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Abstract. Large-scale datasets of consumer behavior might revolution-
ize the way we gain competitive advantages and increase our knowledge in
the respective domains. At the same time, valuable datasets pose poten-
tial privacy risks that are difficult to foresee. In this paper we study the
impact that the prices from consumers’ purchase histories have on the
consumers’ location privacy. We show that using a small set of low-priced
product prices from the consumers’ purchase histories, an adversary can
determine the country, city, and local retail store where the transaction
occurred with high confidence. Our paper demonstrates that even when
the product category, precise time of purchase, and currency are removed
from the consumers’ purchase history (e.g., for privacy reasons), infor-
mation about the consumers’ location is leaked. The results are based
on three independent datasets containing thousands of low-priced and
frequently-bought consumer products. The results show the existence of
location privacy risks when releasing consumer purchase histories. As
such, the results highlight the need for systems that hide transaction
details in consumer purchase histories.

1 Introduction

Making data publicly available creates unexpected privacy risks. Recent exam-
ples include AOL’s release of users’ search keywords [30], which has led to the
identification of users and their profiles [1]. Data released by Netflix was de-
anonymized by leveraging IMDB and dates of user ratings [28], showing that
the release of data cannot be analyzed in isolation. The privacy risks of com-
bining different public records have led to several [36] de-anonymization attacks.
Recent studies of anonymized mobility data showed that mobility traces can be
de-anonymized by leveraging a few observations [19]. One source of consumer
information involves their spending patterns. To date however, it was unclear to
what extent consumer prices leak information about the respective purchase.
Consumer purchase histories are typically recorded by store chains with loy-
alty programs and are used to compute consumer spending profiles [6]. Banks,
payment card issuers, and point-of-sale system providers collect this data at dif-
ferent levels of granularity. In a number of scenarios, it might be desirable to
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Fig. 1. Framework overview for quantifying location privacy leakage from consumer
price datasets.

share this data within different departments of a company, across companies,
or with the public [7]. Before disclosure, the data is sanitized so that it does
not leak sensitive data, such as personally identifiable information and that it
(partially or fully) hides location information. In new digital currency systems
such as Bitcoin [33] and Ripple [10], transaction values are stored on a public
ledger. Irrespective of whether transaction values are made available so that a
system can fulfill its functions or are being disclosed for research purposes, it is
important to understand the privacy implications of such disclosures.

In this paper we focus on quantifying location disclosure resulting from the
release of prices from consumer’s purchase histories. Intuitively, the price distri-
bution for a product differs from country to country, which allows us to identify
possible purchase locations. We focus on consumer products which are gener-
ally inexpensive (< 25 USD) and frequently-bought. More precisely, based on
global prices (leveraging the Numbeo dataset [9]), we show that given access to
a few consumer prices (and even without the product categories, precise times
of purchase or currency), an adversary can determine the country in which the
purchase occurred. Similarly, given the country, the city can be determined and
within a city (leveraging the Chicago dataset [11]), the local store can be identi-
fied. We further demonstrate that it is possible to distinguish purchases among
store chains (leveraging the Kaggle dataset [7]).

We present a generic framework (cf. Fig.1) that allows the modeling and
quantitative evaluation of location leakage from consumer price datasets. In our
framework we model the adversarial knowledge, composed of a public dataset
of consumer prices and location-specific information. We assume that the adver-
sary has access to the individual product prices of a purchase (similar to the
Kaggle dataset) and a coarse-grained value of the purchase time. In order to
make the framework more flexible, our model supports different prior knowledge
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scenarios, e.g., the adversary additionally has access to the merchant category
(e.g., knowledge that the product was bought in a market or a restaurant) or the
product category (e.g., apples). Furthermore, we model the adversarial attack
by detailing the corresponding probability functions. In particular, we point out
how the adversary leverages multiple product prices in order to increase the
probability of identifying the correct location.

Within our framework, we quantify the location privacy of consumer pur-
chases in relation to different dimensions. For example, we measure how well
the adversary estimates the location probability of the purchases with the F-
score [35], capturing the test’s accuracy. Furthermore, we use mutual informa-
tion [18] to quantify the absolute location privacy loss of consumers, based on
the considered price dataset. In addition, we capture the relative privacy loss by
measuring the reduction in entropy. The proposed metrics are independent of the
choice of adversarial strategy and therefore allow us to quantitatively measure
the privacy loss induced from any price dataset known to the adversary.

We apply our framework to three real-world datasets: (i) the Numbeo
dataset [9] contains, after outlier filtering, crowd-sourced real-world consumer
prices from 112 countries and 23 US cities for 23 distinct product categories; (ii)
the Chicago dataset [11] contains 24 million prices for 28 product categories cap-
turing on average of 6304 products sold in Dominick’s stores within the Chicago
metropolitan area; finally, (iii) the Kaggle dataset [7] contains 350 million pur-
chases from 311,541 consumer across 134 store chains.

Our evaluation shows that in order to infer the country based on a vector
of purchases, an adversary often needs to observe less than 30 prices. Similarly,
after having identified the country of the purchases and given roughly 30 prices,
we show that we can reliably predict among 23 major cities within the United
States. Finally, when the adversary narrowed down the coarse location, such as
the Chicago metropolitan area, we show that based on a regional price dataset,
and given a vector of purchases, an adversary can distinguish with high confi-
dence among local stores using 100 purchases. For comparison, a weaker adver-
sary with access only to coarse-grained time, i.e., the day of the purchase and
price information, requires 50 purchases to identify the country. Furthermore, to
establish practical utility of our methodology, we evaluate it on a dataset of pur-
chase records (Kaggle [7]) and show that an adversary requires approximately
250 purchases to distinguish with high confidence among 134 store chains.

The main contributions of this paper are as follows:

— We propose a generic quantitative framework for evaluating attacks against
the location privacy of consumer purchases. We validate our framework on
three independent price datasets of real-world consumer prices and show that
location information can be extracted reliably.

— We introduce three privacy metrics to capture the performance of the adver-
sary in the attack as well as the extent to which location privacy of consumers
is reduced when the adversary has access to a specific dataset of purchases.

To the best of our knowledge, this is the first work to infer the location of
a purchase based on the price value in consumer purchases. The remainder of
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this paper is organized as follows. In Sect.2, we model purchase history and
describe the adversarial model. In Sect. 3, we present the datasets selected for
our evaluation in Sect. 4. We survey the related work in Sect. 5 and conclude the
paper in Sect. 6.

2 Model

In this section we introduce our system and adversarial model. We present the
privacy metrics that quantify the probability of location disclosure based on the
assumption that the adversary has access to a part of a consumer’s purchase
history.

2.1 System Model

A consumer interacts with merchants and performs purchases of one or more
products. This interaction leaves a trace of purchase activity as a sequence of
purchase events. We model each of the consumer’s purchase events together with
their contextual information as e: {consumer u, value v, product p, product
category c¢, location [, time t}, where v is the price value spent on product p of
product category c at location [ and time ¢. In our model, one purchase event is
limited to one product, similar to the data contained in the Kaggle dataset. In
addition, the price value is given in a global currency, which usually is different
from the local currency of the purchase (e.g., the original price is SEK, but
recorded in USD). The trace of purchases performed by the target consumer U,
given as a series of purchase events, is denoted by Sy:{ey,ea,...,e,}. We define
the following functions to represent the adversarial knowledge:

LocATION PROBABILITY: It describes the prior probability of a purchase
event taking place in a specific location, e.g., P(USA) is the prior probability
with which a random purchase event e has e.l = USA. We define L as the set
of all considered locations.

CATEGORY PROBABILITY: Given location I, P(c | I) describes the condi-
tional probability of a purchase event to belong to a certain product cate-
gory, e.g., P(Milk | USA) is the conditional probability with which a random
event e from the USA has e.c = milk. This conditional probability models
the product category preferences in a location. We define C as the set of all
considered product categories.

VALUE PROBABILITY: Given location [ and product category ¢, P(v | I,¢)
describes the conditional probability of a purchase event at a given price value.
It models the price distributions for different product categories in different
locations, e.g., P(1.5 | USA, Milk) is the conditional probability with which
milk can be bought in the USA for 1.5 worth of a global currency.

The adversary can now model the spending behavior and identify likely can-
didate locations. Specifically, the adversary computes the posterior probability
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that a single price value v for a product category c originated from a location .
The computation involves the prior and the conditional probabilities described
above and the application of Bayes’ theorem:

P()-Plc,v|1)
P(c,v) (1)

In order to infer the location without knowing the product category, the
adversary computes the probability that a price value v originates from location I:

P)-Pv )

Pl |ew) =

P(l|v) =

2.2 Adversarial Model

The adversary’s goal is to identify the location of the events in Sy;. In this section
we present two different adversaries: (1) an adversary with complete knowledge
and (2) an adversary with only public knowledge.

Adversary with Complete Knowledge. The ideal adversary represents a
strong adversary with complete access to global purchase events. In particular,
the adversary has access to the following prior knowledge:

GLOBAL PURCHASE HISTORY: The complete series of purchase events in
the history of global purchases', denoted by Hg. The adversary computes
the posterior probability of a location based on Hg.

HisTOoRY FOR TARGET CONSUMER: The adversary might have access to
prior information about the target consumer’s purchase history, denoted by
Hy. This could help the adversary to optimize the model for the target
consumer?.

Based on this knowledge, the ideal adversary computes the probabilities in
Egs. 1 and 2.3

Adversary with Public Knowledge. Our second adversarial model is a more
realistic one, where the adversary only makes use of public information.

PoprULATION: Given the population at each location, the adversary estimates
the location probability P(1).

PrRoDUCT BASKET: A product basket indicates which products an average
consumer purchases during a year, both in terms of quantity and monetary
amount. We leverage the product basket in order to estimate the probability
of a product category given the location (P(c | 1))%.

! The area of the attacker’s interest can be restricted, e.g., when the adversary knows
that its victim is somewhere in that restricted area.

2 For example, by only considering the locations of previous purchases.

3 The intermediate steps are given in the Appendix A.

4 We currently use a single product basket for all locations.
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PRICE DATASET: For each location and product category combination, a price
value distribution D is available, e.g., the Numbeo or the Chicago dataset.
The adversary can use the distribution to estimate P(v | I,¢). We define
D(l,c,v) as the number of occurrences of price value v for product cate-
gory c in location [ and D(l,c) as the number of price values for product
category ¢ and location [.

Since D might be imperfect, the adversary can have incomplete or incorrect
knowledge about the price value probabilities (i.e. unknown or rounded prod-
uct prices). In this case the adversary should perform additive smoothing,
which assigns a small probability « to each event [26]. On the contrary, if the
adversary has or assumes complete knowledge of the price value probabilities,
additive smoothing is not required.

The adversary with public knowledge computes the following probabilities:

Population(l)

- >~ Population(l’)
I'eL

Basket(l, ¢)
> Basket(l, ¢)
c'eC

D(l,e,v) + «
D(l,¢) + - |Syl

3)

P()
Ple|l) = (4)

Pulle)= (5)

In order to compute the probabilities defined earlier in Eqgs.1 and 2, the
adversary requires access to either P(l | ¢,v) or P(l | v). Next, we describe
how the adversary computes these probabilities and we define the adversary’s
knowledge.

2.3 Knowledge Scenarios

As mentioned, the adversary’s objective is to identify the location of the events
in Sy. The adversary is given a finite set of events Sy on which the attack is
executed—the adversary is not allowed to choose or request new purchase events
e. We consider an adversary with public knowledge and distinguish among three
distinct adversarial knowledge scenarios, each consisting of a subset of the public
knowledge. Depending on the knowledge scenario, the adversary might not have
access to all information from a purchase event e. Therefore, we define a family
of functions Vicenario(€) = V' (e) that filter, depending on the given scenario, the
public knowledge accessible to the adversary.

PRICE: This scenario corresponds to an adversary that has access to multi-
ple purchase events e, only the corresponding price value and a notion of the
purchase time e.t. The adversary is not aware of the product e.p or the product
category e.c. The precision of the purchase time depends on further specifications
of the scenario. More formally, Vyyice(e) = {e.v, e.t}. Given the public knowledge
modeled by Eqgs. 3, 4 and 5, the adversary computes the posterior probability
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P(l ] v) of a price value v from location [. The intermediate steps for computing
P(v |1) and P(v) are detailed in the Appendix A in Egs. 10 and 12.

PRICE _MERCHANT: Similar to the former knowledge scenario, the adver-
sary here has access to Sy, a series of multiple purchase events. In this scenario,
however, the adversary knows the price value e.v of the event as well as which
merchant category m sold the product. Formally, for each purchase event e,
Vprice_merchant(e) = {e.v,e.t,m}, where Vjicemerchant requires a function
M (e) = m. We consider three merchant categories: restaurant, market and local
transportation. The Vpiice merchant(e) function estimates the merchant cat-
egory m from the product category e.c of the respective event®. Analogously,
using Eq. 1, the adversary computes the probability of a location, based on the
merchant and the price value:

P()-P(m,v|1)

P(l| m,v) = PO, v)

(6)
where P(m,v | 1) is computed as follows:

P(m,v|l)= Z P(c,v | 1) (7)

ceM—1(m)

PrRICE PRODUCT-CATEGORY: This scenario corresponds to the most
knowledgeable adversary with public knowledge. Similarly to the former sce-
narios, the adversary receives multiple purchase events Sy. In addition, the
adversary has access to the product category e.c as well as the price value e.v.
Note that e.c implicitly assumes knowledge of the merchant, resulting in more
formally Vyice product-category(e) = {e.v,e.t, e.c}.

Given the public knowledge described in Sect.2.2, the adversary computes
the probability P(l | ¢,v) of a purchase event with product category ¢ and price
value v originating in location {. The intermediate steps for computing P(c,v | )
and P(c,v) are detailed in the appendix in Egs. 11 and 13.

In the following section we provide an intuitive perspective on the probabil-
ities P(I | v) and P(I | ¢,v).

2.4 Conditional Probability Intuition

P(l| v) is the probability of a location, given a price value in a purchase event.
An example plot based on our evaluation can be found in Fig. 2. We have chosen
the purchase event e with a price value of e.v = 1 Euro and estimated the location
of the price. The figure shows that the most likely location for 1 Euro is France,
closely followed by Germany, Italy and Spain. The plot also shows P(l | ¢,v)
for a purchase event with e.v = 1 Euro and the product category is milk. The
most likely country is again France, followed by Germany and Italy. Surprisingly,
China ranks as 5. This can be explained by the fact that (i) some prices from

5 In the following we refer to the merchant category as merchant.
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Fig. 2. Probability distribution of P(l | v) and P(l | ¢,v), given 1 Euro and milk.

China in the dataset were erroneously reported in Euros and (ii) that the location
probability P(I) influences the overall outcome, and, since China’s population
is considerable, there is an increased probability of purchases occurring there.
Overall we observed that the probability distribution changes when the product
category is known, i.e., France is more likely to have a 1 Euro price for milk,
than a 1 Euro price in general.

2.5 Multiple Purchase Events

Up to this point, the analysis has been based on a single purchase event. To
naturally combine multiple purchase events, we assume that the purchase events
are conditionally independent, given the location /. Therefore, the probability of
a location [, given a set of purchase events Sy, is calculated as follows:

P[Su) =P V(er),V(ez),...,V(en))

P)- TI P(V(e)|1) )

e€Sy

P(V(e1),...,V(en))

The intermediate steps for computing P(I | Syy) can be found in the appendix in
Eq. 18. We experimentally verified the conditional independence of V' (e) given
[ for the three knowledge scenarios and therefore Eq.8 applies equally to the
different adversarial knowledge scenarios. Note that we effectively weaken the
adversary by considering the products of different purchases independent from
each other.

2.6 Privacy Metrics

We introduce three privacy metrics in order to capture the privacy of consumers
revealing their purchase histories across different dimensions: We (i) measure the
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performance of the adversary in identifying the true location with the Fj-score.
Then, (ii) using the notion of mutual information [18], we quantify the absolute
privacy loss of the consumer due to the adversary’s knowledge of a price dataset.
Finally, (iii) we use the relative reduced entropy as a relative privacy metric®.

F1-sCcORE: The objective of the adversary is to assign the purchase events to
the correct location. In the worst case, the adversary is forced to randomly guess
among all possible locations. If the adversary, however, can estimate location
probabilities more accurately, location privacy is reduced. Our problem cor-
responds to a multi-class classification problem and we therefore quantify the
adversarial performance by averaging the Fj-score [35] of each individual class.
The Fi-score corresponds to the harmonic mean of recall and precision, measur-
ing the test’s accuracy.

MUTUAL INFORMATION: A purchase event dataset enables the adversary to
infer the distribution of prices among locations. Therefore, we want to measure
how much privacy consumers lose when their purchase events are revealed and
when the adversary has access to a dataset of purchase events. We quantify this
privacy objective by measuring the absolute reduced location entropy given the
purchase events. To this extent, we use the Mutual Information [18], denoted
by I(l,V (e)), which measures how much the entropy of the locations is reduced
given the purchase events (cf. Eq.9).

N ) 1oy LV
11,V (e)) IEL;SUPU’V( )18 B pv(e))

9)
RELATIVE REDUCED ENTROPY: Recall that the mutual information quan-
tifies what we call the absolute privacy loss. In fact, there is an inherent ran-
domness in the price distribution among locations. It is important to capture to
what extent the original uncertainty about the locations can be reduced when a
dataset of purchase events is given. The relative reduced entropy therefore cap-
tures the relative privacy, as the complement of the fraction of the conditional
entropy over the location entropy. Given H(l) = I(I,V(e)) + H(l | V(e)), we
compute the relative reduced entropy as 1 — % over all purchase events.

The proposed evaluation metrics are independent of a particular adversarial
strategy. In return, the output of the privacy leakage quantification only depends
upon the employed dataset of purchase events. In the next section we present
the datasets utilized for our experimental evaluation.

3 Datasets

There are only a couple of datasets accurately accumulating the worldwide prod-
uct price information. For individual products (e.g., a Big Mac [5] or Starbucks

5 Defined as the complement of the fraction of conditional entropy over the location
entropy.
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coffee [8]), the average price values per country are available. Because a product
often appears multiple times with different price values in the same country or
city, the average is not a good estimator for elaborate studies. In the following,
we describe the three independent price datasets considered in our work.

The first dataset, Numbeo [9], is a crowd-sourced dataset containing world-
wide price values per product category, city and country. It is the most complete
dataset of worldwide harvested prices available to our knowledge. We restricted
our analysis to 23 frequently bought product categories, and split the Numbeo
dataset into two separate datasets: (i) two years of data as the Numbeo dataset
and (ii) five months of data as the Numbeo test dataset (cf. Table 3). Numbeo
performs sanity checks on the crowdsourced inputs, and we additionally filtered
extreme outlier [3]” from the data to account for possible mistakes from crowd-
sourced data. We identified 112 countries, with a total of 328,720 price values.
Note that the provided data mostly contains prices from the US (18 %) and
India (14 %).

The second dataset, referred to as the Chicago dataset [11], covers 84 stores
in the Chicago metropolitan area over a period of five years. The data is sourced
on a weekly basis from Dominick’s supermarket stores. We sample 85 weeks with
the most data, each containing on average 283,181 prices, spanning 28 product
categories for an average of 6304 different products.

The third dataset originates from Kaggle [7], a Machine Learning competi-
tion platform. The dataset contains 350 million purchase events from 311,539
consumers across 134 store chains. The data is anonymized, but contains the indi-
vidual product price, product category, date of purchase and purchase amount.
Most purchase events cost less than 25 USD. The country of the dataset is
not disclosed, but purchase prices are given in USD and purchase amounts are
described in the imperial system.

In order to estimate the location probability, an adversary requires the knowl-
edge of the population in each location. On the country granularity, we use the
data available from the World Bank [12] for the year 2013, while for the US city
granularity we used the data from the US Census Bureau [37].

As described in Sect. 2.2, we increase the knowledge of the adversary with
the product basket. A product basket details which and how many products an
average person purchases, both in terms of quantity and monetary amount. We
leverage a national product basket [4] from 2010 containing over 300 product
categories in order to infer the ratio in which different products are bought over
the year.

4 Experimental Evaluation

In this section we evaluate the adversarial models designed in Sect. 2.2. We start
by presenting the assumptions and choices made for the evaluation.

7 price < 25" percentile — 3 - interquartile range, and
price > 75" percentile + 3 - interquartile range.
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4.1 Experimental Considerations

With respect to the value probability P(v | I, ¢), we assume that the frequency of
price values in the Numbeo dataset reflects the frequency of real-world purchase
events with the corresponding price values. This is a natural assumption and
is further motivated by the fact that e.g., Numbeo contributors likely entered
the most popular price values for the considered product categories. Because our
datasets contain a limited amount of products and product categories, our analy-
sis is naturally confined to the available products. Note that, if the adversary
knows the product categories of the purchases, e.g. milk, other categories such
as apples can be ignored, which allows precise predictions with knowledge about
few products. In order to compute the product category probability, P(c | 1), we
only consider one national product basket and apply it to every country. Note
that we do not use the product basket as an indicator of how much money is
spent on average by a person, but rather as an indicator in which ratio products
are bought.

SAMPLING PRICE VALUES: Given a location [, we generate synthetic con-
sumer purchase events by sampling price values from the respective dataset. For
the three datasets we consider adversaries with complete knowledge of the price
values. In addition we instantiate an adversary with incomplete knowledge with
the Numbeo test dataset. Given the product basket of the location | we compute
the probability of a product category being sampled (cf. Eq. 4). Thus, we sample
each product category with the product category probability P(c | I). For each
location we repeat the sampling of the price values n = 1000 times and average
the result.

ADDITIVE SMOOTHING PARAMETER: In the case of an adversary with
incomplete knowledge, we make use of additive smoothing to avoid zero probabil-
ities when aggregating the probabilities of multiple purchase events for locations
(see Sect.2.2). We choose a smoothing parameter « = 0.01 which provides us
with the best results on our data (cf. appendix Fig. 6).

In the following, we evaluate up to three knowledge scenarios (cf. Sect. 2.3) for
four location granularities: (i) across 112 countries worldwide; (ii) across 23 cities
within the United States; (iii) across 84 stores within the Chicago metropolitan
area; (iv) we distinguish among 134 store chains in a country.

4.2 Country Granularity

The adversary has to distinguish 112 candidate countries for each purchase event.
We quantify the privacy given the three privacy metrics defined in Sect. 2.6.
In particular, we performed our study in two settings. First, (i) we assumed
that the adversary does not have complete knowledge. This means that the
adversary receives purchase events from the Numbeo test dataset and estimate
their location based on the Numbeo dataset. In the second case, (ii) the adversary
assumes complete knowledge of price values, and therefore, the sampled prices
are included in the price dataset which is adversarial knowledge.
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Fig. 3. Fi-score for identifying the country given purchase events sampled from the
Numbeo test dataset, corresponding to incomplete knowledge. We are not overfitting as
we successfully classify new prices based on previously known prices.

Figure 3 shows the Fj-score for the first case based on the number of pur-
chase events accessible to the adversary. Given one purchase event, the price,
price_merchant and price product-category knowledge scenario achieve an
average of 0.38, 0.41 and 0.49 respectively. The high Fj-score after one pur-
chase event shows, that even one event allows a decent prediction. We observe
that the adversary is more likely to identify the correct location when it knows
the product category of the purchase event. On the contrary, if the adversary has
access to 10 purchase events, the respective Fj-scores are 0.80, 0.85 and 0.90. In
other words, 10 purchase events significantly improve the ability of the adversary
to identify the location of the purchase events. The reported values are averaged
over n = 1000 iterations.
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Fig. 4. Fi-score for identifying the country given purchase events sampled from the
Numbeo dataset, corresponding to complete knowledge. Averaging does not hide poorly
performing countries (cf. appendix).

Figure4 corresponds to the second case, where the adversary assumes com-
plete knowledge of the price values. We observe that the adversary can distin-
guish more accurately between the possible locations. The Fj-scores are averaged
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Table 1. Mutual information and relative reduced entropy for the three knowledge
scenarios when estimating the country, city, store or chain of purchase events. The
respective abbreviations P., PM., PPC. stand for Price, Price Merchant and Price
Product-Category knowledge scenario respectively.

112 countries 23 US cities 84 stores 134 chains
Knowledge | P PM |PPC |P PM |PPC |P PPC | P PPC
scenarios
Mutual 0.539 1 0.841|1.703 | 0.368 | 0.572 | 1.164 | 0.280 | 0.569 | 0.456 | 2.256
informa-
tion
Relative 0.114 /0.178 | 0.360 | 0.101 | 0.157 | 0.319 | 0.044 | 0.089 | 0.068 | 0.337
reduced E.

over all considered countries. For each considered country in the price knowledge
scenario, we verify that averaging does not hide poorly performing countries (cf.
Fig. 7 in the appendix).

Table1 presents the results of the mutual information and the rela-
tive reduced entropy for each knowledge scenario. We observe that the
price product-category knowledge scenario reduces the entropy more signif-
icantly than the other knowledge scenarios. Naturally, this is because the
price_ product-category knowledge scenario provides the adversary with more
information than the price knowledge scenario, thus effectively reducing uncer-
tainty when identifying the location.

4.3 US City Granularity

In this section we analyze an adversary that aims to distinguish among the
purchase events of 23 US cities. As before, we quantify the privacy based on the
three privacy metrics defined in Sect.2.6. We sample and test purchase events
on the Numbeo dataset only, since our test dataset does not contain sufficiently
many purchase events per considered US city.

Figure 10 illustrates the Fj-score depending on the number of purchase
events. We observe, that after 10 purchase events, the Fj-score is greater than 0.7.
Therefore, our methodology also provides accurate estimations on a city granu-
larity. Table 1 reports the mutual information and relative reduced entropy when
estimating the US city. We observe that the relative reduced entropies of country
and city granularity match across the knowledge scenarios. This exemplifies the
usefulness of the relative reduced entropy to highlight similarities across different
price datasets.

4.4 Chicago Metropolitan Granularity

In this section, we analyze an adversary that aims to distinguish among the
purchase events of 84 Dominick’s stores within the Chicago metropolitan area.
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We sample the price values from the Chicago dataset, and assume an adversary
with complete knowledge; we therefore do not apply additive smoothing. We
consider the location prior probability P(l) to be uniform, because we do not
have reliable store popularity information for the Chicago area.

In Fig. 11 we can observe that the adversary can identify a local store given
100 purchase events with high confidence. We expected a weaker result, since all
stores are operated by the same chain, implying relatively similar price struc-
tures. We ran our attack on each of the 85 weeks with most data, averaged the
results and report the standard deviation as shown in the blue area of Fig. 11.

Table 1 shows that the Chicago price dataset reveals less information about
the considered locations than the Numbeo dataset. This observation holds for
both knowledge scenarios, and is consistent with the result that more price points
are required to localize purchase events within the Chicago area.

4.5 Store Chain Granularity

The large-scale Kaggle dataset does not provide precise location information of
purchase events, but allows the adversary to distinguish among 134 store chains.
Knowing the store chain of purchase events effectively reduces the possible loca-
tions of the purchases. Note, that the prices of Kaggle are distributed over a
year and the adversary therefore does not know the precise time of the purchase
events.

We uniformly sample purchase events of different consumers and perform
our attack on the Kaggle dataset. Figure 5 reveals that given approximately 250
price values we achieve an Fj-score of over 0.95 for the origin of the purchase
events. Note, that the price product-category knowledge scenario is particularly
strong due to many product categories. This is reflected by the particularly high
Mutual Information (cf. Table 1).

—— Price Knowledge Scenario

= Price Product-Category Knowledge Scenario

0 50 100 150 200 250
Number of Purchase Events

Fig. 5. Fi-score for identifying the store chain. The purchase events are sampled from

the Kaggle dataset.

Given these results, we conclude, that our framework and methodology apply
to a wide variety of different price datasets and allow us to quantitatively com-
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pare their respective privacy leakage. In the following, we extract further insights
from our data to strengthen the attack.

4.6 Most Revealing Product Category

In this section we investigate which of the 23 considered product categories
from the Numbeo dataset leak more information. This is a useful insight since
an adversary would pick purchase events of this product category in order to
increase the probability of correctly identifying their location. Therefore, with
the mutual information we measure the extent to which the location entropy is
reduced, given the purchase events of a particular product category. Contrary to
the previous analysis, we evaluate the mutual information per product category
based on the price product-category knowledge scenario defined in Sect. 2.3.
More specifically, we compute the mutual information using only purchase events
of a particular product category.

The results of the evaluation can be found in Fig. 13. According to this metric,
the most revealing product categories are milk, a one-way ticket for local trans-
portation, and a loaf of white bread. On the contrary, the product categories
that disclose less information about a location are oranges, chicken breasts and
rice.

4.7 Required Time Precision

Previously, we assumed that knowledge of the exact currency conversion rates
is required to compare non-localized purchase events. Exact currency conversion
rates, however, require a precise knowledge of the purchase event times. In this
section, we show that our attack does not require the exact currency conversion
rates, but also works if the adversary knows only the date or even week of the
purchase, i.e. it has an uncertainty of 24 h or 7 days in relation to the conversion
rates. We therefore relax the requirements on the time precision.

Due to the conversion rate differences, the adversarial estimation of P(v | I, ¢)
is inaccurate. To compensate for the conversion rate differences, the adversary
can use a price tolerance. We study two options for the tolerance: a static toler-
ance and a dynamic tolerance. For the static tolerance, the adversary estimates
P(v |1, ¢c) in the presence of uncertainty by considering price values in the inter-
val [v — tols, v + tols] where the static tolerance tol, is a small amount in global
currency (e.g., 0.02 USD). The dynamic tolerance value tol, is a percentage-wise
estimate of uncertainty (e.g., 2 %). To estimate P(v | [, ¢) the adversary considers
price values from the interval [v - (1 — tolg),v - (1 + toly)].

We evaluated the attack to infer the country of purchase events with impre-
cise purchase times and compensated the time error with different tolerance val-
ues. To simulate imprecise purchase times, we converted the adversarial knowl-
edge using conversion rates of 30 different days from the year 2014 and then
converted the non-localized purchase events Sy using the previous days’ conver-
sion rates. As before, we computed the Fj-score to evaluate the quality of the
estimated P(l | Sy).
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For static and dynamic tolerance values, we found that the attack is still
accurate, i.e. reaches an Fj-score above 95 % with less than 50 purchase events.
A higher tolerance value has two opposing effects: (i) it compensates for differ-
ences in currency conversion rates and increases the number of correctly consid-
ered price values; (ii) a higher tolerance, however, also increases the number of
incorrectly considered price values which fall into larger intervals. Therefore, the
tolerance value presents a trade off between the true-positive and true-negative
rate. Our experimental results reflect this trade off both for static and dynamic
tolerance values (cf. Appendix B). Based on our experimental results we propose
a dynamic tolerance of 2% for a 24 h time imprecision.

We also evaluated the uncertainty of one week on the currency conversion
rates. We used real-world currency conversion rates that were seven days apart
from each other. Figure 14 shows the result of this experiment for the differ-
ent knowledge scenarios and a dynamic tolerance value of 2% on the Numbeo
dataset. We conclude that our attack does not require precise purchase event
times.

5 Related Work

Location Privacy. Blumberg [16] et al. provide a non-technical discussion of
location privacy, its issues and implications. Gruteser and Grunwald [23] ini-
tiate major research in the area of the anonymization approaches to location
privacy. Further, Narayanan et al. [29] investigate location privacy from a the-
oretical standpoint and present a variety of cryptographic protocols motivated
by and optimized for practical constraints while focusing on proximity testing.
Shokri et al. [34] propose a formal framework for quantifying location privacy
in the case where users expose their location sporadically. They model vari-
ous location-privacy-preserving mechanisms, such as location obfuscation and
fake location injections. This work is orthogonal to ours, since in our setting
the consumers are not willingly revealing their locations. Voulodimos et al. [38]
address the issue of privacy protection in context-aware services through the use
of entropy as a means of measuring the capability of locating a user’s where-
abouts and identifying personal selections. Narayanan [28] and Shmatikov pro-
pose statistical de-anonymization attacks against high-dimensional micro-data.
We do not rely on their methods, since we are not aiming to de-anonymize the
consumers. De Montjoye et al. [39] show that consumers can be uniquely identi-
fied within credit card records with only a few spatiotemporal triples containing
location, time and price value. Contrary to their work, we focus on the price
values and we localize instead of identify consumers.

Payment systems. The privacy implications of public transaction prices have
been widely ignored. One prominent example is Bitcoin [17,33], where transac-
tions are exchanged between peers by means of pseudonyms. The actual transac-
tion prices are archived and publicly available. The literature features many dif-
ferent methods for analyzing the privacy implications of Bitcoin, e.g., by means
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of appropriate heuristics [13], tainting [22], or other techniques [21,32]. Reid and
Harrigan [31] analyze the flow of Bitcoin transactions in a small part of the Bit-
coin log, and show that external information like publicly-announced addresses,
can be used to link identities and organizations to some transactions. In [27] the
authors propose Zerocoin, a cryptographic extension to Bitcoin that augments
the protocol to allow for fully anonymous currency transactions using a distrib-
uted ECash scheme. To the best of our knowledge only two contributions [14,15]
have aimed to hide the transaction prices in Bitcoin.

Price rigidity. Herrmann and Moeser [24] perform a quantitative analysis on
price variability and conclude that prices are often rigid for several weeks. Pricing
strategies for identical brands, however, vary significantly among retailers. Their
observations match the studies of the Big Mac index [5] (the Economist), the
Starbucks coffee index [8] (the Wall Street Journal) and the Ikea Billy Bookshelf
index [2] (Bloomberg). The former studies show that prices of identical products
from a single brand vary across locations. Dutta et al. [20] find that retail prices
respond promptly to direct cost changes as well as upstream manufacturers’
costs. Hosken and Reiffen [25] find that each product has a price mode—a price
that the product stays at most of the time. Note that Hosken’s non-public dataset
contains nearly as many price observations as our Numbeo dataset.

6 Conclusion

Having a systematic methodology to reason quantitatively about the privacy
leakage from datasets containing price relevant information is a necessary step
to avoid privacy leakages. While further tests with more datasets will help to
generally claim that price values alone can reveal the location of a purchase,
our empirical results provide evidence that with relatively few purchase events
it is possible to identify a consumer’s location. In this paper, we have raised the
following two questions: How much location information is leaked by consumer
purchase datasets?” How can it be quantified with the considered adversarial
model and knowledge? In our proposed framework, we have modeled several
adversaries and quantified the privacy leakage according to different dimensions.
We make extensive use of Bayesian inference in our framework to model the
different attack strategies. Our framework can be easily applied to any price
dataset of consumer purchases and allows one to compare the privacy leakage
of different datasets. We applied our methodology to three real-world datasets
and achieve comparable results. The results presented in this paper strongly
motivate the need for careful consideration when sharing price datasets and
should be considered when designing public ledger cryptocurrencies.
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Appendix A: Probability Calculations

In the following we clarify the individual steps for calculating the probabilities

derived in Sect. 2.
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Appendix A.1: Probability Calculations

Based on its knowledge, the ideal adversary computes the following probabilities
by computing the fractions of events.
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Appendix B: Further Experimental Results

Appendix B.1: Required Time Precision

Figure 8 shows, that a larger tol; will improve the overall Fj-score, but more
purchase events are needed to filter out the false positives. Similarly, for the
dynamic tolerance in Fig. 9, a higher value for tol; provides a better prediction
for many purchase events, but a worse prediction for few purchase events. The
figures show the experiments for the price product-category knowledge scenario,
however, we note that the results are analogous to the other scenarios. Based on
these results we propose a dynamic tolerance of 2% in the case of a 24h time
imprecision on the conversion rate.
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information (one day uncertainty) in
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Fig.11. Fi-score and standard deviation
over 85weeks for identifying the store in
the price knowledge scenario. Data sampled
from the Chicago dataset among 84 stores.

Appendix B.2: Motivating Example

Since products appear in a multitude of price values, it is at first unclear how
accurately price values can identify a location. To illustrate why purchases can
be localized, we focus on an example of the product category domestic beer (0.5 L
bottle), which can be bought in nearly every country. The price values are taken
from the Numbeo dataset [9]. Figure 12 shows the distribution of price values of
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beer in USD for four countries. We observe that ranges of prices clearly differ
for India and the other countries, while prices in Australia are more likely to
be higher than in the US and Canada, where distributions of prices are similar.
Given a beer price above 3 USD, in this case, it is highly likely that the purchase
has not occurred in India.
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Fig. 12. Distribution of domestic beer prices (0.5L) in 4 countries from Numbeo in

USD.

Appendix C

See Figures 13,
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dataset while estimating the country. Pre-
cise time allows an F'-score of 0.95 after 10
purchase events whereas a one week time
uncertainty achieves an Fi-score of 0.63.
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Table 2. Product categories of the Numbeo dataset.

Category and merchant ‘ Unit ‘ Prices
Market product categories

Apples 1kg 11876
Chicken Breasts lkg 11893
Cigarettes (Marlboro) 1 pack 12712
Domestic Beer One 0.5L bottle | 10243
Eggs 12 units 14617
Imported Beer One 0.33 L bottle | 9484
Lettuce 1 head 8966
Loaf of White Bread 0.5kg 14633
Local Cheese 1kg 10975
Milk (regular) 1L 17197
Oranges 1kg 10289
Potato 1kg 10891
Rice (white) lkg 10924
Tomato 1kg 10539
Water 1.5L bottle 12762
Wine (Mid-Range) 1 bottle 11893
Restaurant product categories

Cappuccino (regular) 1 unit 21539
Coke/Pepsi One 0.33L bottle | 21351
Fast Food Combo Meal | 1 unit 21794
Domestic Beer One 0.5L bottle | 19128
Imported Beer One 0.33L bottle | 18048
Water One 0.33L bottle | 21691

Local transportation categories

One-way Ticket

| 1 unit | 15275

Table 3. Statistics about the three price datasets

Numbeo dataset (2 years)

Number of countries 112
Number of prices 328,720
Number of cities in the US 23
Number of prices in the US cities 11,686

Number of distinct product categories | 23

Numbeo test dataset (5 months)

Number of countries

47

Number of prices

40,968

Number of distinct product categories | 23

Chicago dataset (5 years)

Number of stores

84

Number of total prices in top 85 weeks | 24,070,437

Average number of prices per week

283,181 £ 6790

Number of distinct product categories | 28

Average number of products per week | 6304 + 461

Kaggle dataset (1year)

Number of store chains 134
Number of purchase events 349,655,789
Number of consumers 311,539

Number of distinct product categories | 836

403
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