
Secure Computation of MIPS Machine Code

Xiao Wang1(B), S. Dov Gordon2, Allen McIntosh3, and Jonathan Katz1

1 University of Maryland, College Park, USA
{wangxiao,jkatz}@cs.umd.edu

2 George Mason University, Fairfax, USA
gordon@gmu.edu

3 Applied Communication Sciences, Basking Ridge, USA
amcintosh@appcomsci.com

Abstract. Existing systems for secure computation require program-
mers to express the program to be securely computed as a circuit, or in
a domain-specific language that can be compiled to a form suitable for
applying known protocols. We propose a new system that can securely
execute native MIPS code with no special annotations. Our system allows
programmers to use a language of their choice to express their programs,
together with any off-the-shelf compiler to MIPS; it can be used for
secure computation of “legacy” MIPS code as well.

Our system uses oblivious RAM for fetching instructions and perform-
ing load/store operations in memory, and garbled universal circuits for
the execution of a MIPS CPU in each instruction step. We also explore
various optimizations based on an offline analysis of the MIPS code to be
executed, in order to minimize the overhead of executing each instruction
while still maintaining security.

1 Introduction

Systems for secure two-party computation allow two parties, each with their
own private input, to evaluate an agreed-upon program on their inputs while
revealing nothing other than the result of the computation. This notion orig-
inated in the early 1980s [25], and until recently was primarily of theoretical
interest, with research focusing entirely on the design and analysis of low-level
cryptographic protocols. The situation changed in 2004 with the introduction of
Fairplay [18], which provided the first implementation of a protocol for secure
two-party computation in the semi-honest setting. Since then, there has been
a flurry of activity implementing two-party protocols with improved security
and/or efficiency [1,4,9–11,13–17,19,20,26].

Many (though not all) of these implementations provide an end-to-end sys-
tem that, in principle, allows non-cryptographers to write programs that can
automatically be compiled to some intermediate representation (e.g., a boolean
circuit) suitable for use by back-end protocols that can securely execute programs
expressed in that representation. In practice, however, such systems have several
drawbacks. First of all, the user cannot write the program in a language of their

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 99–117, 2016.
DOI: 10.1007/978-3-319-45741-3 6

100 X. Wang et al.

choice; just as there is no programming language that is best for every applica-
tion, there is no domain-specific language for secure computation that is best for
every purpose. Second, existing domain-specific languages [10,16,17,20,26] can
be hard to learn and use, or are simply limited in terms of expressiveness. For
example, Secure Computation API (SCAPI) [4] does not provide a high-level
language to specify the function to compute. Sharemind [2] fails to support con-
ditional statements branching on private variables according to the user manual.
Obliv-C [26], an extension of C, requires the programmer to use special anno-
tations along with an extended set of keywords for secret values and branching
statements. Even if the language is a subset of a standard language (such as
ANSI C [10]), the programmer must still be aware of limitations and which fea-
tures of the language to avoid; moreover, legacy code will not be supported.
Finally, compilers from high-level languages to boolean circuit representations
(or other suitable representations) can be slow; as discussed in detail in Sect. 5.1,
some previous compilers [13,14] require more than 2000 s just to compile a pro-
gram for matrix multiplication of dimension 16 into a circuit representation,
not even including any cryptographic operations. Furthermore, most compilers
requires recompiling the program when the input size changes.

Motivated by these drawbacks, we explore in this work the design of a sys-
tem for secure execution, in the semi-honest setting, of native MIPS machine
code. That is, the input program to our system—i.e., the program to be securely
computed—is expressed in MIPS machine code, and our system securely exe-
cutes this code. We accomplish this via an emulator that securely executes each
instruction of a MIPS program; the emulator uses oblivious RAM [7] for fetching
the next instruction as well as for performing load/store operations in memory,
and relies on a universal garbled circuit for executing each instruction. Our sys-
tem addresses all the problems mentioned earlier:

– Programmers can write their programs in a language of their choice, and
compile them using any compiler of their choice, so long as they end up with
MIPS machine code. Legacy MIPS code is also supported.

– Because our system does not require compilation from a domain-specific lan-
guage to some suitable intermediate representation, such as boolean circuits,
we can use fast, off-the-shelf compilers and enjoy the benefits of all the
optimizations such compilers already have. The number of instructions we
securely execute is identical to the number of instructions executed when
running the native MIPS code (though, of course, our emulator introduces
overhead for each instruction executed).

Our code is open sourced online1.
Our primary goal was simply to develop a system supporting secure execution

of native MIPS code. In fact, though, because of the way our system works—
namely, via secure emulation of each instruction—we also gain the benefits of
working in the RAM model of computation (rather than in a boolean-circuit
model), as in some previous work [8,16,17]. In particular, the total work required

1 https://github.com/wangxiao1254/Secure-Computation-of-MIPS-Machine-Code.

https://github.com/wangxiao1254/Secure-Computation-of-MIPS-Machine-Code

Secure Computation of MIPS Machine Code 101

for secure computation of a program using our system is proportional (modulo
polylogarithmic factors) to the actual number of instructions executed in an
insecure run of that same program on the same inputs; this is not true when using
a circuit-based representation, for which all possible program paths must be
computed even if they are eventually discarded. Working in the RAM model even
allows for computation time sublinear in the input length [8] (in an amortized
sense); we show an example of this in Sect. 5.3.

Performance. Our goal is generality, usability, and portability; we expressly
were not aiming to develop a yet-more-efficient implementation of secure com-
putation. Nevertheless, for our approach to be viable it must be competitive with
existing systems. We describe a number of optimizations that rely on an offline
analysis of the (insecure) program to be executed; these can be done before the
parties’ inputs are known and before execution of any protocol between them
begins. We view these optimizations as one of the main contributions of our
work, as they improve the performance by as much as a factor of 30× on some
programs, bringing our system to the point where it is feasible. In fact, for certain
applications we are only ∼25 % slower than ObliVM [17] (see Sect. 5.3).

Trade-off between efficiency and usability. Our work explores part of the
spectrum between efficiency and usability for secure-computation systems. Most
work in this area has concentrated on the former, focusing on optimizing the
back-end protocol, implementation aspects, or improved compilation time. Here,
we are expressly interested in maximizing usability, envisioning, e.g., a non-
expert user maintaining a large code base, perhaps written in several languages,
who occasionally wishes to run some of this code securely. Such a user might
gladly sacrifice run-time efficiency in order to avoid re-writing their code in the
domain-specific language of the moment. To support this level of generality, the
only feasible approach is to securely compute on a low-level language. One goal
of our work is to explore how much efficiency must be sacrificed in order to
achieve this level of generality.

Related and concurrent works. Songhori et al. [21] explored using hardware-
optimization techniques to reduce the size of boolean circuits and demonstrated
a circuit containing MIPS-I instructions. However, the goal of their work was
different: they aim to minimize the size of a single universal circuit for private
function evaluation (PFE), while we aim to optimize the emulation of an entire
public MIPS program. In particular, they do not investigate optimizations to
accelerate execution of the program, something that is a key contribution of our
work. Fletcher et al. [5] designed an interpreter based on the Turing machines,
using static analysis on the program to improve the efficiency. Their levelization
technique shares some similarities to some of our techniques. However their sys-
tem does not support general RAM computation, therefore is simpler than our
setting.

Concurrently, Keller [12] recently built a system that executes C code over
the SPDZ protocol. Their high level idea is similar to our basic system: using a
universal circuit for ALU and ORAM for memory access. However, they didn’t

102 X. Wang et al.

explore how to use static analysis to further accelerate the system, as in our
optimized system described in Sect. 4.

2 Preliminaries

We briefly describe some background relevant to our work.

Secure computation and garbled circuits. Protocols for two-party compu-
tation allow two parties, each with their own private input, to compute some
agreed-upon function on their inputs while revealing nothing to either party
other than the result of the computation. In this paper we exclusively focus on
the semi-honest model, where both parties are assumed to execute the proto-
col correctly, but each may try to infer additional information about the other
party’s input based on their own view of the protocol transcript.

Our emulator uses as a building block Yao’s garbled-circuit protocol [25] for
secure two-party computation, which assumes the function to be computed is
represented as a boolean circuit. At a high level, the protocol works as follows:
one party, acting as a garbled-circuit generator, associates two random crypto-
graphic keys with each wire in the circuit. One of these keys will represent the
value 0 on that wire, and the other will represent the value 1. The circuit gener-
ator also computes a garbled table for each gate of the circuit; the garbled table
for a gate g allows a party who knows the keys associated with bits bL, bR on the
left and right input wires, respectively, to compute the key associated with the
bit g(bL, bR) on the output wire. The collection of garbled gates constitutes the
garbled circuit for the original function. The circuit generator sends the garbled
circuit to the other party (the circuit evaluator) along with one key for each
input wire corresponding to its own input. The circuit evaluator obtains one key
for each input wire corresponding to its input using oblivious transfer. Given
one key per input wire, the circuit evaluator can “evaluate” the garbled circuit
and compute a single key per output wire.

If the circuit generator reveals the mapping from the keys on each output wire
to the bits they represent, then the circuit evaluator can learn the actual output
of the original function. However, it is also possible for the circuit generator to
use the output wires from one garbled circuit as input wires to a subsequent
garbled circuit (for some subsequent computation being done), in which case
there is no need for this decoding to take place. In fact, this results in a form of
“secret sharing” that we use in our protocol; namely, the sharing of a bit b will
consist of values (w0, w1) held by one party, while the other party holds wb.

Oblivious RAM (ORAM). Oblivious RAM [7] allows a “client” to read/write
an array of data stored on a “server,” while hiding from the server both the the
data and the data-access pattern. By default, ORAM only hides information
from the server; to hide information from both parties, we adopt the method of
Gordon et al. [8] and share the client state between the two parties, who can
then use the shares as input to a secure computation that outputs a memory
address to read, while also updating both users’ shares of the state.

Secure Computation of MIPS Machine Code 103

In this work, we use ORAM to store both the MIPS program (so parties
are oblivious of the instruction being fetched) as well as the contents of main
memory (so parties are oblivious about the location of memory being accessed).
Note that in the former case, the data is public and read-only, whereas in the
latter case the data needs to be kept hidden from both parties (in general), and
may be both read and written. We refer to the ORAM storing instructions as
the “instruction bank,” and the ORAM storing data as the “memory bank.”

Security of our emulator. Although we do not provide any proofs of security
in this work, an argument as in [8] can be used to prove that our construc-
tion is secure (in the semi-honest model) with respect to standard definitions of
security [6], with one important caveat: our system leaks the total number of
instructions executed in a given run of the program. This is a consequence of
the fact that we allow loop conditions based on private data, something that is
simply disallowed in prior work. Leaking the running time may leak information
about the parties’ private inputs; note, however, that this can easily be prevented
by using padding to ensure that the running time is always the same. In Sect. 4.3,
we will discuss how to reduce this leakage while improving the efficiency at the
same time.

3 Basic System Design

In this section we describe the basic design of our system. We describe the
overall workflow in Sect. 3.1. In Sect. 3.2, we review relevant aspects of the MIPS
architecture, and in Sect. 3.3, we give a high-level overview of how our system
works. We provide some low-level details in Sects. 3.4 and 3.5. We defer until
Sect. 4 a discussion of several important optimizations that we apply.

3.1 Overall Workflow

Our system enables two parties to securely execute a program described in a
MIPS code. Our system works in the following steps:

– It first performs an offline static analysis of the MIPS code to produce a set
of CPU circuits and instruction banks, one for each step of the computation.
In our basic system described in this section, the offline analysis is rather
simple; a more complex analysis, described in Sect. 4, can be used to improve
performance.

– During the online phase, the two parties securely execute each instruction,
using ORAM to access the appropriate inputs at each step.

As our back-end for secure computation (namely, generation/execution of the
garbled circuits, and fetching of inputs using ORAM) we use ObliVM [17]. How-
ever, other frameworks [3,21,26] could also potentially be used (in conjunction
with other ORAM implementations).

104 X. Wang et al.

3.2 MIPS Architecture

A MIPS program is an array of instructions, each 32 bits long. In the basic MIPS
instruction set (i.e., in MIPS I), there are about 60 instruction types, includ-
ing arithmetic instructions, memory-related instructions, and branching instruc-
tions. Instruction types refer to the operations performed during a CPU cycle.
On the other hand, an instruction consists of instruction type and operands. For
example, ADD is an instruction type, but ADD $1, $2, $2 is an instruction.

For our purposes, we can view the state of the MIPS architecture during pro-
gram execution as consisting of (1) the program itself (i.e. the array of instruc-
tions), (2) the values stored in a set of 32-bit registers, which include 32 general-
purpose registers plus various special registers including one called the program
counter, and (3) values stored in main memory. To execute a given program, the
input(s) are loaded into appropriate positions in memory, and then the following
steps are repeated until a special exit instruction is executed:

– Instruction fetch (IF): fetch the instruction according to the program counter.
– Instruction decode (ID): fetch 2 registers according to the instruction.
– Execute (EX): execute the instruction and update the program counter.
– Memory access (MEM): perform load/store operations on memory, if required

(depending on the instruction).
– Write back (WB): write a value to one register.

3.3 Overview of Our System

At a high level, two parties use our system to securely execute a MIPS program
by maintaining secret shares of the current state, and then updating their shares
by securely emulating each of the steps listed above until the program terminates.
We describe each of these next.

We currently support about 37 instruction types (see Table 1), which are suf-
ficient for all the programs used in our experiments. It is easy to add instruction
types to our system as needed, using 2–3 lines of code (in the ObliVM framework)
per instruction. In our basic system described here, every supported instruction
is included in the garbled circuit for every step, thus increasing the run-time of
each emulated MIPS cycle. In our optimized system described in Sect. 4, only

Table 1. Set of instruction types currently supported in our system. More instructions
can be added easily.

Types Instruction Type

R Type ADDU MOVZ MOVN SLLV SRLV MFLO SLL SRL SRA AND

MTLO MFHI MTHI MULT SUBU SLTU OR XOR NOR DIV

I Type BGEZAL SLTIU XORI ANDI BLEZ JR ORI BNE

ADDIU BLTZAL BGEZ BLTZ BGTZ BEQ LUI

J Type J JAL

Secure Computation of MIPS Machine Code 105

instructions that can possibly be executed at some step are included in the gar-
bled circuit for that step, so there is no harm in including support for as many
instructions types as desired.

Secret sharing the MIPS state. As mentioned previously, the MIPS state
contains the array of program instructions, registers, and memory; all three com-
ponents are secret shared between the two parties and, in addition, the program
instructions and memory are stored in (separate) ORAMs. (Even though the
program instructions are known to both parties, it is important that neither
party learns which instruction is fetched in any instruction cycle, as this leaks
information about the inputs.) The registers could, in principle, also be stored
in ORAM, but since there are only 32 registers a trivial ORAM (i.e., a linear
scan over all registers) is always better.

By default, all components are secret shared using the mechanism described
in Sect. 2. Although this results in shares that are 80–160× larger than the
original value (because ObliVM creates garbled circuits with 80-bit keys), this
sharing is more efficient for evaluating garbled circuits on those shared values.
However, when the allocated memory is larger than 12MB, we switch to a more
standard XOR-based secret-sharing scheme, adding an oblivious-transfer step
and an XOR operation inside the garbled circuit to reconstruct the secret.

Secure emulation. The parties repeatedly update their state by performing a
sequence of secure computations in each MIPS instruction cycle. For efficiency,
we reordered the steps described in the previous section slightly. In the secure
emulation of a single cycle, the parties:

1. Obliviously fetch the instruction specified by the shared program counter
(the IF step).

2. Check whether the program has terminated and, if so, terminate the protocol
and reconstruct the output.

3. Securely execute the fetched instruction, and update the registers appropri-
ately (this corresponds to the ID, EX, and WB steps).

4. Obliviously access/update the memory and securely update a register if the
instruction is a load or store operation (this corresponds to the MEM and WB
steps).

We stress that the parties should not learn whether they are evaluating an arith-
metic instruction or a memory instruction, and must therefore execute steps 3
and 4 in every cycle, even if the step has no effect on the shared MIPS state.
Our improved design in Sect. 4 provides a way of securely bypassing step 4 on
many cycles.

3.4 Setup

Before executing the main loop, we load the MIPS code into the (shared) instruc-
tion memory and the users’ inputs into the (shared) main memory.

Loading the MIPS code. In our baseline system design, we load the full
program (i.e., array of instructions) into an ORAM. Therefore, when emulating

106 X. Wang et al.

each step we incur the cost of accessing an ORAM containing instructions from
the entire program. In Sect. 4, we describe improvements to this approach.

In our current implementation, we do not load any code executed before
main() is called, e.g., library start-up code, code for managing dynamic libraries,
or class-constructor code. The latter is not needed for executing MIPS programs
compiled from C code, but would be needed for executing MIPS code generated
from object-oriented languages. Note, however, that such operations are data-
independent, and can be simulated by the parties locally. Adding support for
loading such code would thus be easy to incorporate in our system.

Loading user inputs. We assume a public upper bound on the input size of
each party. Each party starts with their input in a local file. When emulation
begins, the parties initialize an empty ORAM supporting the maximum input
sizes, and the parties’ inputs are secret shared and written to some agreed-upon
(non-overlapping) segments of memory. The parties also initialize their shares
of the register space with pertinent information such as the address and length
of the input data. Since no annotation is used, we need to find a way to specify
which party each input belongs to. In our system, each party organizes their
input as an array, which is passed to the function to compute in an fixed order:
generator’s array comes first; evaluator’s array comes second, followed by the
length of two arrays.

Secure computation of MIPS code

Input: reg[], pc,ORAMinst[],ORAMMEM[]

Computation:

1. inst := FetchInstruction(pc, ORAMinst)
2. terminateBit := testTerminate(inst, reg)
3. if (terminateBit) GOTO line 7

4. ALU(inst, pc, reg)
5. MEM(inst, reg, ORAMMEM)

6. GOTO line 1
7. Reconstruct the output (in reg or ORAMMEM).

Fig. 1. Overview of secure computation of a MIPS program. Boxed lines are executed
outside of secure computation.

3.5 Main Execution Loop

We use ORAMinst[], ORAMMEM[], reg[], pc, and inst to denote, respectively, the
(shared) instruction bank, (shared) memory bank, (shared) registers, (shared)
value of the program counter, and (shared) current instruction. As shown in
Fig. 1, secure execution of a MIPS program involves repeated calls of three pro-
cedures: instruction fetch, ALU computation, and memory access.

Secure Computation of MIPS Machine Code 107

Secure computation of the MIPS ALU

Input: inst, pc, reg[]

ALU:

1. rs := inst[21:25], funct := inst[0:5],rd := inst[11:15]
rt := inst[16:20], op := inst[26:31],imm := inst[0:15], . . .

2. reg rs := reg[rs], reg rt := reg[rt]
3. if op == R Type and funct == ADD

reg rd := reg rs + reg rt
else if op == I Type and funct == ADDI

reg rt := reg rs + immediate
else if . . . // more arithmetic operations

4. if op == R Type then pc := pc + 4
else if op == I Type and funct == BNE

if reg rs! = reg rt
pc := pc + 4 + 4× imm

else if . . . // more cases that update pc
5. if op == R Type then reg[rd] := reg rd

else reg[rt] := reg rt

Fig. 2. This functionality takes the current instruction, program counter, and regis-
ters as input. Depending on the type of the instruction, it performs computation and
updates the registers, as well as updating the program counter.

Secure memory access

Input: inst, reg[], ORAMMEM[]
MEM:

1. rs:=inst[21:25], op:=inst[26:31],
rt:=inst[16:20], imm:=inst[0:15]

2. addr := imm+reg[rs]
3. If op is a load operation code:

reg[rt] := ORAMMEM[addr]
4. If op is a store operation code:

ORAMMEM[addr] := reg[rt]

Testing termination

Input: inst, reg[31]
testTerminate:

1. terminate := false
2. If inst is BEQ $0,$0,-1

terminate := true
3. If inst is jr $31 and

reg[31] == 0
terminate := true

4. Reveal the bit terminate.

Fig. 3. (a) This functionality takes the instruction, the registers, and the memory as
input and accesses the memory and registers according to the instruction. (b) This
functionality takes the current instruction and the registers as input. It returns true if
these indicate program termination.

Instruction fetch. In the basic system, we put the entire MIPS program into
an ORAM. Therefore, fetching the next instruction is simply an ORAM lookup.

ALU computation. The MIPS ALU is securely computed using a universal
garbled circuit. As shown in Fig. 2, this involves five stages:

108 X. Wang et al.

1. Parse the instruction and get fields including operation code, function code,
register addresses, and the immediate value. (We use inst[s:e] to denote the
s-th bit to the e-th bits of inst.)

2. Retrieve values reg rs = reg[rs] and reg rt = reg[rt] from the registers.
3. Perform arithmetic computations.
4. Update the program counter.
5. Write the updated value back to the registers.

The first step is free due to the secret sharing we use and the fact that here we
are using a circuit model of computation. The fourth step is very cheap. The
second and fifth steps require 3 accesses to the register space in total, which we
have implemented using a circuit with 3552 AND gates.

Memory access. Memory-related instructions can either load a value from
memory to a register, or store a value from a register to memory. As shown in
Fig. 3a, in order to hide the instruction type, every memory access requires one
read and one write to the memory ORAM, as well as a read and a write to the
registers. The cost of this component depends on how large the memory is, and
is often the most expensive part of the entire computation.

Checking for termination. In our basic implementation, we execute a secure
computation on each cycle in order to determine whether the program has ter-
minated. (See Fig. 3b.) This is done by checking the current instruction and the
contents of the final register (used for storing the return value). Revealing this
bit to both parties requires one round trip in each instruction cycle.

4 Improving the Basic Design

The construction described in Sect. 3 requires us to perform a secure emulation
of the full MIPS architecture for every instruction cycle. Even if we restrict
our system to only include a small number of instruction types, we still have
to execute many unnecessary instructions in every step: if a single expensive
instruction appears anywhere in the program, our basic system would execute
this expensive instruction at every step, even though the result is usually ignored.
Even worse is the fact that the presence of load/store instructions necessitates
expensive accesses to the memory ORAM in every instruction cycle.

4.1 Mapping Instructions to Steps

We improve the efficiency of our system by identifying unnecessary computation.
First, we perform static analysis of the MIPS binary code and compute, for every
step of the program execution, the set of instructions that might possibly be
executed in that step. Then, using this information, we automatically generate a
small instruction bank and ALU circuit tailored for each time step. This allows
us to improve performance, without affecting security in various ways.

Computing instruction sets for each time step. To compute a set of
instructions that might be executed at each time step, we walk through the

Secure Computation of MIPS Machine Code 109

binary code, spawning a new thread each time we encounter a branching instruc-
tion. Each thread steps forward, tagging the instructions it encounters with an
increasing time step, and spawning again when it encounters a branch. We ter-
minate our analysis if all threads halt, or if the set of all instructions tagged
with current time step L is the same as the set of instructions tagged with some
previous time step k < L. It is easy to verify that one of these two conditions
will eventually be met. Now, the set of instructions that should be executed at
time step i < L contains all instructions tagged with time step i.

During the execution, our emulator chooses a circuit according to the fol-
lowing deterministic sequence of time steps: 1, 2, ..., L, k+1, ..., L, k+1, ..., L, ...,
until the termination condition is satisfied. In Sect. 5.1, we will discuses in detail
how long such static analysis takes on programs of different sizes.

To illustrate this procedure, we provide a very simple example in Fig. 4a.
Although there are eight instructions in the code snippet, at most two instruc-
tions can possibly be executed in any time step. When the code contains loops,
as shown in Fig. 4b, a single instruction might appear in multiple time steps.
In this case, our analysis will only terminate when we repeat some prior state,
resulting in an instruction set that is identical to one that we previously con-
structed. In particular, the set of instructions for time step 2k + 4 is the same
as the one for time step k + 3.

This analysis does not result in an optimal assignment of instructions to time
steps, because it ignores data values. We leave it to future work to explore better
methods of performing the mapping of instructions to time steps. On the other
hand, because of this it is easy to see that no private information is leaked since
the set of instructions corresponding to some time step t includes all possible
instructions that could ever be executed at step t for any possible set of inputs.

Instruction mapping makes sure that for each step only the instruction types
that can possibly be executed in that step will be included. Therefore, in the opti-
mized system, adding support for more instructions will not impact the perfor-
mance. In particular, although we have not implemented the full MIPS instruc-
tion set, doing so would have no impact on the performance results described in
Sect. 5 because the unnecessary instructions are automatically excluded by our
emulator.

Constructing smaller instruction banks. After performing the above analy-
sis, we can initialize a set of instruction banks in the setup stage, one for each
time step, to replace the single, large instruction bank used in Sect. 3. When
fetching an instruction during execution, we can simply perform an oblivious
fetch on the (smaller) instruction bank associated with the current time step.

When we employ this optimization, using näıve ORAM to store the set of
possible instructions for each time step becomes inefficient. Originally, instruc-
tions were in contiguous portions of memory, so N instructions could be placed
into an ORAM of size N . Now, each instruction set contains only a small num-
ber of instructions, say n < N , while their address values still span the original
range. If we use ORAM to store them, its size would have to be N instead of n.
Therefore, we use an oblivious key-value store for the set of instructions at each

110 X. Wang et al.

Example 1
main:

MULT $1, $2, $3 //step 1

BNE $1, $2, else //step 2

Instruction 1 //step 3

Instruction 2 //step 4

J endif //step 5

else:

Instruction 3 //step 3

Instruction 4 //step 4

Instruction 5 //step 5

endif:

Example 2
main:

ADD $1,$2,$3 //step 1

lo:

Ins. 1 //step 2, k+3, 2k+4

...

Ins. k //step k+1, 2k+2

BNE $1,$2,lo //step k+2, 2k+3

post-lo:

Ins. k+1 //step k+3, 2k+4

...

Ins. 2k+1 //step 2k+3

Fig. 4. (a) Assigning instructions to time steps. MULT instruction is not included in any
ALU circuit but step 1. (b) An example demonstrating how we map instructions to
time steps in a program with loops.

time step. Since the size of each instruction bank is very small for the programs
we tested, we implemented an oblivious key-value structure using a simple linear
scan; for larger programs with more instructions it would be possible to design
a more-complex oblivious data structure with sub-linear access time.

Constructing smaller ALU circuits. Once we have determined the set of
possible instructions for a given time step, we can reduce the set of instruction
types required by that time step. In the offline phase, before user inputs are
specified, we generate a distinct garbled ALU circuit for each time step (using
ObliVM) supporting exactly the set of possible instructions in that time step.
During online execution, our emulator uses the appropriate garbled ALU circuit
at each time step.

Skipping unnecessary memory operations. The same idea also allows us
to reduce the number of memory operations. There are two types of memory
operations: (1) store operations that read a value from a register and write it
to memory, and (2) load operations that read a value from memory and write
it to a register. When performing the static analysis, we compute two flags for
each time step, indicating if any load or store operation could possibly occur
in that step. During the run-time execution, our emulator skips the load/store
computation depending on the values of these flags.

Improving accesses to the register space. We can additionally improve
the efficiency of register accesses. Since register values are hard-coded into the
instructions, they can be determined offline, before the user inputs are specified.
(This is in contrast to memory accesses, where the addresses are loaded into the
registers and therefore cannot be determined at compile time.) For example, the
instruction ADD $1, $2, $4 needs to access registers at location 1, 2, and 4.
During the offline phase, we compute for each time step the set of all possible

Secure Computation of MIPS Machine Code 111

register accesses at that time step. Then, in the online phase, only those registers
need be included in the secure emulation for that time step.

4.2 Padding Branches

The offline analysis we just described provides substantial improvements on real
programs. For example, as we show in Sect. 5.2 for the case of set intersection, this
analysis reduces the cost of instruction fetch by 6× and reduces the ALU circuit
size by 1.5×. This is because the full program has about 150 instructions, while
the largest instruction bank after performing our binary analysis contains just 31
instructions; for more than half of the time steps, there are fewer than 20 possible
instructions per time step. On the other hand, there is only a small reduction in
the time spent performing load and store operations, because these operations
are possible in nearly every time step. Load and store operations are by far the
most costly instructions to emulate. For example, reading a 32-bit integer from
an array of 1024 32-bit integer requires 43K AND gates. So it is important to
reduce the number of times we unnecessarily perform these operations.

Before presenting further improvements, it is helpful to analyze the effect of
what has already been described. Consider again the simple example in Fig. 4b.
Here, with only a single loop, it is easy to calculate how many instructions
will be assigned to any particular time step. If the loop has k instructions, and
there are n instructions following the loop, then in some time step we might
have to execute any of n/k + 1 instructions. This should be compared with the
worst-case, where we perform no analysis and simply assume that we could be
anywhere among the n + k instructions in the program. When k is large and
n is small—i.e., if most of the computation occurs inside this loop—our binary
analysis provides substantial savings.

Unfortunately, this example is overly simplistic, and in more realistic exam-
ples our binary analysis might not be as effective. Let’s consider what happens
when there is a branch inside the loop, resulting in two parallel blocks of lengths
k1 and k2. If the first instruction in the loop is reached for the first time at time
step x, then it might also be executed at time steps x+k1, x+k2, x+k1+k2, . . .,
and, more generally, at every time step x + (i · k1) + (j · k2) for i, j ∈ Z. If k1
and k2 are relatively prime, then every i · k1 time steps, and every j · k2 time
steps, we add another instruction to the instruction set. It follows that in fewer
than k1 · k2 time steps overall, we can be anywhere in the loop! Furthermore, at
that point we might exit the loop on any step, so that after executing fewer than
k1 · k2 +n time steps, we might be anywhere from the start of the loop until the
end of the program, and we no longer benefit from our analysis at all.

This motivates the idea of padding parallel blocks with NOPs so the length
of one is a multiple of the other. Using the same example of a single if/else
statement inside a loop, if the two branches have equal length (i.e., k1 = k2), then
at any time step we will never have more than two instructions from inside the
loop—one from each branch—assigned to the same time step. We provide further
discussion about the performance improvement in Sect. 5, using set intersection
as an example.

112 X. Wang et al.

4.3 Checking Termination Less Frequently

In our basic system, we test for termination of the program in every instruction
cycle, which incurs a round of communication each time. This overhead becomes
significant, especially after we performed the optimizations mentioned in the
previous sections. For example, for a program with T cycles, our basic system
needs (ro + 1)T roundtrips, where ro is the number of roundtrips needed by an
ORAM access.

In order to avoid such overhead, we modified the system to check for termi-
nation only every C instruction cycles, for C a user-specified constant. In every
cycle, the parties still compute shares of the bit indicating if the program has
terminated, but they do not reconstruct that bit in clear. Instead, memory and
register accesses take this bit as input, and do not update the memory or regis-
ters if the program has terminated. This ensures that the MIPS state, including
registers and memory, will not change after termination, even if additional cycles
are executed.

Note that the parties execute up to C − 1 extra instruction cycles, but the
amortized cost of checking for termination is decreased by a factor of C. One can
thus set C depending on the relative speeds of computation and communication
to minimize the overall running time. Now for a program with T cycles, and
no memory accesses, the total number of roundtrips is no × ro + �T/C�, where
no < T . In addition to reducing number of roundtrips, such optimization also
reduces the leakage. Instead of leaking total number of cycles T , only �T/C� is
leaked.

5 Performance Analysis

Experimental Setup. Our emulator takes MIPS binaries as input and allows
two parties to execute that code securely. All binaries we used were generated
from C code using a GCC 4.7.3 compiler with -O2 -std=c99 --save-temps
flags. When specified, we added NOPs to the binary by hand to explore the
potential speedup introduced by padding; for all other examples, including
binary search, decision trees, and Dijkstra’s shortest-path algorithm, we directly
used the binaries generated by the GCC compiler without adding any padding.
More detailed performance analysis and results for the last two examples can be
found in the extended version [22].

All times reported are based on two machines of type c4.4xlarge with
3.3 GHz cores and 30 GB memory running in the same region of an Amazon EC2
cluster. Two machines are connected by ethernet with about 1.1 Gbps band-
width. We did not use parallel cores, except possibly by the JVM for garbage
collection. In all our results, we report the time used by the circuit generator,
which is the bottleneck in the garbled-circuit protocol. Note that our system is
based on ObliVM, with a garbling rate of about 600K AND gates per second.
A better garbled circuits implementation can therefore improve the absolute
running time. Therefore we report different metrics for a better comparison.

Secure Computation of MIPS Machine Code 113

Table 2. Total running time for computing the size of a set intersection.

Input size Memory Instruction ALU Setup Total

per party Access Fetch Computation Cost

64 Elements Baseline 18.7 s 25.3 s 14.2 s 0.1 s 58.4 s

+Inst. Mapping 5.4 s 3.6 s 3.8 s 0.1 s 12.9 s

+Padding 0.5 s 0.4 s 1.8 s 0.1 s 2.8 s

256 Elements Baseline 175.9 s 93.6 s 54.5 s 0.2 s 324.1 s

+Inst. Mapping 51.9 s 14.4 s 14.5 s 0.2 s 81.0 s

+Padding 4.9 s 1.3 s 6.6 s 0.2 s 13.0 s

1024 Elements Baseline 2477.4 s 375.2 s 215.2 s 0.4 s 3068.2 s

+Inst. Mapping 782.5 s 59.4 s 58.7 s 0.4 s 901.0 s

+Padding 76.3 s 5.5 s 26.3 s 0.4 s 108.5 s

Metrics. Since our emulator uses ALU circuits and instruction banks with dif-
ferent sizes at each time step, and since it may skip memory operations altogether
in some time steps, the cost varies between different time steps. Therefore, we
report the total cost of execution, amortized over all time steps. We ran each
experiment 10 times. Since the standard derivation is never greater than 5% of
the mean, we report the mean of 10 runs if not specified.

5.1 Time for Static Analysis and Compilation

Our system takes MIPS binary code, generated by an off-the-shelf compiler, as
input. In all the experiments we ran, our system used less than 0.6 s for the
static analysis mapping instructions to time steps, including generation of the
code for the CPU circuits for all time steps. Following this step, we run the
ObliVM compiler on the code for these CPU circuits; this never took more than
1.5 s for all circuits in any of our examples. Note that compilation time does not
include any cryptographic operations; all cryptographic operations, e.g., garbled
circuits, oblivious transfer, etc., are all done at runtime, reported separately in
the following subsections.

If the program is written in a way such that input size is not fixed at compile
time, then we can perform our static analysis and optimization on the binary
without prior knowledge of input size. This means that: (1) We only need to
perform our static analysis once for all input sizes. (2) The running time of our
static analysis is independent of the input size.

The compilation time in our system is within the same range or smaller
than systems that report compilation time. For example, two compilers by
Kreuter et al. [13,14] both take more than 2000 s to compile a circuit computing
matrix multiplication of dimension 16. The time is even higher for larger matri-
ces. In our case, the compilation time is within 2.0 s, independent of the size of
the matrices.

114 X. Wang et al.

5.2 The Effect of Our Optimizations

In this section, we explore the impact of different optimizations on the per-
formance of our emulator. We consider the cost for each component of our
emulation, i.e., Instruction Fetch, ALU Computation, and Memory Access. We
compare three different approaches:

– Baseline. This is the basic system (cf. Sect. 3) with no static analysis.
– +Instruction Mapping. For each time step we compute the set of possi-

ble instructions at that time step, and use a smaller instruction bank and
ALU circuit for each cycle, reduce register accesses, and bypass loads/stores
whenever possible, as described in Sect. 4.1.

– +Padding. The program is padded (manually) with NOPs as described in
Sect. 4.2.

For evaluation we use a program that computes the size of the intersection
of two sets. Each party has a sorted array of 32-bit integers as input and wants
to compute how many elements are shared by both parties. We report the total
running time of the system in Table 2. For all running times shown, including
the baseline, we incorporated the optimization that checks termination less fre-
quently, as described in Sect. 4.3.

As shown in Table 2, using static analysis decreases the time used for memory
access by 3×, the cost of instruction fetching by 6×, and the time for ALU
computation by 3.5×. Using padding gives a further 10× improvement on both
instruction-fetch and memory-access time, along with an additional 2× speedup
in ALU computation. In total, our optimizations achieve a roughly 28× speedup
compared to our baseline system. The cost of instruction fetching is reduced
by 67×, the cost of memory access is reduced by 33×, and the cost of ALU
computation is cut by 8×.

5.3 Performance of Binary Search

Binary search, where one party holds an array of integers while the other party
holds a query, serves as an interesting test case for exploring the (amortized)
speedup provided by working in the RAM model of computation. Secure RAM-
based computation of binary search was considered by Gordon et al. [8] and
Wang et al. [24], both of whom used hand-crafted circuits.

For testing our system, we wrote C code for binary search using a standard
iterative implementation (see Fig. 5b), with no annotations or special syntax,
and then compiled this to a MIPS binary using GCC. In Fig. 5a, we show the
performance of our system when emulating the resulting MIPS binary, when
using ObliVM with Circuit ORAM [23] or trivial ORAM as the back-end. In
addition, we implemented secure binary search using ObliVM directly as well
as via a “trivial” circuit that simply performs a linear scan. Since we only care
about the amortized cost, setup time is excluded in all cases. As we can see
in Fig. 5a, our emulator with Circuit ORAM outperforms the one with trivial
ORAM once the array contains >216 32-bit integers, and outperforms a linear

Secure Computation of MIPS Machine Code 115

(a) Performance of secure binary search.

int BS(int *a,int *b,int l) {

int key=b[0];

int imin=0,imax=l-1;

while (imax >= imin) {

int imid = (imin+ imax)/2;

if (a[imid] >= key)

imax = imid - 1;

else

imin = imid + 1;

}

return imin;

}

(b) C Code used for binary search.

Fig. 5. Binary search example. One party holds an array of 32-bit integers, while the
other holds a value to search for.

scan when the array contains >219 32-bit integers. We can also see that our
emulator is only 25% slower than ObliVM, which requires the programmer to
use the domain-specific language supported by ObliVM.

6 Conclusion

In this work, we designed and implemented an emulator that allows two parties
to securely execute native MIPS code. Our work fills an important gap in the
trade-off between efficiency and generality: by supporting MIPS code, we allow
programmers with no knowledge or understanding of secure computation to
write and securely execute code of their choice. Contrary to what one might
expect, we show that this approach can yield reasonable performance once several
automated optimizations are applied. For some programs, our optimized system
is competitive with implementations based on state-of-the-art domain-specific
languages for secure computation.

There are still many interesting, unexplored optimizations that would fur-
ther improve the efficiency of our approach: (1) In this work, we demonstrate
the potential advantages of padding with NOP instruction, but it remains an
interesting challenge to automate and optimize this step. (2) It is also interest-
ing to explore how taint analysis, and other more complex analysis of binary
files, can improve the performance by allowing us to further avoid oblivious
memory accesses and unnecessary secure computation in the ALU. Our work
demonstrates the feasibility of the most general approach to secure computa-
tion, opening an avenue for further research and helping to fill a gap in the
growing array of options for performing secure computation.

Acknowledgements. The authors thank Elaine Shi for helpful discussions in the
early stages. This research was developed with funding from the Defense Advanced

116 X. Wang et al.

Research Projects Agency (DARPA). Work of Xiao Wang and Jonathan Katz was
additionally supported in part by NSF awards #1111599 and #1563722. The views,
opinions, and/or findings contained in this work are those of the authors and should
not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014)

2. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

3. Demmler, D., Schneider, T., Zohner, M.: ABY–a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

4. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation
application programming interface. Cryptology ePrint Archive, Report 2012/629
(2012)

5. Fletcher, C.W., van Dijk, M., Devadas, S.: Towards an interpreter for efficient
encrypted computation. In: Proceedings of the 2012 ACM Workshop on Cloud
Computing Security Workshop (2012)

6. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

7. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

8. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS, pp. 513–524. ACM Press, October
2012

9. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS, pp. 451–462. ACM Press, October 2010

10. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS, pp. 772–783.
ACM Press, October 2012

11. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Usenix Security Symposium (2011)

12. Keller, M.: The oblivious machine - or: how to put the c into mpc. Cryptology
ePrint Archive, Report 2015/467 (2015). http://eprint.iacr.org/

13. Kreuter, B., Mood, B., Shelat, A., Butler, K.: PCF: a portable circuit format for
scalable two-party secure computation. In: Usenix Security Symposium (2013)

14. Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium (2012)

15. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: ACM CCS 2015, pp. 579–590. ACM Press (2015)

16. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model
secure computation. In: IEEE Security & Privacy (2014)

17. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: a programming frame-
work for secure computation. In: IEEE Security & Privacy (2015)

http://eprint.iacr.org/

Secure Computation of MIPS Machine Code 117

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-
tation system. In: USENIX Security Symposium (2004)

19. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

20. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for
generic, mixed-mode multiparty computations. In: 2014 IEEE Symposium on Secu-
rity and Privacy, pp. 655–670. IEEE Computer Society Press, May 2014

21. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tiny-
Garble: highly compressed and scalable sequential garbled circuits. In: IEEE Secu-
rity & Privacy (2015)

22. Wang, X., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of mips
machine code. Cryptology ePrint Archive, Report 2015/547 (2015). http://eprint.
iacr.org/2015/547

23. Wang, X.S., Chan, T.H., Shi, E.: Circuit oram: on tightness of the goldreich-
ostrovsky lower bound. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM (2015)

24. Wang, X.S., Huang, Y., Chan, T.H.H., Shelat, A., Shi, E.: SCORAM: oblivious
RAM for secure computation. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS,
pp. 191–202. ACM Press, November 2014

25. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

26. Zahur, S., Evans, D.: Obliv-c: a language for extensible data-oblivious computation.
Cryptology ePrint Archive, Report 2015/1153 (2015)

http://eprint.iacr.org/2015/547
http://eprint.iacr.org/2015/547

	Secure Computation of MIPS Machine Code
	1 Introduction
	2 Preliminaries
	3 Basic System Design
	3.1 Overall Workflow
	3.2 MIPS Architecture
	3.3 Overview of Our System
	3.4 Setup
	3.5 Main Execution Loop

	4 Improving the Basic Design
	4.1 Mapping Instructions to Steps
	4.2 Padding Branches
	4.3 Checking Termination Less Frequently

	5 Performance Analysis
	5.1 Time for Static Analysis and Compilation
	5.2 The Effect of Our Optimizations
	5.3 Performance of Binary Search

	6 Conclusion
	References

