
On Manufacturing Resilient Opaque Constructs
Against Static Analysis

Brendan Sheridan and Micah Sherr(B)

Georgetown University, Washington DC 20057, USA
msherr@cs.georgetown.edu

Abstract. Opaque constructs have developed into a commonly used
primitive in obfuscation, watermarking, and tamper-proofing schemes.
However, most prior work has based the resilience of these primitives
on a poorly defined reduction to a known NP-complete problem. There
has been little scrutiny of the adversarial model and little discussion of
how to generate instances that are always hard. In this paper, we offer
what we believe to be the first complete algorithm for generating resilient
opaque constructs against static analysis. We base their resilience on the
complexity of 3SAT instances with cn clauses for c = 6 and n distinct
variables. We draw on existing theoretical bounds to show that these
instances always require exponential time to defeat under formal notions
of resolution complexity.

This paper also explores in-depth the security of opaque constructs in
real-world settings. We argue that the common theoretical model used
in prior work (as well as our resilient opaque construction scheme) is too
optimistic. It does not offer practical obfuscation against an adversary
who tolerates some small false positive rate. We offer a heuristic-based
attack to demonstrate this issue. Our results suggest that opaque con-
structs should be viewed with a high degree of skepticism until they can
be proven secure under more useful theoretical models.

1 Introduction

Code obfuscation is the process of transforming source or machine code such that
the original functionality is maintained, but is hard to discern from inspection
of the transformed code. Traditionally, obfuscation was employed to confuse a
human reader with the goal of preventing reverse-engineering or hiding certain
functionality. This adversarial setting spawned an ecosystem of sophisticated
automated obfuscation, and conversely, increasingly sophisticated de-obfuscation
and analysis techniques. Currently, an effective obfuscation scheme must not only
make the code unreadable, but also difficult to analyze for both targeted and
generalized adversarial analysis.

Opaque predicates [9] were introduced to formalize the notion that an effec-
tive obfuscation scheme must be able to conceal at least one bit of information
from an adversary. Informally, the runtime value of the opaque predicate should
be known a priori by the obfuscater based on asymmetric information involved
c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 39–58, 2016.
DOI: 10.1007/978-3-319-45741-3 3

40 B. Sheridan and M. Sherr

in its creation, but difficult for an adversary to determine without that same
information. This primitive allows an obfuscation scheme to naturally obscure
the control flow of a program by simply inserting opaque predicates into con-
ditional branch tests. Since the obfuscater can predict the runtime value of the
predicate, they can structure the program branching accordingly whereas an
adversary must consider both possible values and their associated control flow.
This same primitive has similarly been used in software watermarking [20], the
embedding of information that can later be used to identify the original author
via public key cryptography, as well as tamper-proofing, the goal of obfuscation
such that modifying the functionality is difficult [7].

Unfortunately, while these primitives have seen heavy use, their theoretical
basis is very weak. Most commonly, they base their hardness on a reduction
to a NP-complete problem. This is an unfortunately common fallacy because
these problems are only known to be hard in the worst case. Moreover, since
these problems are being artificially generated, there is no inherent guarantee
that any of them will be hard in practice. There is an extensive line of work
originating from the study of satisfiability problems in artificial intelligence (AI)
which suggests that natural choices for generation algorithms actually produce
instances that can be solved in polynomial time on average [5,10,24]. However,
this line of work has also established that it is possible to construct instances
that are always hard with careful parameter selection. We seek to formally apply
this line of work to the obfuscation context in order to strengthen the theoretical
basis of opaque constructs.

Using opaque predicates to construct an actual obfuscation scheme is largely
beyond the scope of this work. To simplify discussion and establish context, we
primarily focus on formalizing and extending the work of Moser et al. [19] on
obfuscation in the context of static analysis. The authors offer an impressive
engineering contribution, fully implementing their x86 binary rewriting scheme
and defeating state-of-the-art semantics-aware malware detectors with reason-
able overhead. However, they claim their scheme is provably hard to analyze for
any static code analyzer based only on an informal reduction from their obfusca-
tion primitive to a 3-satisfiability problem (3SAT) [17]. We believe this assertion
to be accurate, but seek to formalize it by more narrowly defining static analy-
sis, giving an algorithm for picking appropriate 3SAT instances, and explicitly
proving the reduction as well as the original theorem. In the Appendix, we also
examine alternative problems on which to base the primitive, but it is currently
unclear if any candidate is a fundamentally better choice than 3SAT due to open
problems in cryptography and complexity.

While our main focus is the theoretical strength of the obfuscation primitive,
we also offer extensions to the overall obfuscation scheme. Notably, we will show
how the ability to obfuscate a single bit, consistent with the original obfuscation
primitive, can be generalized to securely and efficiently encrypt the data section.
This technique systematically defeats problems the original authors encountered
when testing against commercial, regular expression based, malware detectors.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 41

As a second major contribution, we offer a critique of this model and explore
its efficacy in the real-world. We present a heuristic attack against an obfusca-
tion scheme employing our resilient predicates. Analyzing its effectiveness and
efficiency, we find that targeted heuristic approaches can defeat the theoretically
resilient construct with high probability. Our results reveal weaknesses in the
commonly used model for opaque constructs and suggest the need for increased
skepticism over the use of opaque constructs in obfuscation schemes.

2 Problem and Definitions

Code obfuscation is applicable in a wide variety of contexts. To simplify discus-
sion, we adopt the use-case of Moser et al. [19]. The authors were interested in
exploring the limits of static analysis for malware detection, where malware is
simply defined as malicious code. The obfuscator is given a piece of (presum-
ably malicious) machine code and must transform the program using opaque
constructs such that its functionality remains the same and its runtime perfor-
mance is not drastically altered. The transformed code should be difficult to
identify as the original code. The static adversary, in turn, seeks to identify the
obfuscated code given only the original code. For our purposes, it is unneces-
sary to restrict the behavior of the adversary. However, most prior work first
seeks to remove binary obfuscation from the program to allow disassembly, then
uses semantic analysis to identify known malicious functionality. Figure 1 gives
a graphical representation of this use-case.

Fig. 1. Malware detection use-case where the obfuscator seeks to hide the malicious
nature of the program using opaque constructs and the static adversary seeks to find
malicious functionality.

It should be noted that this overall problem more generally falls under black-
box obfuscation and the general case is suspected to be impossible for for-
mal hardness guarantees [2]. Our problem is, more simply, to generate resilient
opaque primitives. More specifically, it is to generate opaque constructs in poly-
nomial time that can be evaluated in linear time but are resilient with exponen-
tial resolution complexity.

42 B. Sheridan and M. Sherr

Definition 1. A construct is said be opaque at point p in a program if its value
q is known at obfuscation time with exponentially high probability (w.h.p). We
denote an opaque predicate P q

p and an opaque variable V q
p , and we drop the

subscript of both when the execution point is obvious from context.

This definition slightly weakens the original definition from Collberg et al. [9]
for convenience purposes. The original contains no notion of probability. How-
ever, we show that the probability of one of our constructs failing is exponentially
small with respect to n, so it should not be a concern in practice. We discuss the
issue in more detail in AppendixA. We also discuss how obfuscation schemes
should avoid compounding this probability in Sect. 4. We concern ourselves only
with constant opaque constructs, i.e., those for which q is independent of p. How-
ever, prior work has shown how to construct dynamic opaque predicates based
on several constant opaque predicates [9,19].

Definition 2. Given a program, P , an obfuscation transformation, T , and a
positive scalar-valued complexity measuring function, E, the potency of T mea-
sures the complexity increase in the result program, P ′. Formally, the potency of
T on the program P , Tpot(P), is given by Tpot(P) ≡ E(P ′)/E(P) − 1.

Abstractly, the potency of an obfuscation transformation measures how com-
plex or unreadable the resulting program is compared to the original. By con-
vention, E increases with the logical complexity of the input program so an
obfuscator should seek to maximize potency. However, the concrete definition is
dependent on E. It is natural to draw on various software engineering metrics
to measure readability and complexity, but they are often context dependent
and subjective, with no de facto standard. Collberg et al. [8] give a taxonomy of
potential choices.

Fortunately, since we are primarily interested in the obfuscation primitive
itself rather than any motivating obfuscation scheme, it suffices to assume that
the inclusion of the primitive increases the complexity of the resulting program,
E(P ′). For ease of discussion, we assume that the primitive is used as a branch
condition and the goal of the deobfuscator is to remove unreachable branches.

Definition 3. The resilience of an opaque predicate is formally the time and
space required by an automatic deobfuscater to effectively reduce the potency of
an obfuscation transformation, T .

To distinguish our model from the more relaxed approximation-based meth-
ods for static analysis commonly employed in software verification research, we
offer a more restricted definition of static analysis. However, we note that prior
research in this context makes no such distinction.

Definition 4. We define complete static analysis as any algorithm which
takes program code as input and enumerates all possible execution paths of the
given code unless it can prove via resolution strategy that a branch will never be
taken.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 43

This definition is consistent with the traditional notion of a complete static
analyzer, that is, one which returns no false-positives. We have only augmented it
to include a notion of computational complexity that is dependent on resolution
complexity. This is, to our knowledge, the most appropriate and formal notion
of complexity available.

One might argue that a more appropriate goal is resilience against a sound
static analyzer, that is, one which sacrifices false-positives but does not allow
false-negatives (it is easy to see that soundness and completeness are competing
goals since an analysis that is both sound and complete would cover the halting
problem). In fact, we argue in Sect. 5 that the requirement of complete static
analysis is unrealistic.

Unfortunately, it is difficult to formalize the notion of sound static analysis in
this context. Any such notion would likely also be contingent on stealth (since
detecting obfuscation is reasonable grounds to flag a program), and we argue
informally that stealth is most likely unachievable.

Importantly, our definition is consistent with the prior work in this context,
which assumes the analyzer must cover all possible execution paths unless it can
prove a path will never be taken [4,19].

Definition 5. A resolution strategy is any algorithm that proves unsatisfia-
bility via resolution reduction. We call the size of the resulting proof the reso-
lution complexity.

Our assumption that resolution complexity is representative of computational
complexity is common in AI research and consistent with prior work on random
3SAT hardness [5,10,24]. We are unaware of any more formal lower-bounds for
the complexity of artificially generated NP-complete instances.

Definition 6. 3-satifiability or 3SAT is the boolean satisfiability problem,
given a boolean expression in the form

∧m
i=1(Xi,1

∨
Xi,2

∨
Xi,3) and assign-

ment of n boolean variables and their negation to the m clauses, Xi,j ∈
{x1, x2, ..., xn, x1, x2, ..., xn}, of determining if the expression is satisfiable for
some truth value assignment of each variable. It is known to be NP-complete in
the number of the variables [17]. By convention, we say that m = c × n so we
can refer to the ratio of clauses to variables, or density, as c.

For simplicity in our analysis, we also adopt the notion of a random 3SAT
problem consistent with the works by Kamath et al. [16] and Chvátal and
Szemerédi [5].

Definition 7. A random 3SAT problem is defined by the random distribution
used to create it. Each clause is chosen independently by choosing three distinct
variables uniformly at random and independently negating each with probability
1/2; the variables are then assigned to Xi,1,Xi,2, and Xi,3 accordingly.

44 B. Sheridan and M. Sherr

3 Generating Opaque Constructs

This section gives our first main contribution: algorithms for constructing theo-
retically strong opaque constructs and proofs of their resilience against complete
static analysis. To start, we must first outline the intended usage of an opaque
predicate instance. Algorithm 1 shows the intended inclusion of an opaque pred-
icate in an obfuscation scheme. The 3SAT instance is naturally encoded into a
boolean statement that is evaluated at runtime. Each variable in the statement
is set randomly at runtime during the call to evaluate. For an opaque predicate,
P f , the obfuscater knows w.h.p. that this branch will never be followed. However,
the adversary cannot discount the possibility without proving the statement’s
unsatisfiability. This formulation is taken directly from Moser et al. [19].

Algorithm 1. Runtime evaluation of opaque predicate
/* index variables and their inverses */

S[] ← [x1, x2, ..., xn, x1, x2, ..., xn]
/* input Xi,j: constructed predicate */

satisfied ← evaluate(S, Xi,j)
...
if (satisfied) then

branch

Function evaluate(S, Xi,j)
Input: S− index variables
Input: Xi,j− opaque predicate
Output: satisfied− boolean indicating if predicate was satisfied
/* assign boolean values randomly */

for i in 0..n − 1 do
S[i] ← rand(true, false)
S[n + i] ← ¬V [i]

/* record satisfaction in predicate */

satisfied ← true
for i in 0..Xi,j-1 do

if ¬S[Xi,1] ∧ ¬S[Xi,2] ∧ ¬S[Xi,3] then
satisfied ← false

return satisfied

Lemma 1. The runtime evaluation indicated by Algorithm 1 takes O(n) time
given a predicate with O(n) clauses.

Proof. The algorithm performs two loops with a constant number of operations in
each body. This first is over n explicitly and the second is over the number of clauses
which we have specified is O(n). The entire algorithm therefore runs in O(n).

On Manufacturing Resilient Opaque Constructs Against Static Analysis 45

Algorithm 2 gives our method for producing opaque predicates. Special atten-
tion should be paid to the choice of density c = 6. Maintaining the appropri-
ate ratio of clauses to variables allows us to directly apply known resolution
complexity bounds. Moser et al. did not explicitly specify their algorithm for
predicate generation, but we can reasonably assume they did not maintain this
ratio because they discuss changing the number of clauses in their performance
section without any mention of the number of variables.

We show that our formulation is efficient, correct, and resilient.

Algorithm 2. 3SAT based method for generating strong opaque predicates
Function generate predicate(n)

Input: n− number of 3SAT variables
Output: Xi,j− 2D array of variable assignments for each variable(j) in each

clasue(i)
/* maintain minimum clause/variable ratio */

num clauses ← n × 6
/* randomly set each clause */

for i in 0..num clauses-1 do
/* chose boolean indices at random */

choose x1, x2, and x3 from 0..n-1
/* negate each with Pr=1/2 */

for j in 1..3 do
if rand(true, false) then

Xi,j ← xi

else
Xi,j ← xi + n

return Xi,j

Lemma 2. Algorithm 2 generates a valid opaque predicate, P f , and runs in
O(n).

Proof. The algorithm enumerates each clause in the expression and explicitly
constructs it based on Definition 7. We can therefore say that it is a valid random
3SAT instance by construction. A valid opaque predicate P f must also evaluate
to false w.h.p. By construction, every set of variable assignments has uniform
probability of satisfying a random 3SAT instance. Therefore, w.l.o.g. consider
the specific assignment of true to each variable, {x1 = ... = xn = true}. The
probability of a randomly chosen clause being satisfied by this assignment is the
probability that at least one of the chosen variables is not negated, 1− (1/2)3 =
7/8. Since all clauses are constructed independently, the probability of all clauses
being satisfied is thus (7/8)cn. Given our choice of c = 6, (7/8)6n ≈ (1/2)1.16n

for any positive integer n, so the probability of the predicate being satisfied at
runtime clearly grows exponentially small with respect to n.

46 B. Sheridan and M. Sherr

Since our algorithm merely enumerates each clause, making a constant num-
ber of random decisions for each, we can conclude that it runs in O(m). We have
explicitly set m = 6n so it runs in O(m) = O(n).

Lemma 3. Any complete static analysis of the opaque predicate controlled
branch from Algorithm 1 must consider both execution paths unless it can prove
that the boolean statement is unsatisfiable and will never be followed.

Proof. This follows directly from our definition of complete static analysis. We
require that a complete static analysis algorithm consider all possible execution
paths. Unless the adversary can prove that the boolean statement will never
evaluate to false, it must consider the possibility that the branch will be followed
and include it in their analysis.

Lemma 4. Opaque predicates generated by Algorithm 2 are resilient with expo-
nential resolution complexity.

Proof. From Definition 2, resilience is the time and space required to remove
a predicate from the static analysis. Lemma 3 states that a branch cannot be
eliminated without proving that the opaque predicate always evaluates to false.
Therefore the problem of reducing branching complexity is equivalent to prov-
ing the unsatisfiability of our opaque predicate construction and the associated
random 3SAT instance with c > 6. Here, we can draw on a lower bound from
Chvátal and Szemerédi [5]. The authors proved that, for every choice of positive
integers c and k such that k ≥ 3 and c2−k ≥ 0.7, the unsatisfiability resolution
proof for a randomly chosen family of cn clauses of size k over n variables gen-
erates at least (1 + ε)n clauses. Since we are working with 3SAT, k = 3 and this
theorem applies for c ≥ 5.6. We have deliberately chosen c = 6 corresponding
to �5.6� so that this result can be applied directly. Because any resolution proof
of our predicates requires at least exponential space, we can say that they are
resilient with exponential resolution complexity.

Next, we show how to use our opaque predicates to trivially generate opaque
variables of arbitrary constant length and a given value, q. Note that q is not
somehow encoded in the variable itself, but rather passed into the runtime eval-
uation. This may seem counterintuitive because our overall goal is to hide infor-
mation from the adversary and the information is clearly human readable in
this form. However, preventing things like human readability is the responsibil-
ity of the overall obfuscation scheme. Here, it suffices to provide the promised
resilience against complete static analysis and trust that the calling obfuscation
scheme uses the primitive appropriately. This is consistent with our abstract
interpretation of potency from Sect. 2. We do show that these variables exhibit
the same resilience and correctness guarantees as our predicates.

Lemma 5. Algorithm 3 generates valid opaque variables, V q and runs in O(n)
given a constant bit-length l.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 47

Algorithm 3. Generating opaque variables from opaque predicates
Function generate variable(n, l)

Input: l− desired bit-length
Input: n− number of 3SAT variables
Output: V − array of opaque predicates
/* generate predicate for each bit */

for i in 0..l-1 do
V [i] ← generate predicate(n)

return V

Function evaluate variable(q, l, V)
Input: q− desired variable value
Input: l− bit-length of variable
Input: V − opaque variable
Output: Q− evaluated value of variable
/* bool array to represent bits of q */

Q[]
for i in 0..l-1 do

Q[i] ←evaluate predicate(V [i]) ⊕ q[i]

return Q

Proof. Each bit of q is simply xor’ed with the evaluation of an opaque predi-
cate; thus, it suffices to show that none of these predicates are satisfied w.h.p.
Lemma 2 gives us that the probability of any single predicate being satisfied
by a random assignment is (7/8)6n. Therefore the probability that any of these
predicates are satisfied is

∑l
i=1

(
7
8

)
6n ≈ l · 2−1.16n, which clearly still grows

exponentially small w.r.t. n.
The methods simply perform l different instances of generate predicate and

evaluate predicate respectively. Lemmas 1 and 2 state that these both run in
O(n). We have required that l is constant so both methods run in O(n).

Lemma 6. Opaque variables generated by Algorithm 3 are resilient with expo-
nential resolution complexity.

Proof. Here, our measure of potency is the possible 2l possible values of V q

that a static adversary must consider. Clearly, since each bit of V can take
the value 0 or 1 based on the result of the xor with an opaque predicate, the
adversary cannot reduce the potency of the variable without defeating one of the
opaque predicates. We have from Lemma 4 that each predicate is resilient with
exponential resolution complexity so we can say that these opaque variables also
have exponential resolution complexity.

4 Obfuscation Scheme Extensions

We next offer a simple extension to the original obfuscation scheme given
by Moser et al. [19]. We also discuss how one might intelligently scale the number

48 B. Sheridan and M. Sherr

of variables, n, and the density, c, based on the desired properties of the overall
obfuscation scheme.

4.1 Encrypting Data Against Complete Static Analysis

One notable shortcoming of the original obfuscation scheme is that it is poten-
tially vulnerable to the simple data section pattern matching used by commercial
virus scanners. Opaque variables cannot be readily used to hide data patterns
from a heuristic-based adversary and the linear space increase associated with
using an opaque variable for the entire data section is unappealing in practice.

Moser et al. contend that this is a non-issue because an obfuscater can sim-
ply encrypt the data section using a unique key stored in the binary, unpacking
the data accordingly at runtime. We argue that this is inconsistent with their
goal of defeating static analysis. Given a secret key näıvely stored in the binary
as well as a known or unobfuscated encryption algorithm, even a static adver-
sary can simply decrypt the data section before applying a pattern matching
strategy. However, to defeat a static adversary, it suffices to hide the secret key
with an opaque variable. Algorithm 4 gives a straightforward key generation
algorithm based on this intuition. The key can be used in any stateless sym-
metric encryption scheme, SE = (K, E ,D), such as CTR-C with AES [14]. The
actual cryptography is interchangeable and the resilience of the scheme derives
simply from the resilience of our opaque variables shown in Lemma 6.

Algorithm 4. K− Opaque key generation
Function generate key(n)

Input: n− number of 3SAT variables
Output: K− opaque cryptographic key
K ←$ Zp

V ← generate variable(n, |K|)
K ← evaluate variable(K, |K|, V)
return K

Lemma 7. Algorithm 4 takes O(n) time to generate a constant-length opaque
key from a cryptographic key of the same length. The resulting key has exponen-
tial resolution complexity.

Proof. We assume here that an appropriate constant-length key is supplied or
is trivial to select. We have from Lemma 5 that generate variable and evalu-
ate variable both run in O(n) given a constant bit length variable. generate key
simply applies both to the constant length cryptographic key so it must also run
in O(n).

We also have from Lemma 6 that the resulting variable (in this case the key)
is a valid opaque construct with exponential resolution complexity.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 49

4.2 Choosing Opaque Construct Parameters

There are several tradeoffs arising from our opaque construct generation
algorithms that can be controlled via the number of 3SAT variables, n, and
the ratio of clauses to variables, c.

First, we can exponentially increase the resilience of our constructs by increas-
ing n. This comes at a linear O(n) cost in the size of the transformed code, the
runtime of the generation algorithm, and the runtime of the opaque evaluation.

The second is a very subtle property of random 3SAT refutation. Although
we are guaranteed exponential resolution complexity for any positive integer
c ≥ 5.6 and increasing c decreases the probability that our construct will ever be
incorrectly evaluated, there is a hidden drawback to allowing c to be much larger
than 6. In practice, large values of c make the resulting 3SAT instance very over-
constrained and easier to resolve. For example, Crawford and Auton [11] showed
experimentally that the growth rate of their algorithm was approximately 2n/17

for c = 4.3 compared to only 2n/57 for c = 10. Selman et al. [24] later showed
this is due to a monotonically decreasing behavior in the search space above the
critical point of roughly c = 4.3. As such, we feel it is wise to choose c as close
to the theoretically proven lower bound as possible.

4.3 Compounding Effects

There is an error probability compounding effect resulting from the use of mul-
tiple opaque constructs. Since an error in any single construct affects the overall
correctness of the transformed code, one should consider the probability of any
single construct failing when bounding the error probability of their obfuscation
scheme. Fortunately, this probability can be calculated explicitly as in Lemma 5
and the scaling is very favorable. It suffices to choose n sufficiently large to
exercise the exponential scaling.

5 Heuristic Attacks

Given the strong formal guarantees described in the previous sections, we next
take a different tack and explore the efficacy of opaque constructs in practice.
That is, we ask a more fundamental question: are these theoretical constructs
actually useful?

A major weakness of the formal model considered by Moser et al. [19] and
adopted by us in the proceeding sections is that it envisions an unrealistic adver-
sary. Malware detectors (unlike compilers) are typically uninterested in precisely
proving that a transformation is safe. They intentionally tolerate some small false
positive rate, sacrificing completeness for soundness.

Such detectors often employ heuristic strategies against which our construc-
tion would not be provably resilient. In what follows, we highlight this poten-
tial problem by offering an effective attack against the predicates we previously
proved were resilient with exponential resolution complexity against complete
static analysis.

50 B. Sheridan and M. Sherr

We start by giving a heuristic based algorithm designed to correctly identify
predicates generated by Algorithm 2 in polynomial time. We show that, assuming
our heuristic can correctly identify instances of random 3SAT, we can identify
our generated opaque predicates with perfect recall in polynomial time. We also
show that the probability of incorrectly identifying a satisfiable predicate as
opaque is bounded by a small constant, making the chance that we change the
functionality of the program similarly small.

Algorithm 5 gives our heuristic-based detection strategy. First, the algorithm
tests to see if the predicate is controlled by a random 3SAT instance: we näıvely
verify that the predicate is a 3SAT instance and we also test whether the observed
literals follow the expected uniform distribution; the details of which of are
discussed in Sect. 5.1. If either test fails, we abandon analysis of the predicate
since our generation algorithm only produces random 3SAT instances.

If the predicate has been determined to be a random 3SAT instance, the
algorithm then tests the estimated value of c to determine if c̃ > 6. If so, the
tester can be extremely confident that the branch will never be followed because
we know that random 3SAT instances with sufficient values of c are unsatisfiable
w.h.p. Thus, the branch can be safely removed without altering the program’s
functionality.

Algorithm 5. Heuristic method for defeating opaque predicates generated
by Algorithm 2
Function check predicate(s)

Input: s−boolean formula controlling branch
/* check if 3SAT instance */

for each clause in s do
if variables �= 3 then

return

/* check for uniform distribution using χ2-test for uniformity */

if χ2 test(s) > uniformity threshold then
return

/* count the unique variables in s */

ñ ←count(s)
/* check estimated value of c */

c̃ ←clauses(s)/ñ
if c̃ < 6 then

return

/* if all tests pass, assume opaque */

remove(branch(s))
remove(s)

Lemma 8. Algorithm 5 runs in polynomial time.

On Manufacturing Resilient Opaque Constructs Against Static Analysis 51

Proof. The algorithm simply steps once through a series of tests and each test
runs in polynomial time so the algorithm as a whole must also run in polynomial
time.

Next, we would like to account for the potential skew in the observed value
of ñ, and consequently skew in the estimated value of c, c̃. Since the attack sees
only the generated predicate, it can potentially underestimate the actual number
of variables in the generating distribution. Formally,

Definition 8. We consider the result of Algorithm 5 to be a true-positive if
the true value of c = 6 and the branch and predicate are appropriately removed.

Given this definition, we can actually show that an opaque predicate will
always be correctly identified.

Lemma 9. The recall of Algorithm 5 is exactly 1, i.e. TPR = 1.

Proof. By Definition 8, a false-negative can only occur when c = 6. By construc-
tion, the predicate and branch are only removed when c̃ < 6. Since, also by con-
struction, c̃ = cn / ñ, they are removed when ñ ≤ n. Clearly, we will never observe
more than n variables because there are only n variables in the distribution. Thus,
our algorithm can never mistakenly reject an opaque predicate generated by Algo-
rithm 2 provided that it successfully passed the uniformity test.

We would also like to show that the possibility of incorrectly identifying
a satisfiable predicate as opaque is appropriately small. To do so, we use the
Satisfiability Threshold Conjecture for random 3SAT. It states that there exists
a single density, c, such that generated instances with density ≤ c are satisfiable
whereas generated instances with density > c are unsatisfiable w.h.p. The best
known upper bound for this conjecture is c = 4.51 [3] so we will conservatively
consider the probability that a given predicate with c = 4.51 is determined to be
opaque and incorrectly removed. We do not distinguish between our generated
opaque predicates and predicates that coincidentally have c > 4.51 because,
regardless, it is safe to remove a predicate and branch that will never be satisfied.

Lemma 10. The probability that Algorithm 5 removes a satisfiable branch is
guaranteed to be small, i.e., P {c ≤ 4.51} < 5.33 × 10−6.

Proof. From Algorithm 5, we remove a predicate when the estimated value of c,
c̃ ≥ 6. We have assumed that c = 4.51 and c̃ is calculated with c̃ = cn / ñ so we
would like to bound the probability that ñ / n ≤ 4.51 / 6. Let Y be an indicator
variable for the absence of the i-th variable from the generating distribution in
the predicate. We can say that ñ = n −

∑
Y , so we would like to bound the

probability that
∑

Y ≥ .25n. Applying Markov’s inequality gives us a very loose
but sufficient bound, i.e.

Yi =

{
1 if xi does not appear
0 otherwise

=⇒ P
{∑

Y ≥ .25n
}

≤ E(
∑

Y)
.25n

52 B. Sheridan and M. Sherr

and we can calculate E (
∑

Y) directly by linearity of expectation. The proba-
bility that a particular variable, xi, is left out of every clause is

P {Yi = 1} =
(

n − 3
n

)cn

=⇒ E
(∑

Y
)

= n

(
n − 3

n

)cn

Substituting in, we are left with a monotonically increasing function for n ≥ 3,

P
{∑

Y ≥ .25n
}

≤ 4
(

n − 3
n

)4.51n

< 5.33 × 10−6

5.1 Distribution Testing

The testing of the distribution is, theoretically, the weak-point of this detection
strategy. However, we will argue that it is reasonable to assume its effectiveness
in practice. We first address the non-adversarial setting. That is, we assume
all input boolean formulas are generated via some random distribution and we
need only distinguish between uniform and non-uniform distributions. This is a
standard use-case for a χ2-test and fairly trivial given a sufficiently large sample.

In Fig. 2, we compare average p-values as a function of n to truncated normal
distributions with increasing variance. Although there is some skew due to the
sampling without replacement in random 3SAT generation, we see, as expected,
that there is a very drastic fall-off in all the non-uniform distributions.

To ensure a sufficiently large sample, it suffices to remove 3SAT instances
that can be solved in small constant time. For example, we found experimentally
that, given c = 6, we could consistently solve instances with n < 58 in under
a minute using eight processors and a simple 3SAT solver. In contrast, all the
distributions we tested had already suitably diverged by n = 10.

One could make this classification problem arbitrarily hard by using a gen-
erating distribution that more closely approximates uniformity. However, the
resulting misclassified 3SAT instances effectively approximate the frequency dis-
tribution of a random 3SAT instance. Since proofs for the unsatisfiable threshold
primarily rely on the frequency distribution, they should be fairly insensitive to
such instances. We leave formally bounding this insensitivity as a future research
direction.

5.2 Potential Defenses

Of course, the assumption that all input instances are randomly generated is
arguably optimistic. A simple defense against this heuristic attack might entail
inserting artificially generated formulas that resemble random 3SAT but are
known to be satisfiable. In the AI context, this could be considered the problem
of generating hard satisfiable instances in the over-constrained region. Our con-
text adds the additional constraint that these instances cannot be too tightly

On Manufacturing Resilient Opaque Constructs Against Static Analysis 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

p-
va

lu
e

n

Distribution Classification Comparison

Uniform
σ2=1
σ2=2
σ2=3
σ2=4
σ2=5

Fig. 2. Mean p-values for uniform distribution and truncated normal distributions with
different variance values as a function of n, c=6. Error bars show standard error of the
sample size r, std-dev/

√
r.

clustered (otherwise they can be identified and removed heuristically). We argue
that there is no such known method.1

Finding satisfiable random 3SAT instances in the over-constrained region by
brute-force is intractable since candidates are unsatisfiable with exponentially
high probability. As such, it is typical to start with some truth assignment and
select only clauses which satisfy the truth assignment. The resulting instances
are called planted 3SAT.

Unfortunately, this skews the distribution of variables and their negation
(since the form that agrees with the truth assignment is more likely to appear
in viable clauses). Even in the general form, where the frequency distribution
used to select clauses is allowed to vary arbitrarily, there are known algorithms
for solving planted 3SAT in polynomial time w.h.p [6]. Moreover, experimen-
tal results show that all satisfiable instances in the over-constrained region are
tightly clustered, suggesting that they could be easily solved even if they were
not generated with a planted assignment.

Since there are no known algorithms that meet the resulting satisfiable 3SAT
generation criteria and any such algorithm would represent a considerable break-
through in AI community, we conjecture that any such defense against a targeted
heuristic attack is infeasible.

1 Moser et al. [19] mention this strategy as part of a proposed heuristic-based defense,
but they offered no specific construction scheme so we cannot make a direct com-
parison.

54 B. Sheridan and M. Sherr

5.3 Discussion

In summary, Algorithm 5 defeats our theoretically strong opaque construct gen-
eration algorithm by iteratively and w.h.p. removing unsatisfiable branches,
effectively “unraveling” its opaqueness.

We suspect the effectiveness of our heuristic attack against a provably
resilient opaque construct is indicative of inaccuracies in the commonly used
assumptions for modeling static analysis. Specifically, the assumption that the
static analyzer must prove unsatisfiability of a predicate in order to remove it
is too strong. In practice, it is sufficient, and computationally much easier, to
determine the value of the predicate with some high probability. This issue seems
fundamentally at odds with the correctness of a constant opaque predicate, which
calls into question the practical utility of opaque constructs for obfuscation.

We conjecture that all opaque construct generation schemes are vulnerable to
similar targeted heuristic attacks because generating instances of a hard problem
with known solutions naturally limits the instances to some subset of the problem
space with measurable properties. Recent experimental results, which we discuss
next in Sect. 6, seem to support this conjecture.

6 Related Work

The concept of an opaque predicate was first introduced by Collberg et al. [9].
However, in addition to resilience and cost, the authors also design their obfus-
cation scheme around a poorly defined stealth metric. Consequently, they base
their main primitive on the hardness of precise flow-sensitive alias analysis. More
specifically, their scheme builds a set of complex dynamic structures with a set
of implicit invariants. The invariants are known a priori but difficult to ver-
ify statically so they can be tested at runtime as an opaque predicate. Precise
flow-sensitive alias analysis is known to be undecidable in general [23], but this
formulation is only known to be NP-hard in the worst case [15]. They argue
informally that this is not dissimilar to data structures kept by real applica-
tions, achieving stealth. However, it is unclear how to scale this scheme since
each opaque predicate requires an invariant. They offer a second scheme based
on the potential interleaving of parallel regions, but it suffers from the same
faults in addition to being architecture specific and potentially indeterminate on
a loaded operating system. In contrast, we seek to achieve a scalable scheme that
is proven to be NP-complete in the average case. We have also abandoned the
stealth metric because we suspect it is unachievable even against static analysis.

Unfortunately, the feasibility of stealth remains an open question, largely
dependent on its formalization. Probably the most intuitive definition is that
an obfuscated function should behave as a “virtual black box”, meaning that an
adversary cannot compute anything with the obfuscated function that they could
not compute with oracle access to the same function. This definition implic-
itly includes both resilience and stealth, but was shown to be impossible in
general [2]. The result is not necessarily applicable to obfuscation primitives
which can be specialized functions lending themselves to obfuscation, but it does

On Manufacturing Resilient Opaque Constructs Against Static Analysis 55

imply that there is no clever way to apply said primitives to achieve the virtual
black box property for an arbitrary application. This work partially motivates
our conservative focus on opaque predicates themselves as well as resilience only
against static analysis. However, our work is only tangentially related since we
intentionally avoid the impossible general case.

Heuristic-based approaches to stealthy opaque predicates have produced an
academic arms race. Most continue to base their resiliency on pointer alias analy-
sis, but offer no formal definition of stealth [7,13,20,22]. These techniques remain
vulnerable to targeted detection [12], and were recently shown to be detectable
in general with dynamic analysis by Ming et al. [18]. We diverge from this line of
work by abandoning the goal of stealth and focusing on resilience against static
analysis, giving us arguably weaker properties, but ones that can be formally
proven.

There are several notable exceptions to the trend of using pointer alias analysis
as a basis for resilience. Ogiso et al. [21] and later Borello and Mé [4] both base their
hardness on the related problem of inter-procedural analysis. Or, more specifically,
the problem of determining if there exists an execution path such that a given func-
tion pointer points to a given function at a given point of the program. This formu-
lation naturally reduces to 3SAT, making the problem NP-complete and analysis
of the entire program NP-hard. Unfortunately, the inter-procedural focus does not
lend itself to a scalable self-contained obfuscation primitive, nor is this formulation
known to be NP-complete in the average case. Our approach seeks to guarantee
both of these properties. It is most similar to the work of Moser et al. [19], who
similarly base their hardness on 3SAT but make the encoding explicit and self-
contained. We seek mainly to improve on their theoretical contribution by proving
that a deliberate 3SAT instance selection algorithm produces opaque predicates
that are NP-complete in the average case.

7 Conclusions

Opaque constructs are a commonly employed primitive in obfuscation, water-
marking, and tamper-proofing schemes. However, their theoretical basis has his-
torically been very weak. We have proven the resilience and correctness of ran-
dom 3SAT based opaque constructs under formal notions of resolution complex-
ity and complete static analysis. However, in doing so we have revealed some
weaknesses in the commonly used model and potentially opaque constructs as
an obfuscation primitive in general. We suggest that future research apply more
skepticism to the use of opaque constructs in obfuscation schemes since their
theoretical basis remains dubious.

Acknowledgments. We are grateful for the helpful comments and suggestions from
the anonymous reviewers. This work is partially funded from National Science Foun-
dation (NSF) grants CNS-1445967, CNS-1527401, and CNS-1149832. Any opinions,
findings, and conclusions or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the NSF.

56 B. Sheridan and M. Sherr

Appendix

A Alternative Sources of Hardness

Random 3SAT may seem like a strange source of hardness given that our goal is
simply to hide information from the static analyzer. However, the information
must be known at runtime and the obfuscator cannot use traditional means to
store a key without also making it available to the static analyzer. Therefore,
more traditional means of encryption are inapplicable in this setting. Below, we
briefly describe the relative merits and drawbacks of some alternate choices:

Integer factorization: As the basis of most modern cryptography, integer factor-
ization was naturally one of our first considerations. Unfortunately, we found no
natural way to incorporate the problem into an opaque predicate. We conjecture
that trap-door functions in general are unsuitable because the opaque construct
still needs to be evaluated at runtime without adding any additional knowledge
to the system.

Primality testing: Collberg et al. [9] mention primality testing as a possible basis
for opaque predicates The strategy being to pick a prime during obfuscation and
have the runtime evaluation try to evenly divide the prime by a random number.
Naturally, an adversary cannot guarantee the division will fail without proving
that the number is prime. Unfortunately, it has since been proven that primality
testing can always be done in polynomial time [1], making it too weak to serve
as a hardness basis.

One-way functions: A one-way function is more natural than a trap-door function
since we can apply it to a chosen input during obfuscation and compare that
result to the result of a random input evaluated at runtime. However, if the
generating value is included in the set of possible runtime inputs, there is at
least one potential collision. Typically, the resulting correctness bound is weaker
than our 3SAT based construction.

Flow-sensitive alias analysis: Alias analysis is the basis primarily employed by
Collberg et al. [9]. It has the arguable advantage of naturally resembling normal
code. This would make it a better candidate for meeting some formal notion of
“stealth”. However, since no one has proposed a usable metric of stealth and
recent impossibility results suggest it is not obtainable, we do not feel stealth is
an appropriate goal. Alias analysis also has the advantage of provable correct-
ness but it comes at the cost of scalability since it’s unclear how to generate
an arbitrary number of the deliberately crafted invariants used to guarantee
correctness.

Race conditions: Another possible basis briefly mentioned by Collberg et al. [8]
takes advantage of concurrency and the intractability of precise race detection.
Intuitively, an attacker might be able to insert a data race into a concurrent
program and be fairly confident of the outcome on a particular platform. Static
analysis, in contrast would not be able to reliably find the data race, let alone

On Manufacturing Resilient Opaque Constructs Against Static Analysis 57

determine its outcome. This has (often unintentionally) been a source of hardness
in reverse engineering programs for the purpose of porting them to a different
platform. Unfortunately, this basis would require that the original program be
concurrent and might violate correctness on platforms other than the particu-
lar one targeted. Even ignoring these problems, scaling would be problematic
because its unclear how to reliably generate appropriate data races in general.

Random 3SAT: The main advantage of using random 3SAT for our hardness
basis was the large body of existing work from the AI context on satisfiability
and provably hard instance generation [3,5,10,24]. Resolution complexity is an
arguably weak hardness conjecture because it states only that actually proving
satisfiability is hard. As we showed in Sect. 5, a less restricted adversary can
still make a very accurate guess. However, our assumptions were consistent with
prior work and we failed to find any stronger hardness conjectures that were
applicable in this context.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 2, 781–793 (2002)
2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,

Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)
3. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satis-

fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Swansea (2009)

4. Borello, J.-M., Mé, L.: Code obfuscation techniques for metamorphic viruses. J.
Comput. Virol. 4(3), 211–220 (2008)

5. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

6. Coja-Oghlan, A., Krivelevich, M., Vilenchik, D.: Why almost all satisfiable k-CNF
formulas are easy. In: 2007 Conference on Analysis of Algorithms, AofA 2007, pp.
95–108. Discrete Mathematics and Theoretical Computer Science (2007)

7. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation -
tools for software protection. Trans. Softw. Eng. 28(8), 735–746 (2002)

8. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations
(1997)

9. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: ACM POPL. ACM (1998)

10. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem: a
survey, pp. 1–17. American Mathematical Society (1997)

11. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in ran-
dom 3-SAT. Artif. Intell. 81(1–2), 31–57 (1996)

12. Preda, M.D., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque predicates
detection by abstract interpretation. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 81–95. Springer, Heidelberg (2006)

13. Darwish, S., Guirguis, S., Zalat, M.: Stealthy code obfuscation technique for soft-
ware security. In: International Conference on Computer Engineering and Systems
(ICCES), pp. 93–99 (2010)

14. Goldwasser, S., Bellare, M.: Lecture notes on cryptography (2001)

58 B. Sheridan and M. Sherr

15. Horwitz, S.: Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans.
Program. Lang. Syst. 19(1), 1–6 (1997)

16. Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and
the satisfiability threshold conjecture. In: FOCS (1994)

17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, New York (1972)

18. Ming, J., Xu, D., Wang, L., Wu, D.: Loop: Logic-oriented opaque predicate detec-
tion in obfuscated binary code. In: CCS (2015)

19. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Computer Security Applications Conference (ACSAC), pp. 421–430 (2007)

20. Myles, G., Collberg, C.: Software watermarking via opaque predicates: Implemen-
tation, analysis, and attacks. Electron. Commer. Res. 6(2), 155–171 (2006)

21. Ogiso, T., Sakabe, Y., Soshi, M., Miyaji, A.: Software obfuscation on a theoretical
basis and its implementation. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 86(1), 176–186 (2003)

22. Preda, M., Giacobazzi, R.: Control code obfuscation by abstract interpretation. In:
Software Engineering and Formal Methods (SEFM), pp. 301–310 (2005)

23. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
16(5), 1467–1471 (1994)

24. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artif. Intell. 81(1–2), 17–29 (1996)

	On Manufacturing Resilient Opaque Constructs Against Static Analysis
	1 Introduction
	2 Problem and Definitions
	3 Generating Opaque Constructs
	4 Obfuscation Scheme Extensions
	4.1 Encrypting Data Against Complete Static Analysis
	4.2 Choosing Opaque Construct Parameters
	4.3 Compounding Effects

	5 Heuristic Attacks
	5.1 Distribution Testing
	5.2 Potential Defenses
	5.3 Discussion

	6 Related Work
	7 Conclusions
	A Alternative Sources of Hardness
	References

