
Insynd: Improved Privacy-Preserving
Transparency Logging

Roel Peeters1 and Tobias Pulls2(B)

1 ESAT/COSIC and iMinds, KU Leuven, Leuven, Belgium
roel.peeters@esat.kuleuven.be

2 Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

tobias.pulls@kau.se

Abstract. Service providers collect and process more user data then
ever, while users of these services remain oblivious to the actual process-
ing and utility of the processed data to the service providers. This leads
users to put less trust in service providers and be more reluctant to share
data. Transparency logging is about service providers continuously log-
ging descriptions of the data processing on their users’ data, where each
description is intended for a particular user.

We propose Insynd, a new cryptographic scheme for privacy-
preserving transparency logging. Insynd improves on prior work by (1)
increasing the utility of all data sent through the scheme thanks to our
publicly verifiable proofs: one can disclose selected events without having
to disclose any long term secrets; and (2) enabling a stronger adversar-
ial model: Inysnd can deal with an untrusted server (such as commodity
cloud services) through the use of an authenticated data structure named
Balloon. Finally, our publicly available prototype implementation shows
greatly improved performance with respect to related work and compet-
itive performance for more data-intensive settings like secure logging.

1 Introduction

In general, transparency logging allows service providers to show that they are
compliant with a certain policy that can be imposed by legislation, sector regu-
lations or internal procedures; but just as well through service level agreements
for businesses to keep tabs on subcontractors [10,18]. For personal data, pri-
vacy regulations such as the EU General Data Protection Regulation empower
users by granting them the right to obtain transparency about their data being
processed and by improving their ability to hold the service providers account-
able for their actions. Conceptually, through transparency logging, users that
wish to know what is happening with their personal data after disclosure to a
service provider can see whether or not the processing is inline with the prior
agreed upon policy. This could, e.g., be a hospital with a privacy policy for
processing patient data. Each access and modification to the patient’s health
record is logged for the patient. If patients discover someone prying, they can
file a complaint with the hospital’s ombudsperson.
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 121–139, 2016.
DOI: 10.1007/978-3-319-45741-3 7

122 R. Peeters and T. Pulls

In the setting of transparency logging [18] as depicted in Fig. 1, the author
generates events intended for recipients that describe data processing by the
author as it takes place. Events are stored at a server : an intermediate party
that primarily serves to offload storage of events for authors. The recipient can
then at a later point in time get insights into the author’s data processing by
consulting the events intended for him or her. With these insights, the recipient
can hold the author accountable for its actions and if deemed necessary take
remediation measures, e.g., file a complaint or switch service providers. Note
that this paper focuses on a transparency logging scheme, which is only about
the generation, storage and retrieval of events, not on what should be logged
to describe data processing, or how policies should be structured to enable the
comparison with stated data processing.

AuthorRecipient data disclosure

server

retrieve events

generate events

match? policy

Fig. 1. Recipient comparing actual data processing of its data with the data processing
that was agreed upon in the policy prior to data disclosure.

A transparency logging tool must provide security and privacy. The integrity
of the stored events has to be guaranteed, as this is where the recipient bases its
insights on to hold the author accountable. This means that it should be impos-
sible to alter or delete any events after being stored at the server without being
detectable. Data privacy and confidentiality of the stored events are important
because the mere existence of events already reveals information, e.g., a patient
visiting the hospital. This means that when a transparency logging tool does
not consider privacy, one should deploy another transparency enhancing tool for
monitoring data processing on the stored events from the first to make sure that
data derived from these events are not used instead of the original data.

When users want to take action based upon the messages logged for them,
they will inavoidably break some of the privacy properties. What we aim for with
Insynd, our proposed cryptographic transparency logging tool, is to limit the pri-
vacy breaches to the events disclosed, i.e., enable selective disclosure, and as such
greatly increase the utility of the transparency logging tool. Instead of having recip-
ients reveal long term secrets, recipients can generate publicly verifiable proofs
which allow them to disclose the content of stored events such that the content
and other properties cannot be refuted. Furthermore, Insynd also improves on the
scheme that was proposed by Pulls et al. [18] by allowing for a stronger adversarial

Insynd: Improved Privacy-Preserving Transparency Logging 123

model. While some trust in authors is inevitable (forward security), since authors
generate descriptions of their own processing, servers (e.g., commodity cloud ser-
vices) should not have to be trusted. We primarily achieve the stronger adversary
model through the use of Balloon [16], an authenticated data structure that was
designed specifically for this setting. Lastly, our performance benchmarks show
speeds comparable to state-of-the-art secure logging schemes. In summary, our con-
tributions are:

– Increased utility of a transparency logging scheme through our publicly ver-
ifiable proofs: recipients and authors can produce publicly verifiable proofs
of all data sent through Insynd, convincing a third-party of who sent what
particular message to whom at approximately what time.

– A new transparency logging scheme in our stronger adversarial model where
the server does not need to be trusted through the use of Balloon [16]. The
resulting scheme also provides publicly verifiable consistency: anyone can ver-
ify that all events stored in a Balloon are consistent.

– A publicly available performant proof-of-concept implementation of Insynd
using modern cryptographic primitives and benchmark code.

This paper is structured as follows. Section 2 states our assumptions and
goals. Section 3 gives a high-level overview of our ideas. Section 4 presents Insynd
in detail. Section 5 evaluates Insynd’s properties. Section 6 presents related work.
Section 7 shows the performance of our implementation.

2 Assumptions and Goals

We assume a setting with three parties: author, server and recipients. The author
and recipients only have limited storage capabilities, while the server has high
storage capabilities. The author is considered forward secure: the author is ini-
tially trusted until the time of compromise and the adversary, by compromising
the author, gains no advantage towards breaking any of the security and pri-
vacy properties related to the events stored before compromise. The server is
considered compromised from the start. Recipients are considered honest.

For communication, we assume a secure channel between the author and the
server (such as TLS), and a secure and anonymous channel for recipients (such
as TLS over Tor [9]) to communicate with the author and server. We explicitly
consider availability out of scope, that is, the author and server will always
reply (however, their replies may be malicious). For time-stamps, we assume the
existence a trustworthy time-stamping authority [7].

For the core security and privacy properties: secrecy, forward integrity with
deletion-detection and forward unlinkability of events, we make use of the model
of Pulls et al. [18], with some modifications to account for possible informa-
tion leakage through our introduced publicly verifiable proofs1 and our stronger
1 Since state is kept by the author instead of the server (which is assumed to be

untrusted), the CorruptServer oracle is replaced by a CorruptAuthor oracle. To
account for information leakage, additional oracles such as GetState, DecryptEvent
and RecipientEvent are introduced.

124 R. Peeters and T. Pulls

adversarial setting. The full updated model is available in the extended version
of this paper [17]. Secrecy is vital for recipients since events may contain sensitive
personal data. Forward integrity with deletion-detection ensures that events are
tamper evident: any modifications (including deletion) can be detected. Finally,
forward unlinkability of events ensures that prior generated events do not leak
information such as the number of events that belong to a particular recipient.

In addition to the core security and privacy properties, we provide publicly
verifiable consistency and a number of publicly verifiable proofs to increase the
utility of the data sent through the transparency logging scheme. Publicly veri-
fiable consistency can be seen as a form of publicly verifiable deletion-detection
and forward integrity for all events produced by the author at a server. Insynd
allows for publicly verifiable proofs of (1) the author of an event, (2) the recipient
of an event, (3) the message sent in an event, and (4) the time an event existed
at a server. While a recipient is always able to produce these proofs, the author
has to decide during event generation if it wishes to save material to be able to
create these proofs. Each proof is an isolated disclosure and a potential violation
of a property of Insynd, like secrecy and forward unlinkability of events.

3 Ideas

To protect the privacy of the recipients, the author turns all descriptions for
recipients into events consisting of an identifier and a payload, where the iden-
tifiers are unlinkable to each other and the payloads contain the encrypted
descriptions for the recipient. It should be noted that the entire events must
be unlinkable to each other, hence the encryption scheme must also provide key
privacy [2]. Later on the recipient must be able to retrieve its relevant events
and decrypt the logged descriptions. For each event, the author updates the
symmetric event linking key for the recipient in question using a forward-secure
sequential key generator (SKG) in the form of an evolving hash chain [3,13,19].
The recipient can do the same to link the relevant event identifiers together.

To provide the publicly verifiable proofs of message and recipient, we need to
go into the details of the used encryption scheme and how the event linking key
and nonce for encryption are derived from the forward secure sequential key. We
make use of an IND-CCA22 public-key authenticated encryption scheme [1] in a
non-traditional manner. A public key authenticated encryption scheme allows a
sender to encrypt a message for a receiver using the receiver’s public key and its
own private key, such that the receiver can decrypt the message using its own
private key and the sender’s public key. In this way, both sender and receiver can
decrypt the message and be assured that only someone who knows either private
key can have created the ciphertext. To avoid a deterministic encryption scheme,
a nonce is usually included for each message to be encrypted. Instead of taking
the author’s private key as input, we generate a fresh ephemeral public private
key pair for each message, send along the public key and append the private key
2 Every publicly verifiable proof is an isolated disclosure, hence the encryption scheme

must provide secrecy even when the adversary has access to a decryption oracle.

Insynd: Improved Privacy-Preserving Transparency Logging 125

to the message to be encrypted. As such the recipient can prove, by revealing
the ephemeral private key and the nonce, that the ciphertext contains the said
plaintext. The author can do the same if it stores the ephemeral private key at
the time of creating the event. We define the following algorithms, based on the
algorithms of the public key authenticated encryption scheme Π = {(sk, pk) ←
KeyGen(1λ), c ← Encn

pk(m), m ← Decn
sk(c, pk)}:

– (c, pk′) ← Encn
pk(m): Encrypts a message m using an ephemeral key-pair

(sk′, pk′) ← KeyGen(1λ), the public key pk, and the nonce n. The resulting
ciphertext c is Encn

pk′(m||sk′). Returns (c, pk′).
– (m, sk′) ← Decn

sk(c, pk
′): Decrypts a ciphertext c using the private key sk,

public key pk′, and nonce n where p ← Decn
sk(c, pk

′). If decryption fails p = ⊥,
otherwise p = m||sk′. Returns p.

– m ← Decn
sk′,pk(c, pk

′): Decrypts a ciphertext c using the private key sk′, public
key pk, and the nonce n where p ← Decn

sk′(c, pk). If decryption fails p =
⊥, otherwise p = m||sk∗. If sk′ = sk∗ and corresponds to pk′, returns m,
otherwise ⊥.

The event linking key k′ and nonce n for encryption are derived from the
current authentication key k (Fig. 2). The event linking key is used to prove the
recipient of the event. By deriving the event linking key from the nonce, we prove
that the recipient corresponds to the decrypted message.

k0

n0

k′
0

k1

n1

k′
1

k2

n2

k′
2

k3

n3

k′
3

...

Fig. 2. Deriving the event key k′ and nonce n. Each arrow represents a one-way relation,
e.g., from k it is easy to compute n, but the other way around is hard.

Through using Balloon [16], an authenticated data structure that was
designed for the setting of transparency logging with an untrusted server, we can
support our stronger adversarial model and provide publicly verifiable proofs of
consistency. Balloon allows for efficient publicly verifiable proofs of both mem-
bership and non-membership of keys. This is needed, since otherwise a recipient
cannot distinguish between a server denying service and the lack of an event with
a specific identifier. The main advantage of Balloon compared to other authen-
ticated data structures that have this property3, is that the author only needs
to keep constant storage (instead of storing a copy of the data structure) and
that proof generation is more efficient for the server. The main algorithms from
Balloon that are used by Insynd are:

3 For a more in-depth discussion, we refer the reader to Pulls and Peeters [16].

126 R. Peeters and T. Pulls

– B.query (Membership) and B.verify (Membership) to generate as well
as verify (non-)membership proofs.

– B.query (Prune), B.verify (Prune), B.update*, and B.refresh to insert a
new set of events into a Balloon and generate a new snapshot, which commits
the author to all the events that are stored until now.

The full algorithm descriptions can be found in [17]. To support a forward-
secure author (preventing it from creating snapshots that delete or modify events
inserted prior to compromise), Balloon requires trusted monitors and a perfect
gossiping mechanism for the snapshots. Monitors continuously reconstruct the
Balloon and compare calculated snapshots with those gossiped (spread simulta-
neously to all recipients) by the author. We relax these requirements by linking
snapshots together and periodically timestamping these; and by introducing for-
ward integrity with deletion-detection for each recipient.

To provide forward integrity with deletion detection, we rely on the author
keeping an evolving forward-secure state for each recipient. By enabling the
recipient to query for this state and verifying the response, it is impossible for
the author to alter events for this recipient (sent to the server prior to the time
of compromise) as it will not be able to generate a valid state to send to the
recipient. During recipient registration, cryptographic key material will be set
up for the recipient: an asymmetric key-pair, for encryption and decryption, and
a symmetric key to be able to link relevant events together. For each recipient,
the current values of the forward-secure SKG and the forward-secure sequential
aggregate authenticator (FssAgg) [12] over the relevant event values are kept in
the author’s state.

4 Insynd

Now we will go into the details of the different protocols that make up Insynd.
Figure 3 shows five protocols between an author A, a server S, and a recipi-
ent R. The protocols are setup (pink box), register (blue box), insert (yellow
box), getEvent (red box), and getState (green box). The following subsections
describe each protocol in detail.

4.1 Setup and Registration

The author and server each have signature key pairs, (Ask,Avk) and (Ssk,Svk),
respectively. We assume that Avk and Svk are publicly attributable to the respec-
tive entities, e.g., by the use of some trustworthy public-key infrastructure. For
the author, the key pair is generated using the B.genkey algorithm of Balloon,
as this key pair is also used to sign the snapshots, which are part of Balloon.

Author-Server Setup. The purpose of the setup protocol (pink box in Fig. 3)
is for the author and the server to create a new Balloon, stored at the server,
with two associated uniform resource identifiers (URIs): one for the author AURI,

Insynd: Improved Privacy-Preserving Transparency Logging 127

A

Snapshots

BSD sh, sh+1

State for BSD

pk ki, vi

S Balloon Events Snapshots

BSD < ex >, u sh, sh+1

R

se
tu
p:
A UR

I

S U
RI
, S
ig
n S s

k
(A

UR
I
||S U

RI
)

Si
gn
A s
k
(A

UR
I
||S U

RI
),
s0in

se
rt

: u
Π
(q
),
α(

q)sh
+
1

BSD

register: pk, n

Encnpk k0||v0||BSD||SignAsk
(k0||v0||BSD||pk)

)

getState: pk, n

Encnpk x||sh||sh−1||SignAsk
(x||sh||pk))

getEvent: e IDi
, s
j

Π
(q), α(q), s

h , s
h−

1

Fig. 3. Insynd consists of five protocols (coloured boxes), between an author A, server
S, and recipient R. A solid line indicates the start of protocol and a dashed line a
response. (Color figure online)

and one for the server SURI. At the former the recipient can later on query for its
current state, while at the latter it can retrieve stored events. The result of this
protocol, the Balloon setup data (BSD), commits both the author and the server
to the newly created Balloon.

The protocol is started by the author sending its AURI to the server. The
server replies with SURI and SignSsk

(AURI||SURI). The signature commits the server
to the specified Balloon. Upon receiving the reply from the server, the author
verifies the server’s signature. If this verifies, the author creates an empty Balloon
(auth(D0), s0) ← B.setup(D0,Ask,Avk) for an empty data structure D0. The
author sends SignAsk

(AURI||SURI) together with the initial snapshot s0 to the
server to acknowledge that the new Balloon is now set up. Once the server
receives this message, it verifies the author’s signature and can complete the
setup of the empty Balloon now that it has s0. The two signatures, the two
URIs, and the initial snapshot s0 together form the BSD.

Recipient Registration. The purpose of the register protocol (blue box in
Fig. 3) is to enable the author to send messages to the recipient later on, and at
the same time have the author commit to the recipient on how these messages
will be delivered. Before running the protocol, the recipient is assumed to have
generated its encryption key pair (pk, sk).

The protocol is initiated by the recipient sending its public key together
with a nonce to the author. The author generates the initial authentication

128 R. Peeters and T. Pulls

key k0 ← Rand(|Hash(·)|) and authenticator value v0 ← Rand(|Hash(·)|) for this
recipient and stores these values in its state table for BSD. The state table contains
the current authentication key ki and authenticator value vi for each recipient’s
public key that is registered in the Balloon for BSD. By generating a random v0,
the state of newly registered recipients is indistinguishable from the state of
recipients that have already one or more events created for them.

The author returns to the recipient k0, v0, BSD, and the following signature:
SignAsk

(k0||v0||BSD||pk). The signature covers the public key of the recipient
to bind the registration to a particular public key (and hence recipient). The
signature (that commits the author) is necessary to prevent the author from
fully refuting that there should exist any messages for this recipient. The reply
to the recipient is encrypted by the author under the provided public key and
nonce. On receiving the reply, the recipient decrypts the reply, verifies all three
signatures (two in BSD), and stores the decrypted reply. The recipient now has
everything it needs to retrieve its relevant events and state later on.

4.2 Event Generation

An event e = (eID, eP) consists of an identifier and a payload. The event identi-
fier eID identifies the event in a Balloon and is used by the recipient to retrieve
an event. The event payload eP contains the encrypted message from the author.
The nonce n, used for encrypting the event payload, and the event key k′, used for
generating the event identifier, are derived from the recipient’s current authen-
tication key k (which the author retrieves from its state table):

n ← Hash(1||k) and k′ ← Hash(n) (1)

For deriving the nonce, a prefix 1 is added to k to distinguish between deriving
the nonce and updating the authentication key, which is done as follows:

ki ← Hash(ki−1) (2)

The event identifier is generated by computing a MAC on the recipient’s public
key using the event key:

eID ← MACk′(pk) (3)

This links the event to a particular recipient, which can be used for publicly veri-
fiable proofs of recipient. The event payload is generated by encrypting the mes-
sage under the recipient’s public key and the generated nonce: eP ← Encn

pk(m).
Since k′ is derived from n, this links the event identifier and event payload
together and can be used for publicly verifiable proofs of message.

After generating the event, the author updates its state table, effectively over-
writing previous values. First the current authenticator value v for the recipient,
which aggregates the entire event, is updated using an FssAgg [12]:

vi ← Hash
(
vi−1||MACki−1(e)

)
(4)

Then the recipient’s current authentication key is updated using Eq. 2.

Insynd: Improved Privacy-Preserving Transparency Logging 129

Insert. The purpose of the insert protocol (yellow box in Fig. 3) is for an
author to insert a set of generated events u into a Balloon kept by the server.
The author sends u to the server and gets back a proof that the events can
be correctly inserted. If this proof verifies, the author creates a new snapshot,
committing to the current version of the Balloon.

Upon receiving u, the server runs:

(Π(u), α(u)) ← B.query(u,Dh, auth(Dh),Avk)(Prune)

to generate a proof Π(u) and answer α(u) and sends these back to the author.
To verify the correctness of the server’s reply, the author runs:

{accept, reject} ← B.verify(u, α,Π, sh,Avk)(Prune)

where sh is the latest snapshot generated by the author. If the verification fails,
the author restarts the protocol. Next, the author runs:

(sh+1, upd) ← B.update*(u,Π, sh,Ask,Avk)

to create the next snapshot sh+1 (which is also stored in upd). The author stores
the snapshot in its snapshot table for BSD, and sends upd to the server. The
server verifies the snapshot and then runs:

(Dh+1, auth(Dh+1), sh+1) ← B.refresh(u,Dh, auth(Dh), sh, upd,Avk)

to update the Balloon. Finally, the server stores the snapshot sh+1 and events u
in its Balloon table for BSD.

Snapshots and Gossiping. Balloon assumes perfect gossiping of snapshots.
In order to relax this requirement, we modify the snapshot construction. This
modification was inspired by CONIKS [15], which works in a setting closely
related to ours and links snapshots together into a snapshot chain. We redefine
a snapshot as:

sh ←
(
i, ci, r, t, SignAsk

(i||ci||r||sh−1||t)
)

Note that h is an index for the number of updates to Balloon, while i is an index
for the number of events in the Balloon. The snapshot sh contains the latest
commitment ci on the history tree and root r on the hash treap for auth(Dh),
fixing the entire Balloon4. The previous snapshot sh−1 is included to form the
snapshot chain. Finally, an optional timestamp t from a trusted time-stamping
authority is included both as part of the snapshot and in the signature. The
timestamp must be on (i||ci||r||sh−1). How frequently a timestamp is included
in snapshots directly influences how useful proofs of time are. Timestamping of
snapshots is irrelevant for our other properties.

Gossiping of snapshots is done by having the author and server making all
snapshots available, e.g., on their websites. Furthermore, the latest snapshots
are gossiped to the recipients as part of the getState and getEvent protocols
(described next). Since snapshots are both linked and occasionally timestamped,
this greatly restricts adversaries in the forward-security model.
4 Balloon is the composition of a history tree and hash treap [16].

130 R. Peeters and T. Pulls

4.3 Event Reconstruction

A recipient uses two protocols to reconstruct its relevant messages sent by the
author: getEvent and getState. After explaining how to get the relevant events
and the current state, we show how recipient can verify the consistency of its
retrieved messages.

Getting Events. The purpose of the getEvent protocol (red box in Fig. 3) is for
a recipient to retrieve an event with a given identifier and an optional snapshot.
The server replies with the event (if it exists) and a proof of membership. Before
running this protocol, the recipient generates the event identifier it is interested
in, by using Eqs. 1–3 together with the data it received from the author during
registration.

Upon receiving the event identifier eID and optional snapshot sj from the
recipient, the server runs for q = (eID, sj):

(
Π(q), α(q)

)
← B.query(q,Dh, auth(Dh),Avk)(Membership)

If no snapshot is provided, the server uses the latest snapshot sh. Allowing
the recipient to query for any snapshot sj , where j ≤ h, is important for
our publicly verifiable proofs of time. The server replies to the recipient with
(Π(q), α(q), sh, sh−1). Including the two latest snapshots sh and sh−1 is part of
our gossiping mechanism and allows for fast verification at the recipient without
having to download all snapshots separately. The recipient verifies the reply by
verifying the last snapshot and running:

{accept, reject} ← B.verify(q, α,Π, sh,Avk)(Membership)

Getting State. The getState protocol (green box in Fig. 3) plays a central
role in determining the consistency of the events retrieved from the server.

The recipient initiates the protocol by sending its public key pk and a nonce
n ← Rand(|Hash(·)|) to the author. Upon receiving the public key and nonce,
the author validates the public key and sets x ← (ki, vi), with ki and vi being
the current state for pk, retrieved from its state table. The author replies with
Encn

pk

(
x||sh||sh−1||SignAsk

(x||sh||pk)). This reply also covers the two latest snap-
shots sh and sh−1, as part of the gossiping mechanism and a signature of the
author over (x||sh||pk). With this signature the author commits itself to its reply
for the recipient with respect to the latest snapshot. The recipient decrypts the
reply, verifies the signature and latest snapshot.

The reply to the claimed recipient is encrypted using the provided public key
and nonce to ensure that only the recipient with corresponding the private key
can decrypt it. Since the encryption is randomised with the nonce and ephemeral
key-pair generation (note that the length of the plaintext is fixed), no third
party in possession of the recipient’s public key can determine if new events are
generated for the recipient. The nonce also ensures the freshness of the reply.

Insynd: Improved Privacy-Preserving Transparency Logging 131

Verifying Consistency. A recipient can verify the consistency of the messages
contained in its events as follows. First, it requests all its events until the server
provides a non-membership proof. Next, the recipient retrieves its current state
from the author. Note that in order to be able to verify the consistency of
the received messages it is essential that the latest snapshot received during
getEvent for the last downloaded message (for which a non-membership proof
is received) and the latest snapshot received during getState are identical.

With the list of events downloaded and the reply x from getState, the
recipient can now use Algorithm 1 to decrypt all events and verify the consistency
of the messages sent by the author. First all events (in the order of insertion)
are decrypted using the nonce and authentication key generation determined by
Eqs. 1 and 2 and the calculated state (Eq. 4) is updated. Finally the calculated
state is compared to the x.

Algorithm 1. Verify message consistency for a recipient.
Require: pk, sk, k0, v0, the reply x from getState, an ordered list l of events.
Ensure: true if all events are authentic and the state x is consistent with the events

in l, otherwise false.
1: n ← Hash(1||k), k ← k0, v ← v0 � n is the event nonce, k and v the computed state
2: for all e ∈ l do � in the order events were inserted
3: p ← Decnsk(e

P)

4: if p ?
= ⊥ then

5: return false � failed to decrypt event
6: n ← Hash(1||k), k ← Hash(k), v ← Hash

(
v||MACk(e)

)
� computed right to left

7: return x ?
= (k, v) � state should match calculated state

4.4 Publicly Verifiable Proofs

Similar to Balloon, Insynd allows for publicly verifiable consistency. On top of this,
Insynd allows for four types of publicly verifiable proofs: author, time, recipient,
and message. These proofs can be combined to, at most, prove that the author had
sent a message to a recipient at a particular point in time. While the publicly verifi-
able proofs of author and time can be generated by anyone, the publicly verifiable
proofs of recipient and message can only be generated by the recipient (always)
and the author (if it has stored additional information at the time of generating
the event).

Author. To prove who the author of a particular event is, i.e., that an author
created an event, we rely on Balloon. The proof is the output from B.query
(Membership) for the event. Verifying the proof uses B.verify (Membership).

132 R. Peeters and T. Pulls

Time. To prove when an event existed. The granularity of this proof depends on
the frequency of timestamped snapshots. The proof is the output from B.query
(Membership) for the event from a timestamped snapshot sj that shows that
the event was part of the data structure fixed by sj . Verifying the proof involves
using B.verify (Membership) and whatever mechanism is involved in verify-
ing the timestamp from the time-stamping authority. Note that a proof of time
proves that an event existed at the time as indicated by the time-stamp, not
that the event was inserted or generated at that point in time.

Recipient. To prove who the recipient of a particular event is. This proof
consists of:

1. the output from B.query (Membership) for the event, and
2. the event key k′ and public key pk used to generate the event identifier eID.

Verifying the proof involves using B.verify (Membership), calculating ẽID ←
MACk′(pk), and comparing it to the event identifier eID.

The recipient can always generate this proof, while the author needs to store
the event key k′ and public key pk at the time of event generation. If the author
stores this material, then the event is linkable to the recipient’s public key. If
linking an event to a recipient’s public key is not adequately attributing an event
to a recipient (e.g., due to the recipient normally being identified by an account
name), then the register protocol should also include an extra signature linking
the public key to additional information, such as an account name.

Message. The publicly verifiable proof of message includes a publicly verifiable
proof of recipient, which establishes that the ciphertext as part of an event was
generated for a specific public key (recipient). The proof is:

1. the output from B.query (Membership) for the event,
2. the nonce n needed for decryption and used to derive the event key k′,
3. the public key pk used to generate eID, and
4. the ephemeral secret key sk′ that is needed for decryption.

Verifying the proof involves first verifying the publicly verifiable proof of
recipient by deriving k′ = Hash(n). Next, the verifier can use Decn

sk′,pk(c, pk’) to
learn the message m.

The recipient can always generate this proof, while the author needs to store
the nonce n, public key pk, and the ephemeral private key sk’ at event generation.
Note that even thought we allow the author to save the ephemeral key material to
produce publicly verifiable proofs of message, the author is never allowed to do so
for the encrypted replies to the getState or register protocols.

5 Evaluation

The proof sketches use the model in the extended version of this paper [17].

Insynd: Improved Privacy-Preserving Transparency Logging 133

5.1 Security and Privacy Properties

Theorem 1. For an IND-CCA2 secure public-key encryption scheme, Insynd
provides computational secrecy of the messages contained in events.

This follows trivially from the definition of IND-CCA2 security.

Theorem 2. Given an unforgeable signature algorithm, an unforgeable one-time
MAC, and an IND-CCA2 secure public-key encryption algorithm, Insynd pro-
vides computational deletion-detection forward integrity in the random oracle
model.

Proof (sketch). This follows from the use of the FssAgg authenticator by Ma
and Tsudik [12], which is provably secure in the random oracle model for an
unforgeable MAC function.

The register protocol establishes the initial key and value for the forward
secure SKG and FssAgg authenticator. These values, together with the BSD
and the public key of the recipient, are signed by the author and returned to
the recipient. Assuming an unforgeable signature algorithm, this commits the
author to the existence of state. The recipient gets the current state using the
getState protocol for its public key and a fresh nonce. The reply from the author
is encrypted under the recipient’s provided public key and the nonce provided
by the recipient. The nonce ensures the freshness of the reply, preventing the
adversary from caching replies from the getState protocol made prior to com-
promise of the author (using the GetState oracle). The current authenticator
value and authentication key are updated (and overwritten) by using the FssAgg
construction and a forward secure SKG. Note that for each FssAgg invocation,
the key for the MAC is unique and derived from the output of a hash function
for which the adversary has no information on the input. This means that an
unforgeable one-time MAC function is sufficient.

The adversary does not learn any authenticator values and keys through the
GetState, DecryptEvent or RecipientEvent oracles. This is due to the use of
an IND-CCA2 encryption scheme, and the values k′ and n in the proofs Π are
derived from the current authentication key at that time using a random oracle.

��
Theorem 3. For a key-private IND-CCA2 secure public-key encryption algo-
rithm, Insynd provides computational forward unlinkability of events within one
round of the insert protocol in the random oracle model.

Proof (sketch). For events created with the CreateEvent’ oracle the adversary
has access to the following information: eID = MACk′(pk) and eP = Encn

pk(m) for
which k′ = Hash(n) and n = Hash(1||k) where k is the current authentication
key for the recipient at the time of generating the event.

By assuming the random oracle model, the key to the one-time unforgeable
MAC function and the nonce as input of the encryption are truly random. Hence
the adversary that does not know the inputs of these hashes, n and k respectively,
has no advantage towards winning the indistinguishability game. We will now

134 R. Peeters and T. Pulls

show that the adversary will not learn these values n and k, even when given
the author’s entire state (pk, k, v) for all recipients and access to the GetState,
DecryptEvent or RecipientEvent oracles. From the previous proof we already
know that the adversary does not learn any authenticator values and keys from
the latter three oracles. Hence, it will also not learn any n values for events
generated with the CreateEvent’ oracle, since there is no direct link between
the values ni of multiple events for the same recipient. Instead n is derived from
the recipient’s current authentication key k at that time, using a random oracle.

The state variable k is generated using a forward-secure sequential key gen-
erator in the form of an evolving hash chain. Since the encryption scheme of
events is key private, the adversary does not learn anything from all the recip-
ients’ public keys pk. Finally, we need to show that the adversary will not be
able to link events together from the state variable v. If v = v0, then v is
random. Otherwise, vi = Hash

(
vi−1||MACki−1(ei−1)

)
. The MAC is keyed with the

previous authentication key ki−1, which is either the output of a random oracle
(if i > 1) or random (k0). This means the adversary does not know the output
of MACki−1(e

j
i−1) that is part of the input for the random oracle to generate v. ��

5.2 Publicly Verifiable Proofs

Consistency. Assuming a collision resistant hash function, an unforgeable sig-
nature algorithm, monitors, and a perfect gossiping mechanism for snapshots,
this follows directly from the properties of Balloon (Theorem 3 of [16]). How-
ever, our gossiping mechanisms are imperfect. We rely on the fact that (1) recip-
ients can detect any modifications on their own events and (2) snapshots are
chained together and occasionally timestamped, to deter the author from creat-
ing inconsistent snapshots. The latter one ensures that at least fork consistency
as defined by Mazières and Shasha [14] is achieved. This means that in order to
remain undetected the adversary needs to maintain a fork for every recipient it
disclosed modified snapshots to.

Author. Assuming a collision resistant hash function and an unforgeable sig-
nature algorithm, the proof of author cannot be forged. A proof of author for
an event is the output from B.query (Membership) for the event. Theorem 2
in [16] proves the security of a membership query in a Balloon. For an unforge-
able signature algorithm, the existence of a signature is therefore non-repudiable
evidence of the snapshot having been created with the signing key.

Time. Assuming a collision resistant hash function, an unforgeable signature
algorithm and a secure time-stamping mechanism, the proof of author cannot
be forged. A proof of time depends on the time-stamping mechanism, which is
used in the snapshot against which the proof of author was created.

Recipient. Assuming a collision resistant hash function, an unforgeable signa-
ture algorithm and an unforgeable one-time MAC function, the proof of recipient

Insynd: Improved Privacy-Preserving Transparency Logging 135

cannot be forged. A proof of recipient consists of a proof of author, a public key
pk, and an event key k′. The proof of author fixes the event, which consists of
an event identifier eID and an event payload eP . Now that the output of MAC
function is fixed by the event identifier eID = MACk′(pk), for the adversary to
come up with a different pk and k′, it has to break the unforgeability of the
one-time MAC function.

Message. Assuming a collision and pre-image resistant hash function, an
unforgeable signature algorithm and an unforgeable one-time MAC function,
the proof of message cannot be forged. From the proof of message, the proof of
recipient can be derived by computing the event key k′ ← Hash(n). The proof
of recipient fixes the payload eP , the recipient’s public key pk and the nonce n,
since the prover provided a pre-image to k′. The payload consists of the cipher-
text c and the ephemeral public key pk′, which also fixes the corresponding sk′.
The prover provides sk′, which can easily be verified to be correct. This fixes all
the input to our deterministic decryption function.

6 Related Work

In the setting of transparency logging, we build further upon the model and
scheme by Pulls et al. [18] and Balloon [16] as introduced before. The scheme
by Pulls et al. is based on hash- and MAC-chains, influenced by the secure log
design of Schneier and Kelsey [19].

Ma and Tsudik [12] proposed a publicly verifiable FssAgg scheme by using an
efficient aggregate signature scheme. The main drawbacks are a linear number of
verification keys with the number of runs of the key update, and relative expen-
sive bilinear map operations. Similarly, Logcrypt by Holt [11] also needs a linear
number of verification keys with key updates. The efficient public verifiability, of
both the entire Balloon and individual events, of Insynd comes from taking the
same approach as (and building upon) the History Tree system by Crosby and
Wallach [8] based on authenticated data structures. The main drawback of the
work of Crosby and Wallach, and to a lesser degree of Insynd, is the reliance on
a gossiping mechanism. Insynd takes the best of both worlds: the public verifia-
bility from authenticated data structures based on Merkle trees, and the private
all-or-nothing verifiability of the privately verifiable FssAgg scheme from the
secure logging area. Users do not have to rely on perfect gossiping of snapshots,
while the existence of private verifiability for recipients deters an adversary from
abusing the lack of a perfect gossiping mechanism to begin with. This is similar
to the approach of CONIKS [15], where users can verify their entries in a data
structure as part of a privacy-friendly key management system. In CONIKS,
users provide all data (their public key and related data) in the data structure
concerning them. This is fundamentally different to Insynd, where the entire
point of the scheme is for the author to inform recipients of the processing per-
formed on their personal data. Therefore, the private verifiability mechanism for
Insynd needs to be forward-secure with regard to the author.

136 R. Peeters and T. Pulls

PillarBox is a fast forward-secure logging system by Bowers et al. [6]. Beyond
integrity protection, PillarBox also provides a property referred to as “stealth”
that prevents a forward-secure adversary from distinguishing if any messages are
inside an encapsulated buffer or not. This indistinguishability property is similar
to our forward unlinkability of events property. PillarBox has also been designed
to be fast with regard to securing logged messages. The goal is to minimise
the probability that an adversary that compromises a system will be able to
shut down PillarBox before the events that (presumably) were generated as a
consequence of the adversary compromising the system are secured.

Pond and WhisperSystem’s Signal5 are prime examples of related secure
asynchronous messaging systems. While these systems are for two-way com-
munication, there are several similarities, such as dedicated servers for stor-
ing encrypted messages. Both Pond and Signal use the Signal protocol (previ-
ously known as Axolotl) [20]. The Signal protocol is inspired by the Off-the-
Record (OTR) Messaging protocol [5] and provides among other things forward
secrecy. Note that the goal of Insynd is for messages to be non-repudiable, unlike
Pond, Signal and OTR that specifically want deniability. Insynd achieves non-
repudiation through the use of Balloon and how we encrypt messages.

7 Performance

We implemented Insynd in the Go programming language, making use of the
NaCl [4] library for the cryptographic building blocks. The performance bench-
mark focuses on the insert protocol since the other protocols are less frequently
used. The source code and steps to reproduce our benchmark are publicly avail-
able at http://www.cs.kau.se/pulls/insynd/.

Figure 4 presents our benchmark, based on averages after 10 runs using Go’s
built-in benchmarking tool. We used a Debian 7.8 (x64) installation on a laptop
with an Intel i5-3320M quad core 2.6 GHz CPU and 7.7 GB DDR3 RAM to run
both the author and server. Note that the proofs of correct insertion into Balloon
between author and server are still generated and verified.

Clearly, the smaller the message are, the more events can be sent (and the
more potential recipients that can be served) per second. With at least 100 events
to insert per run, we get ≈7000 events per second with 1 KiB messages. Using the
same data as in Fig. 4a, Fig. 4b shows the goodput (the throughput excluding
the event overhead of 112 bytes per event) for the different message sizes. At
≈800 100-KiB-messages per second (around at least 200 events to insert), the
goodput is ≈80 MiB/s. 10 KiB messages offer a trade-off between goodput and
number of events, providing 4000 events per second with ≈40 MiB/s goodput.

Insynd improves greatly on related work on transparency logging, and shows
comparable performance to state-of-the-art secure logging systems. Ma and
Tsudik [12], for their FssAgg schemes, achieve event generation (signing) in
the order of milliseconds per event (using significantly older hardware than us).

5 https://whispersystems.org, accessed 2016-07-06.

http://www.cs.kau.se/pulls/insynd/
https://whispersystems.org

Insynd: Improved Privacy-Preserving Transparency Logging 137

(a) Events per second in a 220 Balloon. (b) Goodput in a 220 Balloon.

Fig. 4. A performance benchmark related to inserting events. The x-axis specifies the
number of events to insert per run of the insert protocol.

Marson and Poettering [13], with their seekable sequential key generators, gen-
erate key material in a few microseconds. Note that for both these schemes,
messages are not encrypted and hence the performance results only take into
account the time for providing integrity protection. The performance results of
Insynd, together with the two following schemes, include the time to encrypt
messages in addition to providing integrity protection. Pulls et al. [18], for their
transparency logging scheme, generate events in the order of tens of milliseconds
per event. For PillarBox, Bowers et al. [6] generate events in the order of hun-
dreds of microseconds per event, specifying an average time for event generation
at 163 μs when storing syslog messages. Syslog messages are at most 1 KiB, so
the average for Insynd of 142 μs at 7000 events per second is comparable.

8 Conclusions

Insynd is a cryptographic scheme for privacy-preserving transparency logging
where messages are sent through an authenticated data structure (Balloon). The
main contribution of Insynd is to provide publicly verifiable proofs of recipient
and message of events within the setting of transparency logging, which dictates
that events should be encrypted and unlinkable towards non-recipients. This
significantly increases the utility of a transparency logging scheme as it enables
users to take action without having to disclose everything that was logged for
them. On top of this, Insynd improves further on existing transparency logging
schemes by combining concepts from authenticated data structures, forward-
secure key generation from the secure logging area, and on-going work on secure
messaging protocols. Insynd provably achieves the security and privacy proper-
ties for a transparency logging scheme, as defined within the general framework
of Pulls et al. [18], which was adjusted to take into account our publicly verifiable
proofs and stronger adversarial model that assumes a forward-secure author and
an untrusted server. Furthermore, our freely available proof of concept imple-
mentation shows that Insynd offers comparable performance for event generation
to state-of-the-art secure logging systems like PillarBox [6].

138 R. Peeters and T. Pulls

Acknowledgements. We would like to thank Rasmus Dahlberg, Simone Fischer-
Hübner, Stefan Lindskog, and Leonardo Martucci for their valuable feedback. Tobias
Pulls has received funding from the Seventh Framework Programme for Research of
the European Community under grant agreement no. 317550 and the HITS research
profile funded by the Swedish Knowledge Foundation.

References

1. An, J.H.: Authenticated encryption in the public-key setting: Security notions and
analyses. IACR Cryptology ePrint Archive 2001, 79 (2001)

2. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

3. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003)

4. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533,
pp. 159–176. Springer, Heidelberg (2012)

5. Borisov, N., Goldberg, I., Brewer, E.A.: Off-the-record communication, or, why
not to use PGP. In: WPES, pp. 77–84. ACM (2004)

6. Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: combating
next-generation malware with fast forward-secure logging. In: Stavrou, A., Bos,
H., Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 46–67. Springer,
Heidelberg (2014)

7. Buldas, A., Laud, P., Lipmaa, H., Villemson, J.: Time-stamping with binary linking
schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 486–501.
Springer, Heidelberg (1998)

8. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: USENIX Security Symposium, pp. 317–334. USENIX (2009)

9. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: USENIX Security Symposium, pp. 303–320. USENIX (2004)

10. FIDIS WP7: D 7.12: Behavioural Biometric Profiling and Transparency Enhancing
Tools. Future of Identity in the Information Society, March 2009

11. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: Australasian Workshops on Grid Computing and e-Research. ACS (2006)

12. Ma, D., Tsudik, G.: A new approach to secure logging. TOS 5(1), 1–21 (2009)
13. Marson, G.A., Poettering, B.: Even more practical secure logging: tree-based seek-

able sequential key generators. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014,
Part II. LNCS, vol. 8713, pp. 37–54. Springer, Heidelberg (2014)

14. Mazières, D., Shasha, D.: Building secure file systems out of byzantine storage. In:
Symposium on Principles of Distributed Computing, pp. 108–117. ACM (2002)

15. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: a privacy-preserving consistent key service for secure end-to-end com-
munication. In: USENIX Security Symposium, pp. 383–398. USENIX (2015)

16. Pulls, T., Peeters, R.: Balloon: a forward-secure append-only persistent authen-
ticated data structure. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.)
ESORICS. LNCS, vol. 9327, pp. 622–641. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24177-7 31

17. Pulls, T., Peeters, R.: Insynd: Improved privacy-preserving transparency logging.
Cryptology ePrint Archive, Report 2015/150 (2015)

http://dx.doi.org/10.1007/978-3-319-24177-7_31
http://dx.doi.org/10.1007/978-3-319-24177-7_31

Insynd: Improved Privacy-Preserving Transparency Logging 139

18. Pulls, T., Peeters, R., Wouters, K.: Distributed privacy-preserving transparency
logging. In: WPES, pp. 83–94. ACM (2013)

19. Schneier, B., Kelsey, J.: Cryptographic support for secure logs on untrusted
machines. In: USENIX Security Symposium, pp. 53–62. USENIX (1998)

20. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.:
Sok: secure messaging. In: 2015 IEEE Symposium on Security and Privacy, SP
2015, San Jose, CA, USA, 17–21 May 2015. IEEE Computer Society (2015)

	Insynd: Improved Privacy-Preserving Transparency Logging
	1 Introduction
	2 Assumptions and Goals
	3 Ideas
	4 Insynd
	4.1 Setup and Registration
	4.2 Event Generation
	4.3 Event Reconstruction
	4.4 Publicly Verifiable Proofs

	5 Evaluation
	5.1 Security and Privacy Properties
	5.2 Publicly Verifiable Proofs

	6 Related Work
	7 Performance
	8 Conclusions
	References

