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Abstract. Automatic service discovery is essential to realizing the full
potential of the Internet of Things (IoT). While discovery protocols like
Multicast DNS, Apple AirDrop, and Bluetooth Low Energy have gained
widespread adoption across both IoT and mobile devices, most of these
protocols do not offer any form of privacy control for the service, and
often leak sensitive information such as service type, device hostname,
device owner’s identity, and more in the clear.

To address the need for better privacy in both the IoT and the mobile
landscape, we develop two protocols for private service discovery and pri-
vate mutual authentication. Our protocols provide private and authentic
service advertisements, zero round-trip (0-RTT) mutual authentication,
and are provably secure in the Canetti-Krawczyk key-exchange model. In
contrast to alternatives, our protocols are lightweight and require min-
imal modification to existing key-exchange protocols. We integrate our
protocols into an existing open-source distributed applications frame-
work, and provide benchmarks on multiple hardware platforms: Intel
Edisons, Raspberry Pis, smartphones, laptops, and desktops. Finally, we
discuss some privacy limitations of the Apple AirDrop protocol (a peer-
to-peer file sharing mechanism) and show how to improve the privacy of
Apple AirDrop using our private mutual authentication protocol.

1 Introduction

Consider a smart home with dozens of IoT devices: an alarm system, a nanny
camera, health monitoring devices, house controls (e.g., lighting, heating), and
electronics. Many of these devices need to be controlled by multiple people,
including residents, guests, employees, and repairmen. The devices must be easily
discoverable by all these people.

To provide a good experience, IoT devices advertise the services they
offer using a service discovery mechanism. Examples include Multicast DNS
(mDNS) [24,25], Apple Bonjour [3], Bluetooth Low Energy (BLE) [5], and
Universal Plug-N-Play (UPnP) [6]. These mechanisms require only a broad-
cast communication channel between the devices (unlike older discovery proto-
cols [4,27,57] that need a directory service). Moreover, these protocols adhere to
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the zero configuration networking charter (Zeroconf ) [2] and can operate with
minimal user intervention.

Privacy is an important feature often missing in zero-configuration service
discovery protocols (e.g., Zeroconf) [37,38,40,49]. Services broadcast extensive
information about themselves in the clear to make it easy for clients to discover
them. Advertisements often include sensitive information such as service type,
device hostname, and the device owner’s identity. This poses a threat when the
service is running on a private device (e.g., an alarm system or a smart watch).
Identities obtained from personal devices can be used for user profiling, tracking,
and launching social engineering attacks. A recent study [40] revealed that 59 %
of all devices advertise their owner’s name in the clear, which is considered
harmful by more than 90 % of the device owners. Indeed, one would not want
random visitors, or passerbys, to “discover” the alarm system in their home.
Only authorized clients, such as the home owner and her family, a technician,
or local police, should be able to discover this device.

In this work, we address this problem by building a new discovery and authen-
tication mechanism that respects the privacy of both sides.

Private service discovery. Our goal is to ensure that services are only discover-
able by an authorized set of clients. This problem is challenging as on one hand,
services want to advertise themselves only after confirming that the client trying
to discover them is authorized to see them. On the other hand, clients want
to reveal their identity only after verifying that the service they are talking to
is the desired one. In particular, a client device, such as a smartphone, should
not simply identify itself to every device in the wild that requests it. This leads
to a chicken-and-egg problem reminiscent of the settings addressed by secret
handshakes and hidden credentials [11,12,31,35,36,46].

Private mutual authentication. A closely related privacy problem arises dur-
ing authentication between mutually suspicious entities. Most existing mutual
authentication protocols (SIGMA [23,41], JFK [10], and TLS [28]) require one
of the parties (typically the server) to reveal its identity to its peer before the
other, effectively making that party’s identity public to anyone who communi-
cates with it. This is undesirable when the participants are personal end-user
devices, where neither device is inclined to reveal its identity before learning that
of its peer. Private mutual authentication is the problem of designing a mutual
authentication protocol wherein each end learns the identity of its peer only if
it satisfies the peer’s authorization policy.1

An application. Our private discovery protocols apply broadly to many identi-
fication and key-exchange settings. Here we describe a common mobile-to-mobile
example: peer-to-peer file sharing. Protocols such as AirDrop and Shoutr have
become popular among mobile users for sharing photos and other content with
their friends. These peer-to-peer protocols typically work by having a participant

1 While protocols like SIGMA-I [23,41] and TLS 1.3 [43,50] can ensure privacy against
passive adversaries, they do not provide privacy against active attackers.
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start a sharing service and making it publicly discoverable. The other device then
discovers the service and connects to it to complete the file transfer. While this
offers a seamless sharing experience, it compromises privacy for the device that
makes itself discoverable—nearby devices on the same network can also listen
to the advertisement and obtain identifiers from it. A private service discovery
mechanism would make the service advertisement available only to the intended
devices and no one else. The AirDrop protocol offers a “contacts-only” mode for
additional privacy, but as we show in Sect. 2.1, this mechanism leaks significant
private information. The private discovery protocols we develop in this paper
provide an efficient solution to these problems.

1.1 Our Contributions

This paper presents private mutual authentication and service discovery pro-
tocols for IoT and mobile settings. Given the network connectivity constraints
implicit to these settings, our protocols do not require devices to maintain con-
stant connectivity to an external proxy or directory service in the cloud. Fur-
thermore, the protocols do not require the participants to have an out-of-band
shared secret, thereby allowing devices with no pre-existing relationships to dis-
cover each other (in accordance with their respective privacy policies).

Protocol construction. Our protocols are designed for distributed public-
key infrastructures, such as the Simple Distributed Security Infrastructure
(SDSI) [51]. Each principal has a public and private key-pair (for a signature
scheme), and a hierarchical human-readable name bound to its public key by a
certificate chain. The key primitive in our design is an encryption scheme that
allows messages to be encrypted under an authorization policy so that it can be
decrypted only by principals satisfying the policy. Using this primitive, we design
a mutual authentication protocol where one party sends its identity (certificate
chain) encrypted under its authorization policy. This protects the privacy of that
party. The other party maintains its privacy by revealing its identity only after
verifying the first party’s identity. The same primitive is also used to construct a
private service discovery protocol by having a service encrypt its advertisement
under its authorization policy before broadcasting.

The service advertisements in our discovery protocol carry a signed semi-
static Diffie-Hellman (DH) key. The signature provides authenticity for the
advertisements and protects clients from connecting to an impostor service. The
semi-static DH key enables clients to establish a secure session with the service
using zero round-trips (0-RTT), similar to what is provided in TLS 1.3 [43,50].

The authorization policies considered in this work are based on name prefixes.
For instance, a technician Bob from HomeSecurity Corp. may have the name
HomeSecurityCorp/Technician/Bob, and a home security system might have a
policy that only users whose name starts with HomeSecurityCorp/Technician
are allowed to discover it. Encrypting messages under a prefix-based autho-
rization policy is possible using a prefix encryption scheme [44], which can be
constructed using off-the-shelf identity-based encryption (IBE) schemes [19,20].
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Protocol analysis. We give a full specification of our private mutual authentica-
tion and service discovery protocols in Sects. 4 and 5. We also discuss a range
of practical issues related to our protocol such as replay protection, ensuring
perfect forward secrecy, and amortizing the overhead of the prefix encryption.
In the full version [54], we provide a rigorous proof of the security and privacy
of both protocols in the Canetti-Krawczyk key-exchange model [22,23,41].

Implementation and evaluation. We implemented and deployed our protocols in
the Vanadium open-source distributed application framework [1]. We measured
the end-to-end latency overhead for our private mutual authentication protocol
on an Intel Edison, a Raspberry Pi, a smartphone, a laptop, and a desktop.
On the desktop, the protocol completes in 9.5 ms, which corresponds to a 1.8x
slowdown over the SIGMA-I protocol that does not provide mutual privacy.
On the Nexus 5X and the Raspberry Pi, the protocol completes in just over
300 ms (about a 3.8x slowdown over SIGMA-I), which makes it suitable for user-
interactive services such as AirDrop and home security system controls that do
not have high throughput requirements.

For the discovery protocol, a service’s private discovery message consists of
approximately 820 bytes of data. Since mDNS broadcasts support up to 1300
bytes of data, it is straightforward to deploy our discovery protocol over mDNS.
Based on our benchmarks, our protocols are practical on a range of IoT devices,
such as thermostats (e.g., Nest), security systems (e.g., Dropcam), and smart
switches (e.g., Belkin Wemo). All of these devices have hardware comparable
to a Pi or an Intel Edison. In fact, the Intel Edison is marketed primarily as
a platform for building IoT applications. Moreover, as our AirDrop analysis
demonstrates, many of the privacy issues we describe are not limited to only the
IoT setting. Indeed, in Sect. 6.4, we show how our private mutual authentication
and discovery protocols can be efficiently deployed to solve privacy problems in
peer-to-peer interactions on smartphones. On more constrained processors such
as the ARM Cortex M0, however, we expect the handshakes to take several
seconds to complete. This makes our protocols less suitable in Cortex M0 appli-
cations that require fast session setup. Nonetheless, our protocols are sufficient
for a wide range of existing IoT and mobile scenarios.

2 Desired Protocol Features

In this section, we define the privacy properties and features that we seek in our
protocols. We begin with a case study of Apple’s AirDrop protocol, and use it
to motivate our privacy concerns and desired features.

2.1 Case Study: Apple AirDrop

AirDrop is a protocol for transferring files between two devices running recent
versions of OS X or iOS. It is designed to work whenever two AirDrop-enabled
devices are close to each other and even when they do not have Internet access.
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AirDrop uses both Bluetooth Low Energy (BLE) and Apple’s peer-to-peer WiFi
technology (awdl) for device discovery and file transfer.

To receive files, devices make themselves discoverable by senders. AirDrop
offers two modes for making devices discoverable: everyone, which makes the
device discoverable by all nearby devices, and contacts-only (default), which
makes the receiving device discoverable only by senders in its contacts. The
contacts-only mode is meant to be a privacy mechanism and can be viewed as a
solution to the private service discovery problem for the “contacts-only” policy.

Protocol overview. We analyzed the AirDrop protocol to understand its privacy
properties and see how it solves the chicken-and-egg problem of private mutual
authentication. We describe the protocol in the full version of this paper.

Privacy weaknesses in Apple AirDrop. Our analysis indicates that AirDrop
employs two main privacy checks in contacts-only mode. First, a receiving device
responds only if the sender’s identifier (received over BLE) matches one of its
contacts, and second, a communication channel is established (via TLS 1.2 with
client authentication2) between a sender and receiver only if their respective
certificates match a contact on their peer’s device. While necessary, these checks
are insufficient to protect the privacy of the sender and receiver. Below, we enu-
merate some of the privacy problems with the existing protocol.

– Sender and receiver privacy and tracking. The use of TLS 1.2 with client
authentication causes both the sender and receiver to exchange certificates in
the clear. This makes their identities, as specified by their certificates, visible
to even a passive eavesdropper on the network. Moreover, the public keys in
the certificates allow the eavesdropper to track the sender and receiver in the
future. Protecting the privacy of both parties against active attackers, requires
private mutual authentication, as constructed in Sect. 4.

– Sender impersonation. Another privacy problem is that the sender’s iden-
tifier advertised over BLE can be forged or replayed by an attacker to trick an
honest receiver into matching it against its contacts. Based on the receiver’s
response, the attacker learns whether the receiver has the sender in their con-
tacts, and moreover, could try to initiate a TLS session with the receiver to
obtain its certificate. To protect against this kind of impersonation attack,
discovery broadcasts must provide some kind of authenticity, as in Sect. 5.

2.2 Protocol Design Goals

The privacy properties of AirDrop are insufficient to solve the private service
discovery problem. While our case study in Sect. 2.1 focuses exclusively on the
AirDrop protocol, most existing key-exchange and service discovery protocols do
not provide robust privacy and authenticity guarantees. We survey some of these
alternative protocols in Sect. 8. At a high level, our primary privacy objectives,

2 All AirDrop-enabled devices have an RSA public and private key pair and an iCloud
certificate for the owner’s identity.
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which should hold in the presence of both passive and active network attackers,
are as follows:

– Mutual privacy. The protocols must ensure that the identities and any iden-
tifying attributes of the protocol participants are only revealed to authorized
recipients. For service discovery, this applies to both the service being adver-
tised and the clients trying to discover it.

– Authentic advertisements. Service advertisements should be unforgeable
and authentic. Otherwise, an attacker may forge a service advertisement to
determine if a client is interested in the service.

Finally, to ensure that our protocols are applicable in both IoT and peer-to-peer
settings, we impose additional constraints on the protocol design:

– No out-of-band pairing for participants. The protocol should not require
participants to exchange certain information or secrets out-of-band. This is
especially important for the discovery protocol as the service may not know
all the clients that might try to discover it in the future.

– No cloud dependency during protocol execution. The protocol should
not rely on an external service in the cloud, such as a proxy or a directory
service. Protocols that depend on cloud-based services assume that the par-
ticipating devices maintain reliable Internet access. This assumption fails for
many IoT devices, including devices that only communicate over Bluetooth,
or ones present in spaces where Internet access is unreliable.

3 Preliminaries

In this section, we describe our identity and authorization model, as well as
introduce the cryptographic primitives we use in our constructions.

Identity and authorization model. We define our protocols for a generic distrib-
uted public-key infrastructure, such as SDSI [51]. We assume each principal has a
public and private key-pair for a signature scheme and one or more hierarchically-
structured human-readable names bound to its public key via a certificate chain.
For instance, a television set owned by Alice might have a certificate chain bind-
ing the name Alice/Devices/TV to it. Our protocols are agnostic to the specific
format of certificates and how they are distributed.

Principals authenticate each other by exchanging certificate chains and pro-
viding a signature on a fresh (session-specific) nonce. During the authentica-
tion protocol, a principal validates its peer’s certificate chain, and extracts the
name bound to the certificate chain. Authorization decisions are based on this
extracted name, and not the public key. For example, Alice may authorize all
principals with names matching the prefix pattern Alice/Devices/* to access
her television set. In this work, we consider prefix-based authorization policies.
These prefix-based policies can be used to support group-based access control
policies by viewing “subdomains” (e.g., Alice/Family) as groups.
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3.1 Cryptographic and Protocol Building Blocks

We write Zp to denote the group of integers modulo p. For a distribution D,
we write x ← D to denote that x is drawn from D. For a finite set S, we write
x

r←− S to denote that x is drawn uniformly at random from S.

Identity-based encryption and prefix encryption. Identity-based encryption
(IBE) [19,20,26,53] is a generalization of public-key encryption where public
keys can be arbitrary strings, or identities. We give more details in the full ver-
sion [54]. Prefix encryption [44] is a generalization of IBE where the secret key
skid for an identity id can decrypt all ciphertexts encrypted to any identity
id′ that is a prefix of id (in IBE, decryption succeeds only if id = id′). Prefix
encryption allows for messages to be encrypted under a prefix-based policy such
that the resulting ciphertext can only be decrypted by principals satisfying the
policy.

It is straightforward to construct prefix encryption from IBE. The follow-
ing construction is adapted from the Lewko-Waters scheme [44]. The key for an
identity id = s1/s2/ · · · /sn consists of n different IBE keys for the following
sequence of identities: (s1), (s1/s2), . . . , (s1/s2/ · · · /sn). Encryption to an iden-
tity id′ is just IBE encryption to the identity id′. Given a secret key skid for id,
if id′ is a prefix of id, then skid contains an IBE identity key for id′.

The syntax of a prefix encryption scheme is very similar to that of an
IBE scheme. Secret keys are still associated with identities, but ciphertexts
are now associated with prefix-constrained policies. In the following, we write
PE.Enc(mpk, π,m) to denote an encryption algorithm that takes as input the
public key mpk, a message m, a prefix-constrained policy π, and outputs a
ciphertext ct. When there is no ambiguity, we will treat mpkas an implicit
parameter to PE.Enc. We write PE.Dec(skid,ct) for the decryption algorithm
that takes in a ciphertext ct and a secret key skid (for an identity id) and out-
puts a message if id matches the ciphertext policy π, and a special symbol ⊥
otherwise.

Other cryptographic primitives. We write {m}k to denote an authenticated
encryption [13,15,52] of a message m under a key k, and KDF(·) to denote a key-
derivation function [29,42]. We describe these additional primitives as well as the
cryptographic assumptions (Hash Diffie-Hellman and Strong Diffie-Hellman [9])
we use in our security analysis in the full version.

Key-exchange model. We analyze the security of our private mutual authentica-
tion and privacy service discovery protocols in the Canetti-Krawczyk [22,23,41]
key-exchange model, which models the capabilities of an active network adver-
sary. We defer the formal specification of this model and our generalization of it
to the service discovery setting to the full version.
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4 Private Mutual Authentication Protocol

In this section, we describe our private mutual authentication protocol and dis-
cuss some of its features and limitations. We use the identity and authorization
model described in Sect. 3.

Protocol execution environment. In our setting, each principal has a sign-
ing/verification key-pair and a set of names (e.g., Alice/Devices/TV) bound
to its public verification key via certificate chains. For each name, a principal
possesses an identity secret key (for the prefix encryption scheme) extracted
for that name. The secret key extraction is carried out by IBE root authorities
(who possess the IBE master secret key msk), which may coincide with certifi-
cate authorities. Finally, each principal also has one or more prefix-constrained
authorization policies.

In our protocol description, we refer to the initiator of the protocol as the
client and the responder as the server. For a party P , we write idP to denote a
certificate chain binding P ’s public key to one of its identities. For a message m,
we write sigP (m) to denote P ’s signature on m. We refer to each instantiation
of the key-exchange protocol as a “session,” and each session is identified by a
unique session id, denoted sid.

Protocol specification. Our starting point is the 3-round SIGMA-I proto-
col [23,41] which provides mutual authentication as well as privacy against pas-
sive adversaries. Similar to the SIGMA-I protocol, our protocol operates over a
cyclic group G of prime order where the Hash-DH [9] assumption holds. Let g be
a generator of G. We now describe our private mutual authentication protocol.
The message flow is illustrated in Fig. 1.

1. To initiate a session with id sid, the client C chooses x
r←− Zp, and sends

(sid, gx) to the server.
2. Upon receiving a start message (sid, gx) from a client, the server S chooses

y
r←− Zp, and does the following:

(a) Encrypt its name idS using the prefix encryption scheme under its policy
πS to obtain an encrypted identity ctS ← PE.Enc(πS , idS).

(b) Derive authenticated encryption keys (htk, atk) = KDF(gx, gy, gxy) for the
handshake and application-layer messages, respectively.

(c) Compute a signature σ = sigS(sid,ctS , gx, gy) on its encrypted identity
and the ephemeral session state, and encrypt (ctS , σ) using htk to obtain
a ciphertext c.

The server replies to the client with (sid, gy, c).
3. When the client receives a response (sid, gy, c), it derives the keys (htk, atk) =

KDF(gx, gy, gxy). It tries to decrypt c with htk and aborts if decryption fails.
It parses the decrypted value as (ctS , σS) and checks whether its identity
idC satisfies the server’s policy πS (revealed by ctS). If the client satis-
fies the server’s policy, it decrypts ctS using its identity key skC to obtain
the server’s identity idS . If idS satisfies the client’s policy πC and σS is a
valid signature on (sid,ctS , gx, gy) under the public key identified by idS ,
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Fig. 1. Message flow between the client C (with certificate idC and policy πC) and
the server S (with certificate idS and policy πS) for the private mutual authentication
protocol. Both the client and the server possess a secret signing key. The associated ver-
ification keys are bound to their identities via the certificates idC and idS , respectively.
For a message m, sigC(m) and sigS(m) denote the client’s and server’s signature on
m, respectively. Both the client and server know the master public key for the prefix-
based encryption scheme, and the client possesses a secret key skC for the prefix-based
encryption scheme for the identity associated with its certificate idC .

the client replies to the server with the session id sid and an encryption c′ of
(idC , sigC(sid, idC , gx, gy)) under htk. Otherwise, the client aborts.

4. Upon receiving the client’s response (sid, c′), the server tries to decrypt c′

using htk and aborts if decryption fails. It parses the decrypted value as
(idC , σC) and verifies that idC satisfies its policy and that σC is a valid
signature on (sid, idC , gx, gy) under the public key identified by idC . If so,
the handshake completes with atk as the shared session key and where the
client believes it is talking to idS and the server believes it is talking to idC .
Otherwise, the server aborts.

4.1 Protocol Analysis

In this section, we highlight some properties of our private mutual authentication
protocol. In the full version [54], we also discuss policy privacy, unlinkability, and
caching the encrypted certificate chains.

Comparison with SIGMA-I. Our authentication protocol is very similar to the
SIGMA-I key-exchange protocol [41, Sect. 5.2], but with the following key dif-
ference: the server’s certificate, idS , is sent encrypted under a prefix encryption
scheme. Moreover, instead of deriving separate MAC and encryption keys from
the shared DH key, we combine the two primitives by using an authenticated
encryption scheme. Since we have only added an additional layer of prefix encryp-
tion to the certificates, each party’s signature verification key is still bound to
its identity as before. Thus, the proof that the SIGMA-I protocol is a secure
key-exchange protocol [23, Sect. 5.3] (with perfect forward secrecy) translates to
our setting.

Identity privacy. The identity of the server is sent encrypted under its prefix
policy, so by security of the prefix encryption scheme, it is only revealed to clients
that satisfy the policy. Conversely, an honest client only reveals its identity after
it has verified that the server’s identity satisfies its policy. We formally define
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our notion of mutual privacy and show that the protocol in Fig. 1 achieves this
notion in the full version. In contrast, the SIGMA-I protocol does not provide
such a guarantee as the identity of the server is revealed to active adversaries.

Security theorem. We state the security theorem for our private mutual authen-
tication protocol here, but defer the formal proof to the full version [54].

Theorem 4.1 (Private Mutual Authentication). The protocol in Fig. 1 is a
secure and private key-exchange protocol in the Canetti-Krawczyk key-exchange
model assuming the Hash Diffie-Hellman assumption in G and the security of
all underlying cryptographic primitives.

5 Private Service Discovery Protocol

In this section, we describe our private service discovery protocol. The primary
goal is to make a service discoverable only by parties that satisfy its authoriza-
tion policy. Additionally, once a client has discovered a service, it should be able
to authenticate to the server using zero round-trips (0-RTT), i.e., include appli-
cation data on the first flow of the handshake. 0-RTT protocols are invaluable
for IoT since devices are often constrained in both computation and bandwidth.

The key idea in our design is to have the service include a fresh DH share and
a signature in its advertisement. The DH share allows 0-RTT client authentica-
tion, and the signature provides authenticity for the service advertisement. Next,
the service encrypts its advertisement under its policy πS before broadcasting to
ensure that only authorized clients are able to discover it. A similar mechanism
for (non-private) 0-RTT authentication is present in OPTLS and the TLS 1.3
specification [43,50], although OPTLS only provides server authentication.

Protocol specification. Our protocol works over a cyclic group G of prime order
p with generator g where the Strong-DH and Hash-DH assumptions [9] hold.
The private discovery protocol can be separated into a broadcast protocol and
a 0-RTT mutual authentication protocol. Each broadcast is associated with a
unique broadcast identifier bid and each session with a unique session identifier
sid. The protocol execution environment is the same as that described in Sect. 4.
The basic message flow for the private discovery protocol is illustrated in Fig. 2.

Service broadcast message. To setup a new broadcast with broadcast id
bid, the server S chooses a fresh DH exponent s

r←− Zp, and encrypts
(idS , gs, sigS(bid, idS , gs)) using the prefix encryption scheme under its autho-
rization policy πS to obtain a broadcast ciphertext ctS . The server broadcasts
(bid,ctS).

0-RTT mutual authentication. Upon receiving a broadcast (bid,ctS), a client
performs the following steps to establish a session sid with the server:
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1. The client C checks that its identity idC satisfies the server’s authorization
policy πS (included with ctS). If so, it decrypts ctS using its prefix encryp-
tion secret key and parses the decrypted value as (idS , gs, σS). It verifies that
idS satisfies its policy πC and that σS is a valid signature on (bid, idS , gs)
under the public key identified by idS . If any step fails, the client aborts.

2. Next, the client chooses an ephemeral DH exponent x
r←− Zp. It

derives authenticated encryption keys (htk, htk′, eadk) = KDF(gs, gx, gsx),
where htk and htk′ are used to encrypt handshake messages, and
eadk is used to encrypt any early application data the client wants
to include with its connection request. The client encrypts the tuple
(idS , idC , sigC(bid, sid, idS , idC , gs, gx)) under htk to obtain a ciphertext c1
and any early application data under eadk to obtain a ciphertext c2. It sends
(bid, sid, gx, c1, c2) to the server.

3. When the server receives a message from a client of the form
(bid, sid, gx, c1, c2), it first derives the encryption keys (htk, htk′, eadk) =
KDF(gs, gx, gsx), where s is the DH exponent it chose for broadcast bid. Then,
it tries to decrypt c1 with htk and c2 with eadk. If either decryption fails, the
server aborts the protocol. Otherwise, let (id1, id2, σ) be the message obtained
from decrypting c1. The server verifies that id1 = idS and that id2 satisfies
its authorization policy πS . Next, it checks that σ is a valid signature on
(bid, sid, id1, id2, g

s, gx) under the public key identified by id2. If all these
checks pass, the server chooses a new ephemeral DH exponent y

r←− Zp and
derives the session key atk = KDF(gs, gx, gsx, gy, gxy).3 The server encrypts
the tuple (bid, sid, id1, id2) under htk′ to obtain a ciphertext c′

1, and any appli-
cation messages under atk to obtain a ciphertext c′

2. It replies to the client
with (bid, sid, gy, c′

1, c
′
2).

4. When the client receives a response message (bid, sid, gy, c′
1, c

′
2), it first

decrypts c′
1 using htk′ and verifies that c′

1 decrypts to (bid, sid, idS , idC). If
so, it derives atk = KDF(gs, gx, gsx, gy, gxy) and uses atk to decrypt c′

2. The
handshake then concludes with atk as the shared session key.

5.1 Protocol Analysis

We now describe some of the properties of our private service discovery protocol
in Fig. 2. We give a more detailed discussion in the full version of this paper.

0-RTT security. The security analysis of the 0-RTT mutual authentication pro-
tocol in Fig. 2 is similar to that of the OPTLS protocol in TLS 1.3 [43] and
relies on the Strong-DH and Hash-DH assumptions [9] in the random oracle
model [14]. Note that in contrast to the OPTLS protocol which only provides
client authentication, our protocol provides mutual authentication.
3 In this step, the server samples a fresh ephemeral DH share gy that is used to derive

the application-traffic key atk. This is essential for ensuring perfect forward secrecy
for all subsequent application-layer messages (encrypted under atk). We discuss the
perfect forward secrecy properties of this protocol in Sect. 5.1.
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Fig. 2. Basic message flow between the client C (with certificate idC and policy πC)
and the server S (with certificate idS and policy πS) for the private discovery protocol.
The client can also include early application data in the first flow of the 0-RTT mutual
authentication protocol.

Replay attacks. One limitation of the 0-RTT mode is that the early-application
data is vulnerable to replay attacks. A typical replay-prevention technique (used
by QUIC [47]) is to have the server maintain a list of client nonces in the 0-RTT
messages and reject duplicates for the lifetime of the service advertisement.

Authenticity of broadcasts. Because the service broadcasts are signed, a client
is assured of the authenticity of a broadcast before establishing a session with a
service. This ensures that the client will not inadvertently send its credentials to
an impostor service. However, an adversary that intercepts a service broadcast
and recovers the associated semi-static DH exponent can replay the broadcast
for an honest client. If the client then initiates a session using the DH share from
the replayed advertisement, the adversary compromises the client’s privacy. To
protect against this kind of replay attack, the server should include an expiration
time in its broadcasts, and more importantly, sign this expiration.

Forward secrecy. Since the server’s semi-static DH share persists across sessions,
perfect forward secrecy (PFS) is lost for early-application data and handshake
messages sent during the lifetime of each advertisement. To mitigate this risk
in practical deployments, it is important to periodically refresh the DH-share in
the server’s broadcast (e.g., once every hour). The refresh interval corresponds
to the window where forward secrecy may be compromised.

While PFS is not achievable for early-application and handshake messages
for the lifetime of a service’s broadcast, PFS is ensured for all application-layer
messages. In particular, after processing a session initiation request, the server
responds with a fresh ephemeral DH share that is used to derive the session key
for all subsequent messages. In the full version, we show that the security of the
session is preserved even if the server’s semi-static secret is compromised but the
ephemeral secret is uncompromised. This method of combining a semi-static key
with an ephemeral key also features in the OPTLS [43] and QUIC [47] protocols.

Identity privacy. As was the case in our private mutual authentication proto-
col from Sect. 4, privacy for the server’s identity is ensured by the prefix-based
encryption scheme. Privacy for the client’s identity is ensured since all handshake
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messages are encrypted under handshake traffic keys htk and htk′. We formally
state and prove mutual privacy for the protocol in the full version.

Security theorem. We conclude by stating the security theorem for our private
service discovery protocol. We give the formal proof in the full version [54].

Theorem 5.1 (Private Service Discovery). The protocol in Fig. 2 is a
secure and private service discovery protocol in a Canetti-Krawczyk-based model
of key-exchange in the random oracle model, assuming the Hash Diffie-Hellman
and Strong Diffie-Hellman assumptions in G, and the security of the underlying
cryptographic primitives.

6 Protocol Evaluation and Deployment

In this section, we describe the implementation and deployment of our private
mutual authentication and service discovery protocols in the Vanadium frame-
work [1]. We benchmark our protocols on a wide range of architectures: an Intel
Edison (0.5 GHz Intel Atom), a Raspberry Pi 2 (0.9 GHz ARM Cortex-A7), a
Nexus 5X smartphone (1.8 GHz 64-bit ARM-v8A), a Macbook Pro (3.1 GHz
Intel Core i7), and a desktop (3.2 GHz Intel Xeon).

Vanadium. We implement our private mutual authentication and service discov-
ery protocols as part of the Vanadium framework for developing secure, distrib-
uted applications. The Vanadium identity model is based on a distributed PKI.
All principals in Vanadium possess an ECDSA P-256 signing and verification
key-pair. Principals have a set of human-readable names bound to them via cer-
tificate chains, called blessings. Blessings can be extended locally and delegated
from one principal to another. Interactions between parties are encrypted and
mutually authenticated based on the blessings bound to each end.

We implement our protocols to enhance the privacy of the Vanadium discov-
ery framework. Our entire implementation is in Go (with wrappers for interfacing
with third-party C libraries).

6.1 Identity-Based Encryption

The key primitive we require for our protocols is prefix-based encryption, which
we can construct from any IBE scheme (Sect. 3.1). For our experiments, we imple-
mented the Boneh-Boyen (BB2) scheme [19, Sect. 5] over the 256-bit Barreto-
Naehrig (bn256) [48] pairings curve. We chose the BB2 IBE scheme for its effi-
ciency: it only requires a single pairing evaluation during decryption. We apply
the Fujisaki-Okamoto transformation [32] to obtain CCA-security. For the under-
lying symmetric encryption scheme in the Fujisaki-Okamoto transformation, we
use the authenticated encryption scheme from NaCl [16,17]. All of our crypto-
graphic primitives are chosen to provide at least 128 bits of security. In the full
version, we give some microbenchmarks of the different IBE operations on several
devices and describe how we integrate IBE into the Vanadium infrastructure.
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6.2 Private Mutual Authentication

We implemented the private mutual authentication protocol from Sect. 4 within
the Vanadium RPC system as a means to offer a “private mode” for Vanadium
services. We implemented the protocol from Fig. 1 that allows caching of the
encrypted server certificate chain. The implementation uses a prefix encryption
primitive implemented on top of our IBE library.

Benchmarking. We measure the end-to-end connection setup time for our pro-
tocol on various platforms. To eliminate network latency, we instantiate a server
and client in the same process. Since the encrypted server certificate chain can be
reused across multiple handshakes, we precompute it before executing the pro-
tocol. Both the client and the server use a prefix-based policy of length three.
Note that the encryption and decryption times in our prefix encryption scheme
are not affected by the length of the policy.

Results. We compare the performance of our protocol to the traditional SIGMA-
I protocol in Table 1. The end-to-end latency on the desktop is only 9.5 ms,
thanks to an assembly-optimized IBE implementation. The latency on smaller
devices is typically around a third of a second, which is quite suitable for user-
interactive applications like AirDrop. Even on the Intel Edisons (a processor
marketed specifically for IoT), the handshake completes in just over 1.5 s, which
is still reasonable for many applications. Moreover, with an optimized imple-
mentations of the IBE library (e.g., taking advantage of assembly optimizations
like on the desktop), these latencies should be significantly reduced.

The memory and storage requirements of our protocol are very modest and
well-suited for the computational constraints of IoT and mobile devices. Specif-
ically, the pairing library is just 40 KB of code on the ARM processors (and 64
KB on x86). The public parameters for the IBE scheme are 512 bytes, and each
IBE secret key is just 160 bytes. For comparison, a typical certificate chain (of
length 3) is about 500 bytes in Vanadium. Also, our protocols are not memory-
bound, and in particular, do not require much additional memory on top of the
existing non-private SIGMA-I key-exchange protocol supported by Vanadium.

Table 1. Private mutual authentication benchmarks.

Intel Edison Raspberry Pi 2 Nexus 5X Laptop Desktop

SIGMA-I 252.1 ms 88.0 ms 91.6 ms 6.3 ms 5.3 ms

Private mutual auth. 1694.3 ms 326.1 ms 360.4 ms 19.6 ms 9.5 ms

Slowdown 6.7x 3.7x 3.9x 3.1x 1.8x

6.3 Private Discovery

We also integrated the private discovery protocol from Sect. 5 into Vanadium.
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Benchmarks. We benchmark the cryptographic overhead of processing service
advertisements, and measure the size of the service advertisements. Process-
ing service advertisements requires a single IBE decryption and one ECDSA
signature verification. For instance, on the Nexus 5X smartphone, which is a
typical client for processing service advertisements, the cost is approximately
236 ms (IBE decryption) + 11 ms (ECDSA signature verification) = 247 ms.

The advertisement size can also be estimated analytically from the structure
shown in Fig. 2. Our implementation of prefix encryption (PE.Enc) has a cipher-
text overhead of 208 bytes on top of the plaintext. The Diffie-Hellman exponent
(gs) is 32 bytes, the broadcast id (bid) is 16 bytes, the ECDSA signature is 64
bytes, and a certificate chain (idS) of length three is approximately 500 bytes in
size. The overall service advertisement is about 820 bytes.

Deployment. We deploy our service discovery protocol within the Vanadium
discovery framework. The protocol allows services to advertise themselves while
restricting visibility to an authorized set of clients. The Vanadium discovery API
allows services to advertise over both mDNS and BLE. An mDNS TXT record has
a maximum size of 1300 bytes [24,25], which suffices for service advertisements.

When the policy has multiple prefixes, our advertisements would no longer
fit in a single mDNS TXT record. Furthermore, BLE advertisement payloads are
restricted to 31 bytes [5], which is far too small to fit a full service advertisement.
In the full version [54], we show how an auxiliary service can be used to host the
encrypted advertisements, and thus, enable private service discovery over BLE
and other similarly space-constrained advertisement protocols.

6.4 Fixing AirDrop

Recall from Sect. 2.1 that during an AirDrop file exchange in contacts-only mode,
a hash of the sender’s identity is advertised over BLE and matched by potential
receivers against their contacts. If there is a match, the receiver starts a service
that the sender can connect to using TLS (version 1.2). In the TLS handshake,
the sender and receiver exchange their certificates in the clear, which makes them
visible to eavesdroppers on the network. This privacy vulnerability can be fixed
using the private mutual authentication protocol from Sect. 4. In particular, once
the receiver matches the sender’s hash against one of its contacts, it uses the
prefix encryption scheme to encrypt its identity under the name of the contact
that matched the sender’s hash. We provide more details in the full version [54].

7 Extensions

In the full version, we describe several ways to extend our protocols. These
include ways to hide the server’s authorization policy and allowing non-IBE
roots to manage and issue prefix encryption keys for their subdomains.
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8 Related Work

Private mutual authentication. The term “private authentication” was first
introduced by Abadi and Fournet [7,8]. However, the protocols in [8] require
the authorization policy to be specified by a set of public keys and do not scale
when the set of public keys is very large. Many other cryptographic primitives
have also been developed for problems related to private mutual authentication,
including secret handshakes [11,12,36], oblivious signature-based envelopes [46],
oblivious attribute certificates [45], hidden credentials [21,31,35], and more.

Secret handshakes and their extensions are protocols based on bilinear pair-
ings that allow members of a group to identify each other privately. A key limita-
tion of secret handshakes is that the parties can only authenticate using creden-
tials issued by the same root authority. Oblivious signature-based envelopes [46],
oblivious attribute certificates [45] and hidden credentials [21,31,35] allow a
sender to send an encrypted message that can be decrypted only by a recipient
that satisfies some policy. Hidden credentials additionally hide the sender’s pol-
icy. Closely related are the cryptographic primitives of attribute-based encryp-
tion [18,33] and predicate encryption [34,39], which allow more fine-grained con-
trol over decryption capabilities.

The protocols we have surveyed here are meant for authentication, and not
authenticated key-exchange, which is usually the desired primitive. Integrating
these protocols into existing key-exchange protocols such as SIGMA or TLS 1.3
is not always straightforward and can require non-trivial changes to existing
protocols. In contrast, our work shows how IBE-based authentication can be very
naturally integrated with existing secure key-exchange protocols (with minimal
changes) to obtain private mutual authentication. Moreover, our techniques are
equally applicable in the service discovery setting, and can be used to obtain
0-RTT private mutual authentication.

Service discovery. There is a large body of work on designing service discovery
protocols for various environments—mobile, IoT, enterprise and more; we refer
to [57] for a survey. Broadly, these protocols can be categorized into two groups:
“directory-based” protocols and “directory-free” protocols.

In directory-based discovery protocols [4,27,55], there is a central directory
that maintains service information and controls access to the services. Clients
query directories to discover services while services register with the directory
to announce their presence. While directory-based protocols allow for central-
ized management and tend to be computationally efficient, their main drawback
is that they force dependence on an external service. If the directory service is
unavailable then the protocol ceases to work. Even worse, if the directory service
is compromised, then both server and client privacy is lost. Besides, mutually
suspicious clients and servers may not be able to agree on a common directory
service that they both trust. In light of these downsides, we designed decentral-
ized, peer-to-peer protocols in this work.

Directory-free protocols, such as [37,38,56,58], typically rely on a shared key
established between devices in a separate, out-of-band protocol. The shared key
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is then used to encrypt the private service advertisements so that only paired
devices can decrypt. Other protocols like UPnP [30] rely on public key encryp-
tion, where each device maintains a set of public keys for the peers it is willing
to talk to. In contrast, key-management in our IBE-based solution is greatly
simplified—devices do not have to maintain long lists of symmetric or public
keys. Our protocol is similar to the Tryst protocol [49], which proposes using an
anonymous IBE scheme for encrypting under the peer’s name (based on using a
mutually agreed upon convention). A distinguishing feature of our protocol over
Tryst is the support for prefix-based authorization policies.
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