system for large-scale analysis of mobile apps and as a
part of the system we developed novel Ul exploration techniques.

— We analyzed over 150,000 applications and found both whole and partial Ul
impersonation instances.

The rest of this paper is organized as follows. In Sect. 2 we explain the prob-
lem of app impersonation in detail. We describe our solution in Sect.3 and
evaluate it in Sect.4. We present our results in Sect. 5, and security analysis in
Sect. 6. We discuss deployments aspects in Sect.7 and review related work in
Sect. 8. We conclude in Sect. 9.

2 Motivation and Case Study

Whole Ul impersonation. The first type of impersonation we consider is
whole UT impersonation (Fig. 1). Since a typical repackaged app shares majority
of its code and runtime behaviour with the original application, fingerprinting
can be an effective way to detect such impersonation. Known techniques leverage
static application features, such as code structure [12], imported packages [41]
and dynamic features [4,13,24,31,32], such as system call [18] or network traffic
patterns [25]. Using fingerprinting, large number of repacks have been detected

220 L. Malisa et al.

Activities

B S S =y ‘ﬁ@ =®
(49 — (4 O Q

Original View Graph Obfuscated View Graph

Fig. 2. We developed a small obfuscation tool that modifies the activity transition
graphs of an app without affecting user experience. The obfuscation introduces addi-
tional proxy activities that mediate transitions between Ul screens. In the original app,
the user transitions (e.g., by clicking a button) A1 — As. Afterwards, the transition
becomes A1 — P — As. The transition occurs so fast that the user does not notice it.

from several Android application marketplaces [9]. The inherent limitation of fin-
gerprinting approaches is that the adversary can easily modify the above listed
(or any similar) features without affecting the runtime appearance of the appli-
cation towards the user. In this section we demonstrate that such modifications
are both easy to implement and effective in avoiding detection.

Case study. We present a case study on MassVet [9], a recent static analysis
system that has demonstrated good results in detecting repackaging. MassVet
extracts two types of static fingerprints from a mobile application: m-cores define
application code flow graph and sequence of instructions and v-cores express Ul
state transitions from one activity to another. The rationale behind these fin-
gerprints is that repackaged apps typically share majority of their functionality,
as well as user interface structure.

We built a simple obfuscation tool (less than 200 lines of code) that modifies
both extracted features (m-cores and v-cores). Our tool adds blocks of unused
code, as well as proxy activities that modify activity transitions. Our modifica-
tions have no visible effect on the user experience (see Fig.2). To evaluate the
tool, we took 1259 apps from the Android Malware Genome project [1]. We ran
those apps through the MassVet tool online interface! and 559 applications were
identified as potentially malicious repackaged apps. We obfuscated all of these
apps using our tool and rerun them on the MassVet system—92 % of the obfus-
cated apps were no longer detected. We argue that similar limitations apply to
any fingerprinting solution and adoption of obfuscation introduces little to no
cost to repackaging adversaries, as it merely implies running an automated tool.
We demonstrated only one possible approach, and such obfuscation tools can be
implemented for all prior fingerprinting approaches (both static and dynamic),
in a similar manner and level of complexity.

Partial UI impersonation. The second type of visual impersonation are apps
that only impersonate a small portion of the UI. Application phishing is an
example of impersonation, where a malicious application constructs a single

! http://www.appomicsec.com/.

http://www.appomicsec.com/

Mobile Application Impersonation Detection 221

screen that visually resembles one of a another app, but otherwise shares no
similarities (e.g., no shared code or resources) with the original app. For example,
a malicious game asks the user to perform an in-app purchase, but instead of
starting the legitimate banking app, the game presents a phishing screen that
mimics the login screen of the bank. Distinguishing the phishing screen from the
genuine login screen is difficult for the user, as modern mobile platforms do not
enable the user to identify the application currently drawing on the screen.

Fingerprinting is not effective against such impersonation apps, as the mali-
cious app does not share large parts of resources (e.g., code). Furthermore, tradi-
tional mobile malware detection schemes that, e.g., examine API call patterns [7]
and permissions [6] are also ill-suited for the detection of phishing. Such appli-
cations differ from regular malware as they often require no special permissions,
nor do they necessarily perform any suspicious actions. They only perform a
single operation—drawing on the device screen.

Adversarial model. We consider a strong attacker that can implement imper-
sonation in various ways. The attacker can create the Ul by, e.g., using standard
OS libraries, implement it in a custom manner, or show static images of the
interface. On Android, the attacker could implement the app in Java, native
code, or as a web app. For a more thorough introduction of the various ways of
creating user interfaces in Android, we refer the reader to Appendix A. On top of
that, the adversary can modify the application code or resource files in arbitrary
ways (e.g., obfuscation). Such an adversary is both realistic and practical. The
attacker can freely create the impersonated screens by any means allowed by the
underlying Android system. Running an (off-the-shelf or custom) obfuscation
tool comes at little to no cost to the adversary.

3 Visual Impersonation Detection System

As demonstrated in the previous section, the adversary has significant implemen-
tation freedom in performing an impersonation attack and, at the same time, the
adversary has a clear incentive to keep the visual appearance of the app close
to the original. A previous study [19] has shown that the more the adversary
deviates from the appearance of the original mobile application user interfaces,
the more likely the user is to become alarmed. We say that the adversary has
limited wvisual freedom and our solution leverages this property.

Our goal is to develop a robust visual impersonation detection mechanism
that is based on visual similarity—a feature the attacker cannot modify without
affecting the success of the attack. More precisely, the system should: (i) detect
both whole (e.g., repackaging) and partial Ul impersonation (e.g., phishing),
(ii) be robust towards the used impersonation implementation type and applied
detection avoidance method (e.g., obfuscation), (iii) analyze large numbers of
apps in an automated manner (e.g., on the scale of modern app stores).

Figure 3 shows an overview of our system that works in two main phases.
In the first phase, the system extracts user interfaces from a large number of
mobile apps in a distributed and fully autonomous manner. The system takes

222 L. Malisa et al.

Distributed

Screenshot Extraction Im]g:gﬁag{) n?
sz=======ccomoooos . ipersonation?
| | if(Crawlen(Inflater)= 000 —(Sqeeeie
Binaries i Android Emulator i Analysis
"""""""""" Partial UT
Impersonation?

Fig. 3. An overview of the impersonation detection system that works in two phase.
First, we extract user interfaces from a large number of applications. Then we analyze
the extracted screenshots to detect repackaging and impersonation.

as input only the application binary, and requires no application-specific knowl-
edge or manual user input. We run each analyzed app in an emulated Android
environment, and explore its user interface through crawling. An attacker could
develop a malicious app that detects emulated environments. However our sys-
tem can be executed on real hardware as well (Sect. 7). In a best-effort manner,
we extract as many screenshot as possible within a specified time limit. Full
exploration coverage is difficult to achieve [5,30], and as our results in Sect.4
show, not necessary for effective impersonation detection. During crawling, our
system also automatically identifies reference screens (e.g., ones with login and
registration functionality) that benefit from impersonation protection.

In the second phase, the system examines the extracted screenshots to find
cases of impersonation. To detect whole UI impersonation, our system finds
applications that share the majority of their screenshots with a queried app.
To detect partial Ul impersonation, our system finds applications that share a
similar (e.g., login or user registration) screen with the reference app, but have
otherwise different screenshots.

Our system can be deployed on the marketplace and used to detect imper-
sonation, e.g., upon submitting the app to the market. We emphasize that
our system can be combined with existing approaches to enhance imperson-
ation detection. For example, only apps that are considered as benign by a fast
fingerprint-based approach could be submitted to our, more costly analysis.

3.1 Design Challenges

To realize the system outlined above, we must overcome a number of technical
challenges. First, the existing GUI crawling approaches were designed for devel-
opment and testing, and a common assumption is that the test designers have
access to application-specific knowledge, such as source code, software specifica-
tions or valid login credentials. Login screens are a prominent example of how
crucial application-specific knowledge is in GUI exploration, as such tools need
to know a valid username and password to explore beyond the login screens
of apps. Another example are games where, in order to reach a certain GUI
state, the game needs to be won. In such cases, the exploration tool needs to
be instructed how to win the game. Previous crawling tools address these issues
of reachability limitations using application-specific exploration rules [5,33] and

Mobile Application Impersonation Detection 223

pre-defined crawling actions [34]. As our system is designed to analyze a large
number of mobile apps, similar strategies that require app-specific configura-
tion are not possible. In Sect. 3.2 we describe a mobile app crawler that works
fully autonomously, and in Sect. 3.3 we describe new user interface exploration
techniques that increase its coverage.

Second, dynamic code analysis is significantly slower than static fingerprint-
ing. In Sect. 3.2 we describe a distributed analysis architecture that enables us
to analyze applications in a fully scalable manner. And third, many repackaged
apps and known phishing malware samples [28] contain minor visual differences
to their target apps. Our system must efficiently find screenshots that are exact
or near matches, from a large set of screenshots. In Sect. 3.4 we describe a system
that uses locality-sensitive hashing [10] for efficient screenshot analysis.

3.2 Automated Crawling

We designed and implemented a Ul crawler as part of the Android core running
inside an emulator (Fig.3). The crawler uses the following basic strategy. For
each new activity, and every time the view hierarchy (tree of UTI elements) of the
current activity changes, our crawler takes a screenshot. The crawler continues
exploration in a depth-first manner [5], as long as there are clickable elements
(views) in the user interface. To support autonomous user interface exploration,
our crawler must determine which views are clickable without prior knowledge.
We implemented the crawler as a part of the Android core, which gives it full
access to the state of the analyzed app, and we examine the current state (i.e.,
traverse the view tree) to identify clickable elements. We observed that in many
apps, activities alter their view hierarchy shortly after their creation. For exam-
ple, an activity might offload a lengthy initialization process to a background
thread, show a temporary Ul layout first, and the final one later. To capture such
layout changes, our crawler waits a short time period after every transition.

To increase the robustness of crawling, we made an additional modification
to the Android core. If the crawled application creates an Intent that triggers
another app to start, we immediately terminate it, and resume the execution of
the analyzed app. In practice this approach turned out to be an efficient way to
continue automated user interface exploration.

Reference screen identification. To enable partial Ul impersonation detec-
tion, our system automatically identifies screens that benefit from impersonation
protection. We have tailored our implementation to identify screens that contain
login or registration functionality. While crawling an app, we traverse the view
hierarchy tree of each screen and consider the screen a possible login or user
registration screen, when the hierarchy contains at least one password field, one
editable text field, and one clickable element or meets other heuristics, such as
the name of the activity contain word “login” or “register”. If such a screen is
found, we save it as a reference screen for partial Ul impersonation detection
(Sect. 3.4). Reference screen identification is intended for benign apps that have
no incentive to hide their Ul structure, but we repeat the process for all crawled
apps, since we do not know which apps are benign.

224 L. Malisa et al.

Distributed architecture. We built a distributed analysis architecture that
leverages cloud platforms for analysis of multiple apps. Our architecture consists
of a centralized server and an arbitrary number of analysis instances. The server
has a database of apps, orchestrates the distributed analysis process, and collects
the extracted user interfaces. Each analysis instance is a virtual machine that
contains our dynamic analysis tools.

3.3 Coverage Improvements

In this section we describe techniques we implemented to increase the coverage
of our user interface exploration.

Out-of-order execution. The crawler starts from the entry-point activity
defined in the manifest file. For some apps only a small part of the user interface
is reachable from the entry point without prior application-specific knowledge
(e.g., a login screen requires valid credentials to proceed). To improve our crawl-
ing coverage, we additionally force the application to start all its activities out of
order. This is a best-effort approach, as starting the execution from an arbitrary
activity may crash the app without correct Intent or application state.

Layout file inflation. We implemented a tool that automatically renders
(inflates) mobile app user interfaces based on XML layout files and web resources.
As many apps customize the XML layouts in code, the final visual appear-
ance cannot be extracted from the resource file alone. We perform resource file
inflation from the context of the analyzed app which ensures that any possi-
ble customization will be applied to Ul elements defined in the resource file.
We implemented a dedicated enforcer activity and force each app to load it at
startup. This activity iterates through the app’s layout files, renders them one
by one and takes a screenshot. We noticed that increasingly many mobile apps
build their user interface using web technologies (e.g., HTML5). To improve the
coverage of such apps, we perform similar inflation for all web resources. Our
enforcer activity loads all local web resources of the application one by one.
Layout file inflation is conceptually different from, e.g., extracting fingerprints
from resource files. The layout files can be modified by the attacker without
affecting our analysis, as we take a screenshot of the final rendered layout.

User interface decomposition. Our crawling approach relies on the assump-
tion that we can determine all clickable UI elements by analyzing the view hier-
archy of the current activity. While this assumption holds for many apps, there
are cases where clickable elements cannot be identified from the view tree, and
therefore our crawler cannot proceed. For instance, mobile apps that implement
their user interfaces in OpenGL (mostly games) and malicious apps that inten-
tionally attempt to hide parts of their user interface from crawling.

We integrated a user interface decomposition outlined in [19] to our crawler
to improve its coverage and attack resistance. Our experiments (Sect.4.1) show
that by using this extension we are able to crawl a number of mobile apps whose
user interfaces we would not be able to crawl otherwise.

Mobile Application Impersonation Detection 225

@ Screenshot Indexing

w
=
iy
2 oy
g
a8
s a
-
@
e
0 T
=2
=2
ﬁ
&
2]
=
[}
w
=
»n
jas]
=
5
[oW
(o]
%

Perceptual N Perceptual
(- - (5 o (i

t

" \
1 1
1 1
1 1
1 I
1 1
1 1
: Nelghbour Reforence Screen|i
: Screenshotb Hdbheb Screenshot i
I I
1 I
I . 1
" mpersonation? mpersonation? 1

Fig. 4. Screenshot analysis system for impersonation detection. All extracted screen-
shots are indexed to a database using locality-sensitive hashing (LSH). To find imper-
sonation applications from a large dataset, we first find nearest neighbor screenshots
using the LSH database, and then perform an more expensive pairwise comparison.

3.4 Screenshot Analysis

Our initial experiments showed that many screenshots extracted from repackaged
apps have minor visual differences in them. Some of the observed differences are
caused by the application (e.g., different version, language or color scheme) while
others are artifacts of our exploration approach (e.g., a blinking cursor visible in
one screenshot but not in the other). Also the phishing screens seen in known
malware samples contain minor visual differences to their target apps [28].

Our system handles visual differences in the extracted screenshots using per-
ceptual hashing. The goal of a perceptual hash is to provide a compact repre-
sentation of an image that maintains its main visual characteristics. In contrast
to a cryptographic hash function, a small modification in the image produces
a hash value that is close to the hash of the original image. Perceptual hash-
ing algorithms reduce the size and the color range of an image, average color
values and reduce their frequency. The perceptual hash algorithm we use [§]
produces 256-bit hashes and the visual similarity of two images can be calcu-
lated as the Hamming distance between two hashes. To enable analysis of large
number of screenshots, we leverage locality-sensitive hashing [11] (LSH). LSH
algorithms are used to perform fast approximate nearest neighbour queries on
large amounts of data.

Using these two techniques (perceptual hashing and LSH), we built a screen-
shot analysis system, as shown in Fig. 7. The system consists of three operations:
(1) indexing, detection for (2) whole and (3) partial UI impersonation.

Indexing. In the indexing phase, a perceptual hash is created for each extracted
screenshot and all hashes are fed to our LSH implementation. We use bit sam-
pling for reducing the dimensionality of input items, as our perceptual hash-
ing algorithm is based on the Hamming distance. We set the LSH parameters

226 L. Malisa et al.

through manual experimentation (Sect.4). To reduce false positives, we manu-
ally created a list of screenshots belonging to shared libraries (e.g., ad or game
frameworks), and we removed all such screenshots from the database.

Whole Ul impersonation detection. To detect impersonation, we use the
intuitive metric of containment (C'), i.e., how many screenshots of one app are
included in the screenshot set of another app. To find whole Ul impersonation
apps, our system takes as input a queried app, and finds all apps whose user
interface has high similarity to it. We note that, while our system is able to
detect application pairs with high user interface similarity, it cannot automati-
cally determine which of the apps in the relationship (if any) is the original one.
Our system analyzes one app at a time, and the first step in whole UI imper-
sonation detection is to obtain the set of all screenshots (Q) of the current
queried app. For every screenshot, we hash it and query the indexed LSH data-
base. For each query, LSH returns a set of nearest neighbour screenshot hashes,
their app identifiers and distances to the queried hash. For returning the nearest
neighbours, we use the cutoff hamming distance d = 10, as explained in Sect. 4.
We sort this dataset based on the application identifiers to construct a list
of candidate applications, where P; is the set of their screenshots. For each
candidate app we find the best screenshot match to the queried app. As a result,
we get a set of matching screenshots for each candidate app. We consider the
candidate app as a potential impersonation app when (1) the ratio (containment
(') between the number of matched app and reference app screenshots is larger
than a threshold T, and (2) the number of considered screenshots meets a
minimum threshold Ts. Without loss of generality, we assume |P;| < |Q).

|P;NQ|
| P
|Pi| > T (2)

C = > T, (1)

In Sect.4 we describe the experiments we used to set these thresholds
(T, Ts). To find all potential repacks from a large dataset of applications, the
same procedure is repeated for each application.

Partial UI impersonation detection. For partial Ul impersonation, we no
longer require a significant visual similarity between the two apps (target and
malware). Only specific screens, such as login or registration screens, must be
visually similar to perform a convincing impersonation attack of this kind. To
scan our dataset for such applications, we adjusted the search criteria accord-
ingly. Given our set of potential reference screens (Sect. 3.2) extracted during our
dynamic analysis phase, we target applications that contain the same or a very
similar screen but otherwise do not share a significant visual similarity in other
aspects of the application. We only consider applications to be of interest if their
containment with the queried application is less than a threshold (C < T,,), as
long as the app contains the queried login or registration screen.

Mobile Application Impersonation Detection 227

Apps (%)

Extracted Screenshots (%)

0 5 10 15 20 25 30 35 40 45

Analysis Runtime (min) Analysis Runtime (min)

Fig.5. The distribution of analysis Fig. 6. Average number of screenshots
time. extracted from an app, as a function of
time.

4 Evaluation

In this section we evaluate the detection system. For evaluation we downloaded
158,449 apps from Google Play and other Android application repositories (see
Table 1 in the Appendix). From Google Play we downloaded approximately 250
most popular apps per category. Our rationale was that popular apps would be
likely impersonation targets. We also included several third-party markets to our
dataset, as repacks are often distributed via third-party stores [9].

4.1 User Interface Extraction

Analysis time. We deployed our system on the Google Cloud Compute plat-
form. The analysis time of a single application varies significantly, as apps have
user interfaces of different size and complexity. While the majority of apps have
less than 20 activities, few large apps have up to 100 activities. Furthermore,
some applications (e.g., games) may dynamically create a large number of new
user interface states and in such cases the dynamic user interface exploration is
an open ended process. To address such cases, in our tests we set the maximum
analysis time to generous 45 min. On the average, the analysis of one mobile app
took only 7 min and we plot the distribution of analysis time in Fig. 5. Extracting
screenshots is the most time-consuming part of our system. Once the screenshots
are extracted, querying LSH and deciding if any impersonation exists is fast (few
seconds per app).

On 1000 computing instances on the Google Cloud Compute platform the
entire analysis of over 150,000 apps took 36h. On the same rate and similar
computing platform, the entire Google Play market (1.6 million apps) could
be analyzed in approximately two weeks. We consider this a feasible one-time
investment and the overall analysis time could be further reduced by limiting
the maximum analysis time further (e.g., to 20 min as discussed below).

Analysis coverage. From the successfully analyzed 139,656 apps we extracted
over 4.3 million screenshots after filtering our duplicates from the same appli-
cation and low-entropy screenshots, e.g., single-color backgrounds that are not
useful in impersonation detection. The majority of applications produced less

228 L. Malisa et al.

than 50 screenshots, but we were able to extract up to 150 screenshots from
some apps. Figure 6 plots the percentage of extracted screenshots as a function
of analysis time. We extract approximately 75 % of all the screenshots during the
first 20 min of analysis. The steeper curve during the first 7min of the analysis
is due to the fact that we run the inflater tool first and after that we start our
crawler. The crawler tool extracted 58 % of the screenshots and the inflater con-
tributed additional 42 %. Majority (97 %) of the extracted screenshots come from
user interfaces implemented using standard Android user interface elements and
a small share originates from user interfaces implemented using web techniques
or as an OpenGL surface. Figure 10 summarizes the user interface extraction
results.

We use activity coverage as a metric to compare the coverage of our crawler
to previous solutions. Activity coverage is defined as the number of explored
activities with respect to the total number of activities in an app [5]. While
activity coverage does not account for all possible user interface implementation
options, it gives a good indication of the extraction coverage when analyzing
large number of apps. Our tool achieves 65 % activity coverage, and is compa-
rable to previous solutions (e.g., 59 % in [5]). However, previous crawling tools
that achieve similar coverage require application-specific configuration or manual
interaction.

We separately tested our user interface decomposition extension on 200 apps
(mostly games) that implement their UI using OpenGL surface. Without the
decomposition extension, our crawler was only able to extract a single screen-
shot from each of the tested apps (the entry activity). With decomposition, we
were able to extract several screenshots (e.g., 20) from 30 % of the tested apps.
This experiment demonstrates that there is a class of mobile apps whose user
interfaces can be crawled with better coverage using decomposition.

4.2 Screenshot Comparison

Perceptual hash design. We investigated two different perceptual hashing
techniques, based on image moments [29] and DCT [8] (pHash). Preliminary
analysis of the results from both hashing techniques revealed that the image
moments based approach is not suitable for the hashing and comparing of user
interface screenshots, as both very similar as well as very dissimilar pairs of
screenshots resulted in almost equivalent distances. The pHash [35] based app-
roach yielded promising results with a good correlation between visual similarity
of user interface screenshots and the hamming distance between their respective
hashes. Screenshots of user interfaces are quite different from typical natural
images: clearly defined boundaries from Ul elements, few color gradients, and a
significant amount of text. To account for these characteristics and improve the
performance of the hashing algorithm, we performed additional transformations
(e.g., dilation) to the target images as well as the final hash computation.

To find a good cutoff hamming distance threshold below which we consider
images to be visually similar, we randomly selected pairs of images and computed
their distance until we had 100 pairs of screenshots for the first 40 distances.

Mobile Application Impersonation Detection 229

1.00

Q’Qﬂ
X

3
v“
XX
7S
%]

a
%%

XXJ No impersonation
[XXJ Impersonation

o
9

0%
TR
-

X
o
5

2

a
L

a
KPR
e

K2
%
! %%
(D
2

0.75

X
e
o,
8’
R

3R

Z%
X
T
X
o
%>
$a%
»'

v:;
=
R
e
~
O

0.50

TS
X
0
0

5

R

b

e% I e%
SESESESES
5 K
5 K
Sl

2

-

X
R

R

2

R
R

0.25

P

R

¢

o

’G
R
R
R

IZ
RS
X
%4

KX
3%
9
D
]
9%,

Similar Scr. Pairs (%)

Application Pairs (%)

o
)
S
=
)

60 80 100

Hamming Distance (bits) Containment (%)

Fig. 7. Manual evaluation of hamming Fig. 8. Manual evaluation of false pos-
distances of screenshot hashes. itives and false negatives.

1.00

0.75

g Number of successfully analyzed apps 139,656
% 050 Number of extracted screenshots 4,302,413
~ 0.95 Extracted by the crawler 57.89%
- Extracted by the inflater 42.11%
0.00 | Originated from widget-based UI 96.95%

0 20 40 60 80 100 Originated from a HTML asset 2.17%
Containment (%) Originated from an OpenGL surface 0.88%

Fig. 9. False positive and false negative ~ Fig.10. User interface extraction
rates. Equal-error rate is at cont. 45%. results.

We then manually investigated each distance bucket and counted the number of
screenshot pairs we considered to be visually similar. The result are shown in
Fig. 7, and we concluded that a distance d = 10 is a reasonable threshold.

Containment threshold. Similar to the distance threshold evaluation, we ran-
domly selected pairs of apps from our dataset and computed their containments,
creating 10 buckets for possible containment values between [0, 100] percent, until
we had 100 unique pairs of apps for all containment values. We then manually
examined those apps and counted the number of application pairs which we
consider to be whole Ul impersonations, as shown in Fig.8. The false negative
and false positive rates are shown in Fig. 9, yielding T}, = 0.45 containment to
be a reasonable threshold for whole Ul impersonation detection, above which
applications within a pair are considered impersonation cases of each other.
To verify that our manually derived false negatives rates were representative,
we performed an additional check outlined in Appendix B. To detect partial
UI impersonation, in our experiments, we found that setting the containment
threshold to T}, = 0.10 gave good results.

5 Detection Results
To demonstrate that our system is able to catch impersonation attacks, we ana-
lyzed each application in our dataset and we report the following results.

Whole Ul impersonation. Using perceptual hash distance d = 10 and con-
tainment threshold T,, = 0.45, our system detected 43,904 impersonating apps

230 L. Malisa et al.

out of 137,506 successfully analyzed apps. Such a high number of impersonation
instances is due to the fact that a large part of our apps are from third-party
markets. From the set of detected apps, our system does not automatically detect
which apps are originals and which are impersonators.

At T, = 0.45 our system has an estimated 15 % false negatives. We remind
the reader that these false negatives refer to missed application pairs, and not
missed repacks. To illustrate, let us consider a simple example where our system
is deployed on a market, and 3 apps are submitted (the original Facebook app,
and 2 apps that impersonate it). The first app will be added and no imperson-
ation can be detected. On the second app, our system has a 15% to miss the
relation between the queried app and the one already in the store. However, the
third app has approximately only 0.152 = 0.02 chance of missing both relations
and not being identified as impersonation with regards to the other two apps
in the store. During our experiments, we found instances of clusters containing
up to 200 apps, all repackaging the same original app.

Similarly, at T, = 0.45 our system has also 15 % false positives, which is
arguably high. However, due to the fact that apps are repacked over and over
again, on a deployed system we can set the containment threshold to be higher
(e.g., T, = 0.60). At that value, our system has only 3% false positives, and
31 % false negatives. However, if the app is repacked a modest number of 5 times,
the chances of missing all impersonation relationships becomes less than half a
percent 0.31° = 0.002.

In the above examples, we assumed that the analysis of each app is an inde-
pendent event. In reality, this may not be the case. For example, if one imper-
sonation app is missed, a closely related impersonation app may be missed with
higher probability (i.e., the events are not independent). However, the more apps
impersonate an original app, the higher the chances of our system catching it.

Partial UI impersonation. Using the metric described in Sect. 3.4, and T, =
0.10, we found approximately 1,000 application pairs that satisfy the query.
We randomly selected and manually inspected 100 pairs of apps to understand
their relationships. In most cases, we found repackaged applications with a large
number of additional advertising libraries attached.

Among these results, we also found an interesting case of a highly suspicious
impersonation application. In this sample, the impersonation target is a dating
app. The registration screen of the impersonation app appears visually identical
to original. However, manually inspecting the code reveals that a new payment
URL has been added to the application, no longer pointing to the dating web-
site, but instead to a different IP. We uploaded the sample to virustotal.com
to confirm our suspicions, and the majority of scanners indicated maliciousness.
The code similarity between the original and impersonating apps (according to
Androguard) is only 22 %, largely due to added advertising libraries.

Our similarity metric allows us to find specialized kinds of impersonation
attacks that deviate from the more primitive repackaging cases. Interesting user
interfaces with certain characteristics (e.g. login behaviour) can be queried from

https://www.virustotal.com/

Mobile Application Impersonation Detection 231

a large data-set of analysed applications to find various kinds of impersonation,
drastically reducing the necessary manual verification done by humans.

6 Security Analysis

Detection avoidance. Our user interface extraction system executes applica-
tions in an emulator environment. A repackaging adversary could try to fin-
gerprint the execution environment and alter the behavior of the application
accordingly (e.g., terminate execution if it detects emulator). The obvious coun-
termeasure is to perform the user interface exploration on real devices. While
the analysis of large number of apps would require a pool of many devices
(potentially hard to organize), user interface exploration would be faster on
real devices [21] compared to an emulator. Our user interface extraction system
could be easily ported from the emulator environment to real Android devices.
A phishing adversary could construct the phishing screen in a way that com-
plicates its extraction. To avoid the inflater, the adversary can implement the
phishing screens without any resource files. To complicate extraction by crawl-
ing, the adversary could try to hide the phishing screen behind an OpenGL
surface that is hard to decompose and therefore explore or make the appearance
of the phishing screen conditional to an external event or state that does not
necessarily manifest itself during the application analysis. Many such detection
avoidance techniques reduce the likelihood that the phishing screen is actually
seen by the user (a necessary precondition of any phishing attack). While our
solution does not make impersonation impossible, it raises the bar for attack
implementation and reduces the chances that users fall for the attack.

7 Discussion

Improvements. Our crawler could be extended to create randomized events
and common touch screen gestures (e.g., swipes) for improved coverage. Our
current out-of-order execution could be improved as well. Currently, startup of
many activities fails due to missing arguments or incompatible application state.
One could try to infer these from the application code through static analysis.
Static code analysis could be also used to identify sections of application code
that perform any drawing on the screen and the application could be attempted
to force the execution of this code segment, e.g., leveraging symbolic execution.
We consider such out-of-order execution a challenging problem.

Deployment. The primary deployment model we consider is one where a mar-
ketplace, mobile platform provider, anti-virus vendor or a similar entity wants to
examine a large number of mobile apps to detect impersonation in the Android
ecosystem. As shown in Sect.4, the analysis of large number of apps requires
significant resources, but is feasible for the types of entities we consider. Once
the initial, one-time investment is done, detection for new applications is inex-
pensive. User interface extraction for a single application takes on the average

232 L. Malisa et al.

7min and finding matching repacks or phishing apps can be done in the matter
of seconds. As a comparison, the Google Bouncer system dynamically analyzes
each uploaded app for approximately 5 min [23]. Our system streams screenshots
to the central analysis server as they are extracted. The system can therefore
stop further analysis if a decision can be made.

Post-detection actions. Once an application has been identified as a potential
impersonation app, it should be examined further. Ad revenue stealing repacks
could be confirmed by comparing the advertisements libraries and their configu-
rations in two apps with matching user interfaces; sales revenue stealing repacks
could be confirmed by comparing the publisher identities; repacks with malicious
payload could be detected using analysis of APT calls [3], comparison of code dif-
ferences [9], known malware fingerprints or manual analysis; and phishing apps
could be confirmed by examining the network address where passwords are sent.
Many post-detection actions could be automated, but implementation of these
tools is out of scope for this work.

8 Related Work

Repackaging detection. The previous work on repackaging detection is mostly
based on static fingerprinting. EagleDroid [27] extracts fingerprints from Android
application layout files. ViewDroid [36] and MassVet [9] statically analyze the UI
code to extract a graph that expresses the user interface state and transitions.
The rationale behind these works is that while applications code can be eas-
ily obfuscated, the user interface structure must remain largely unaffected. We
have showed that detection based on static fingerprinting can be easily avoided
(Sect. 2) and our solution provides more robust repackaging detection, at the
cost of increased analysis time.

Phishing detection. The existing application phishing detection systems
attempt to identify API call sequences that enable specific phishing attacks vec-
tors (e.g., activation from the background when the target application is started
[7]). While such schemes can be efficient to detect certain, known attacks, other
attacks require no specific API calls. Our solution applies to many types of phish-
ing attacks, also ones that leverages previously undiscovered attack vectors.

User interface exploration. The previous work on mobile application user
interface exploration focuses on maximizing GUI coverage and providing means
to reason about the sequence of actions required to reach a certain application
state for testing purposes [2,5,17,33]. These approaches require instrumenta-
tion of the analysis environment with application-specific knowledge, customized
companion applications, or even source code modifications to the target applica-
tion. Our crawler works autonomously and achieves similar (or better) coverage.

9 Conclusions

In this paper we have proposed and demonstrated a novel approach for mobile
app impersonation detection. Our system extracts user interfaces from mobile

Mobile Application Impersonation Detection 233

apps and finds applications with similar user interfaces. Using the system we
found thousands of impersonation apps. In contrast to previous fingerprinting
systems, our approach provides improved resistance to detection avoidance, such
as obfuscation, as the detection relies on the final visual appearance of the exam-
ined application, as seen by the user. Another benefit of the system is that it can
be fine-tuned for specialized cases, like the detection of phishing apps. The main
drawback of our approach is the significantly increased analysis time compared
to static analysis. However, our experiments show that impersonation detection
at the scale of large application stores is practical. Finally, the novel user inter-
face exploration techniques that we have developed as part of this work, may
have numerous other applications besides impersonation detection.

Acknowledgements. This work was partially supported by the Zurich Information
Security Center. It represents the views of the authors.

A Android Ul Background

In this section we provide a concise primer on Android application user inter-
faces. Android apps with graphical user interfaces are implemented using activ-
ity components. A typical app has multiple activities, one for every separate
functionality. For example, a messaging app could have activities for reading a
message, writing a message, and browsing received messages. Each activity pro-
vides a window to which the app can draw its user interface, that usually fills
the entire device screen, but it may also be smaller and float on top of other
windows. The Android system maintains the activities of recently active apps in
a stack. The window surface from the top activity is shown to the user or if the
window of the top activity does not cover the entire screen, the user sees also
the window beneath it. The user interface within a window is constructed using
views, where each view is either a visible user interface element (e.g., a button
or an image) or a set of subviews. The views are organized in a tree hierarchy
that defines the layout of the user interface.

The recommended way to define user interface layouts in Android is using
XML resource files, but Android apps can also construct view hierarchies (UI
element trees) programmatically. Furthermore, Android apps can construct their
user interfaces using OpenGL surfaces and WebViews. The OpenGL user inter-
faces are primarily used by games, while WebView is popular with many cross-
platform apps. Inside a WebView, the user interface is constructed using common
HTML. All of the methods stated above can be implemented in Java, as well as
native code.

Every Android application contains a manifest file that defines the applica-
tion’s activities. One activity is defined as the application entry point, but the
execution of the application can be started from other activities as well. When
an activity is started, the Android framework automatically renders (inflates)
the layout files associated with the activity.

234 L. Malisa et al.

B Containment Threshold Verification

To further verify our manual containment threshold evaluation performed in
Sect. 4.2, we created a large ground truth of application pairs known to be triv-
ial repacks of each other. We define a trivial repacks as any pair of applications
where both applications have at least 90 % identical resource files as well as a
code similarity (computed using Androguard) of 90 % or higher. For such pairs,
we can be confident that the apps are indeed repacks. Over the course of several
days, we compiled a list of 200,000 pairs to serve as a ground truth of known
repacks. We then ran our system against every pair in this list, querying either
app of the pair. If the system did not find the corresponding app, or if their con-
tainment is below the threshold value of 45 %, we consider this a false negative.
We repeated this exercise for different threshold values and compared the results
to the expected false negative rates, confirming that the pairs considered in our
manual verification are indeed representative for our large data-set.

C Application Dataset

Here we present the statistics of all the applications we used in our experiments.

Table 1. Application dataset.

Marketplace Apps
play.google.com (US) | 14,323
coolapk.com (CN) 5666
m.163.com (CN) 24,069
1mobile.com (CN) 24,173
mumayi.com (CN) 29,990

anzhi.com (CN) 36,202
slideme.org (US) 19,730
android.d.cn (CN) 4635
Total 158,449

References

1. Android malware genome project. http://www.malgenomeproject.org

2. Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M.:
Using gui ripping for automated testing of android applications. In: International
Conference on Automated Software Engineering (ASE) (2012)

3. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
Drebin: effective and explainable detection of android malware in your pocket. In:
Network and Distributed System Security (NDSS)

https://play.google.com/
www.coolapk.com
http://m.163.com/
www.1mobile.com/
www.mumayi.com/
www.anzhi.com/
www.slideme.org
http://android.d.cn/
http://www.malgenomeproject.org

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Mobile Application Impersonation Detection 235

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: ACM SIGPLAN Notices,
vol. 49, pp. 259-269. ACM (2014)

Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing
of android apps. In: ACM Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA) (2013)

Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based security models and its application to
android. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 73-84. ACM (2010)

Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.:
What the app. is that? deception and countermeasures in the android user inter-
face. In: Symposium on Security and Privacy (SP) (2015)

Buchner, J.: https://pypi.python.org/pypi/ImageHash

Chen, K., Wang, P., Lee, Y., Wang, X., Zhang, N., Huang, H., Zou, W., Liu,
P.: Finding unknown malice in 10 seconds: mass vetting for new threats at the
google-play scale. In: USENIX Security Symposium (2015)

Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Annual symposium on Computational
Geometry (CG) (2004)

Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253-262. ACM (2004)

Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection
of android malware through static analysis. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering
Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J.: Vision: automated security valida-
tion of mobile apps at app. markets. In: Proceedings of the Second International
Workshop on Mobile Cloud Computing and Services, pp. 21-26. ACM (2011)
Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services

Griffin, K., Schneider, S., Hu, X., Chiueh, T.: Automatic generation of string sig-
natures for malware detection. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 101-120. Springer, Heidelberg (2009)

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable system
for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62-81. Springer,
Heidelberg (2013)

Kropp, M., Morales, P.: Automated gui testing on the android platform. In:
International Conference on Testing Software and Systems (ICTSS) (2010)

Lin, Y.-D., Lai, Y.-C., Chen, C.-H., Tsai, H.-C.: Identifying android malicious
repackaged applications by thread-grained system call sequences. Comput. Secur.
39, 340-350 (2013)

Malisa, L., Kostiainen, K., Capkun, S.: Detecting mobile application spoofing
attacks by leveraging user visual similarity perception. Cryptology ePrint Archive,
Report 2015/709 (2015). http://eprint.iacr.org/

Memon, A., Banerjee, 1., Nagarajan, A.: Gui ripping: reverse engineering of graph-
ical user interfaces for testing. In: Working Conference on Reverse Engineering
(WCRE) (2003)

https://pypi.python.org/pypi/ImageHash
http://eprint.iacr.org/

236

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

L. Malisa et al.

Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat, D.,
Kruegel, C., Vigna, G.: Baredroid: large-scale analysis of android apps on real
devices. In: Proceedings of the 31st Annual Computer Security Applications
Conference, pp. 71-80. ACM (2015)

Nguyen, B.N., Robbins, B., Banerjee, I., Memon, A.: Guitar an innovative tool
for automated testing of gui-driven software. Autom. Softw. Eng. 21(1), 65-105
(2014)

Oberheide, J., Miller, C.: Dissecting the android bouncer. In: SummerCon (2012)
Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, pp. 209-220. ACM (2013)

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: andromaly: a behav-
ioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1),
161-190 (2012)

Stefanko, L.: Android Banking Trojan, March 2016. http://www.welivesecurity.
com/2016/03/09/android-trojan-targets-online-banking-users/

Sun, M., Li, M., Lui, J.: Droideagle: seamless detection of visually similar android
apps. In: Conference on Security and Privacy in Wireless and Mobile Networks
(Wisec) (2015)

Symantec. Will Your Next TV Manual Ask You to Run a Scan Instead of Adjusting
the Antenna? April 2015. http://goo.gl/xh58UN

Tang, Z., Dai, Y., Zhang, X.: Perceptual hashing for color images using invariant
moments. Appl. Math 6(2S), 643S-650S (2012)

Tikir, M.M., Hollingsworth, J.K.: Efficient instrumentation for code coverage test-
ing. In: ACM International Symposium on Software Testing and Analysis (ISSTA)
(2002)

Vidas, T., Tan, J., Nahata, J., Tan, C.L., Christin, N., Tague, P.: A5: automated
analysis of adversarial android applications. In: Proceedings of the 4th ACM Work-
shop on Security and Privacy in Smartphones & Mobile Devices

Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the os and dalvik seman-
tic views for dynamic android malware analysis. In: Presented as part of the 21st
USENIX Security Symposium (USENIX Security 2012), pp. 569-584 (2012)
Yang, W., Prasad, M.R., Xie, T.: A grey-box approach for automated GUI-model
generation of mobile applications. In: Cortellessa, V., Varr6, D. (eds.) FASE 2013
(ETAPS 2013). LNCS, vol. 7793, pp. 250-265. Springer, Heidelberg (2013)
Zadgaonkar, H.: Robotium Automated Testing for Android. Packt Publishing,
Birmingham (2013)

Zauner, C.: Implementation and benchmarking of perceptual image hash functions
(2010)

Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: Viewdroid: towards obfuscation-
resilient mobile application repackaging detection. In: ACM Conference on Security
and Privacy in Wireless and Mobile Networks (Wisec) (2014)

Zhang, Q., Reeves, D.S.: Metaaware: identifying metamorphic malware. In:
Twenty-Third Annual Computer Security Applications Conference, ACSAC 2007,
pp. 411-420. IEEE (2007)

Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of
piggybacked mobile applications. In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy, pp. 185-196. ACM (2013)

http://www.welivesecurity.com/2016/03/09/android-trojan-targets-online-banking-users/
http://www.welivesecurity.com/2016/03/09/android-trojan-targets-online-banking-users/
http://goo.gl/xh58UN

39.

40.

41.

Mobile Application Impersonation Detection 237

Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party android marketplaces. In: Proceedings of the Second ACM
Conference on Data and Application Security and Privacy

Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: IEEE Symposium on Security and Privacy (S&P), May 2012

Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In: NDSS (2012)

	Mobile Application Impersonation Detection Using Dynamic User Interface Extraction
	1 Introduction
	2 Motivation and Case Study
	3 Visual Impersonation Detection System
	3.1 Design Challenges
	3.2 Automated Crawling
	3.3 Coverage Improvements
	3.4 Screenshot Analysis

	4 Evaluation
	4.1 User Interface Extraction
	4.2 Screenshot Comparison

	5 Detection Results
	6 Security Analysis
	7 Discussion
	8 Related Work
	9 Conclusions
	A Android UI Background
	B Containment Threshold Verification
	C Application Dataset
	References

