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Abstract. One of the most promising innovations offered by the crypto-
graphic currencies (like Bitcoin) are the so-called smart contracts, which
can be viewed as financial agreements between mutually distrusting par-
ticipants. Their execution is enforced by the mechanics of the currency,
and typically has monetary consequences for the parties. The rules of
these contracts are written in the form of so-called “scripts”, which are
pieces of code in some “scripting language”. Although smart contracts
are believed to have a huge potential, for the moment they are not widely
used in practice. In particular, most of Bitcoin miners allow only to post
standard transactions (i.e.: those without the non-trivial scripts) on the
blockchain. As a result, it is currently very hard to create non-trivial
smart contracts in Bitcoin.

Motivated by this, we address the following question: “is it possible
to create non-trivial efficient smart contracts using the standard trans-
actions only?” We answer this question affirmatively, by constructing
efficient Zero-Knowledge Contingent Payment protocol for a large class
of NP-relations. This includes the relations for which efficient sigma pro-
tocols exist. In particular, our protocol can be used to sell a factorization
(p, q) of an RSA modulus n = pq, which is an example that we imple-
mented and tested its efficiency in practice.

As another example of the “smart contract without scripts” we show
how our techniques can be used to implement the contract called “trad-
ing across chains”.

1 Introduction

Cryptographic currencies (also dubbed the cryptocurrencies) are a very inter-
esting concept that emerged in the last few years. The most prominent of them,
and by far the largest one (in terms of capitalization), is Bitcoin, introduced
in 2009 [32]. The main property of these currencies is that their security does
not rely on any single trusted third party. The list of transactions in the system
is written on a public ledger that is maintained jointly by the users. Another
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reason why these currencies are so interesting is that they allow the users to per-
form much more than simple money transfers between each other. Namely, sev-
eral cryptocurrencies, including the Bitcoin, implement an idea of the so-called
smart-contracts. Such contracts can be viewed as distributed protocols executed
between a number of parties. Typically, they have financial consequences, i.e.,
the users contribute money to them, and these funds are later distributed among
the participants according to contract rules. Moreover, these contracts are “self-
enforcing”, which means that their execution is guaranteed by the rules of the
underlying cryptocurrency. In particular, once a party enters into such a con-
tract she cannot “change her mind” and withdraw her invested funds unless the
contract specifically allows her to do so.

To be more specific, consider a contract called the Zero Knowledge Contin-
gent Payment [16], which is an example on how Bitcoin contracts can provide
a solution for the so-called fair exchange problem (see, e.g., [34]). It is exe-
cuted between two parties: the Seller and the Buyer. The Buyer is looking for
a value x ∈ {0, 1}∗, that he does not know, but he is able to specify the con-
ditions of x that make it valuable for him. Namely, he can describe a function
f : {0, 1}∗ → {true, false} (in a form of a polynomial-time computer program,
say), such that every x satisfying f(x) = true, has a value B100 for him (here
“B” denotes Bitcoin currency unit). Obviously (assuming that P �= NP), find-
ing x such that f(x) = true is much harder than verifying that f(x) = true
holds. Hence, in many cases it makes a lot of sense for the Buyer to pay for
x. As an example: think of a Buyer that wants to buy a factorization p, q
of an RSA modulus N . He would then define f : N × N → {true, false} as
f(p, q) := true iff ((p · q = N) ∧ p �= 1 ∧ q �= 1).

Imagine now that the Buyer is approached by a Seller, who is claiming that
he knows x such that f(x) = true and he is willing to sell it. If this happens
over the Internet, and the parties do not trust each other then they face the
following problem: shall the Seller first send x to the Buyer who later pays to
him (after verifying that indeed f(x)), or the other way around: shall the Buyer
first pay and get x from the Seller? Clearly in the first case a malicious Buyer
can refuse to pay B100 to the Seller (after receiving x), and in the latter a
malicious Seller may not send x to the Buyer (after receiving the payment). Is
there a way to sell x in such a way that none of the parties can cheat the other
one? Unfortunately, it turns out (see, e.g., [33]), that this fundamental problem,
called the fair exchange cannot be in general solved without a trusted third
party. This is exactly where the contracts come to play. Intuitively, thanks to
this feature of the cryptocurrencies, the users can use the ledger as a trusted
entity that allows them to perform the exchange x for B100 simultaneously.
Technically (but still very informally), this is done by placing a contract C on
the ledger that has the following semantics: “The Buyer has to put aside B100.
This money can be claimed by the Seller only by posting x such that f(x) = true
on the ledger. If he does not do it within time t, then B100 goes back to the
Buyer.” Now, everybody who observes the ledger can easily verify if the contract
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obligations were respected by the parties, and decide whether B100 should be
now “transferred” from the Buyer to the Seller or not.

Another interesting example of a contract is so-called trading across chains
[12] where users can exchange in a secure and fair way money between different
cryptographic currencies. More advanced examples include, the rapidly-adjusted
micro-payments, the assurance contracts [12], the multiparty lotteries [4,6], or
general secure multiparty computation protocols [2,11,27]. Some experts pre-
dict that the smart contracts will revolutionize the digital economy. It is even
envisioned that in the future these contracts may be used to maintain large dis-
tributed autonomous corporations that would operate without any trusted party
control [22].

1.1 Contracts: From Theory to Practice

The above description ignores many technical details, and in particular it does
not mention how the contracts are written. The transactions that are used in
the contracts contain the so-called scripts. In Bitcoin the scripts are written
in the so-called Bitcoin script language [13], which is not Turing-complete, and
hence not every condition can be expressed in it. A serious obstacle when imple-
menting the Bitcoin contracts in real life is that in practice it is currently very
hard to post on the ledger a transaction corresponding to a non-trivial contract.
Technically, to write a transaction on the ledger one broadcasts it over Bitcoin
network and hopes that one of the miners (which are the entities that are main-
taining the ledger) will include it into a new block that he mines. This gives the
miners power to decide which transactions are included into the blockchain and
which are not. Unfortunately, currently most of the miners do not include more
complicated transactions into the blockchain. The reasons for this are: (1) such
transactions tend to be longer than the “standard” ones, and space in the block
is scarce, and (2) writing the transactions is tricky and error-prone, and most
of the mining pool operators agreed to disallow them in order to prevent the
users from loosing money. Technically deciding whether to accept a transaction
or not is done by computing a boolean function isStandard() that evaluates
to true only if the transaction is “standard”, and otherwise it evaluates to false.
The vast majority of the miners will include a transaction T in a new block only
if isStandard(T)= true (more on this can be found, e.g., in [5], Chap. 5). Up
to our knowledge, the only mining pool that currently accepts the non-standard
transactions is Eligius that mines less than 1 % of blocks.

Another problem with running the smart contracts in Bitcoin is that the
Bitcoin scripting language contains a feature, called the transaction malleabil-
ity, that makes it tricky to implement several natural contracts (for more
on this see the extended version of this paper [7], or, e.g., [3]). Although
some techniques of dealing with this problem are known [3], they are often
hard to use, since they make the contracts unnecessarily complicated (and
make the transactions longer), and sometimes force the parties to invest
more money than would normally be needed (by requiring them to put aside
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so-called deposits). One interesting new tool for dealing with this problem is the
OP CHECKLOCKTIMEVERIFY instruction [38] that was recently deployed.

After Bitcoin was deployed several other cryptocurrencies were proposed. The
most interesting one from the point of view of the smart contracts, is Ethereum,
which permits to use the Turing-complete scripts. The aforementioned problem
of the high time consumption associated with the evaluation of the complicated
scripts is solved in Ethereum in the following way. Each step of the computation
of a script costs some small amount of money (the currency used for this is
called ether), and the script evaluates as long as there are enough funds for
this. Ethereum has recently been deployed in real life. It is, however, still a
very young project and it is unclear how successful it will be in the real life.
Moreover, as recently observed by Luu et al. [29] Ethereum may be susceptible
to attacks where the adversary wastes miners’ computational resources, which,
in turn means that the miners might have incentives not to verify the correctness
of the scripts. This, at least in theory, puts the whole Ethereum security model
at risk.

Some of the other new cryptocurrencies go in the opposite direction by remov-
ing the possibility of having scripts at all. Sometimes this is a price for hav-
ing additional interesting features in a currency. One example is the Zerocash
[10], where the key new feature is the real anonymity (obtained by using the
zero-knowledge techniques). Another, slightly different example is the Lightning
system, which is a new proposal for micropayments constructed on top of the
Bitcoin financial system, that also allows only standard transactions between
the parties.

1.2 Our Contribution: Contracts Without Scripts

These observations lead to the following natural question: can we efficiently
construct non-trivial contracts using only the standard transactions? In this
paper we answer this affirmatively. We show (in Sect. 3.2) a general technique
for efficiently solving the Zero-Knowledge Contingent Payment problem using
only standard transactions for any f such that the corresponding language {x :
f(x) = true} has an efficient zero-knowledge proof of knowledge of a special (but
very broad) form, that, in particular, includes the sigma-protocols (see, e.g.,
[20]). We define this class of protocols in Sect. 3.3, but for a moment let us only
say that it includes many natural languages. As an example we show an efficient
protocol for selling a factorization of an RSA modulus, which is a problem that we
already discussed at the beginning of this section. We implemented our protocol
and confirmed its efficiency (see Sect. 3.4). In our construction we do not rely
on any costly cryptographic mechanisms such as the generic secure multiparty
computation protocols, or the generic zero-knowledge schemes. Instead, we use
the standard and simple cut-and-choose technique. Our techniques can also be
used to solve, in a similar way, the “trading across chains” problem. Because of
the lack of space this is shown in the extended version of this paper [7].

Our protocols are proven secure in the random oracle model, and are based on
standard cryptographic assumptions, an assumption that time-lock encryption
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of [37] is secure, plus one additional assumption about the strong unforgeability
of the Elliptic Curve DSA (ECDSA) signatures used in Bitcoin. We describe this
assumption in more detail in Sect. 2. Our protocols have an exponentially small
probability of error (i.e.: the probability that the adversary cheats), assuming
that we are allowed to use so-called multisig transactions, i.e., transactions that
can be spent by providing signatures with respect to k public keys (out of n ≥ k
possible public keys). Currently such transactions are considered standard for
n ≤ 15. We note that if one does not want to use such transactions, then our
solution also works, but the error probability is inversely proportional to the
running time of the parties.

Related work. As already mentioned, the Zero-Knowledge Contingent Pay-
ment protocol has been described before in [16] and recently implemented [31]
for selling a proof of a sudoku solution. When viewed abstractly, our construc-
tion is a bit similar to the one of [16]. There are some important differences,
though. Firstly, the protocol of [16] uses some non-standard scripts. Secondly,
it is vulnerable to the “malleability attacks”: the refund transaction depends on
an identifier of the txn transaction, and becomes meaningless if txn is mauled.
Finally, the protocol of [16] uses generic zero knowledge protocols, or can be used
only for very simple problems (like selling the sudoku solution), while we rely
on much simpler and more efficient methods (in particular: the cut-and-choose
technique).

2 Preliminaries

Definitions. We will sometimes model the hash functions as random oracles,
see [9]. A signature scheme consists of a key generation algorithm SignGen, a
signing algorithm Sign, and a verification algorithm Vrfy. For a formal definition
of a signature scheme see [26], or the extended version of this paper [7]. The
standard security notion for signatures is the existential unforgeability under
a chosen message attack. In this paper we need a stronger security definition,
namely the strong existential unforgeability under a chosen message attack. This
is formally defined in [1,18]. Essentially, the definition is as follows. Consider the
standard chosen-message attack during which the adversary interacts with a
signing oracle that knows some secret key sk . We say that A mauls a signature
if he is able to produce an output (ẑ, σ̂) such that σ̂ is a valid signature on ẑ
with respect to the public key pk (that corresponds to sk), and σ̂ has not been
sent to A before. A signature scheme is existentially strongly unforgeable under a
chosen message attack (or: non-malleable) if for any polynomial-time adversary
the probability that he mauls a signature is negligible.

We will use (public key and private key) encryption schemes, defined in a
standard way (see [26] or [7].) We say that a public-key encryption scheme is
additively homomorphic if for every valid public key pk and private key sk the
set of valid messages for pk is an additive group (Hpk ,+). Moreover, we require
that there exists an operation ⊗ : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗ ∪{⊥}, such that for
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every valid (pk , sk) and every pair z0, z1 ∈ Hpk we have that Decsk (Encpk (z0) ⊗
Encpk (z1)) = z0 + z1 (where Enc and Dec are the encryption and decryption
algorithms, respectively).

Our protocols also rely on the time-lock commitment schemes [17,37] (for
the definition of the standard commitment schemes see, e.g., [26], or [7]). Infor-
mally, (Commit,Open) is a time-locked commitment if it is a standard commit-
ment scheme, except that the receiver can open the commitment by himself
(even if the sender is not cooperating). Such forced opening requires a significant
computational effort. Moreover it is required that this process cannot be paral-
lelized. Every time-lock commitment comes with two parameters: τ0 and τ1 (with
τ0 ≤ τ1), where τ0 denotes the time (in seconds, say) that everybody, including
very powerful adversaries, needs to force open the commitment, and τ1 denotes
time needed by the honest users to force open the commitment. We will call such
a commitment scheme (τ0, τ1)-secure. Of course, this is not a formal mathemat-
ical definition (as it refers to “real time”), but for the purpose of this paper we
can stay on this informal level. Later, in Sect. 3.4 we assume that τ1 = 10 · τ0,
but this choice is slightly arbitrary, and for real practical applications one would
need to perform a more careful analysis of what is the reasonable ratio between
τ0 and τ1 that one can assume.

For a description of the area of zero-knowledge the reader may consult, e.g.,
[24] (a brief introduction also appears in [7]). In our paper we actually need a
stronger notion, namely the zero-knowledge proofs of knowledge [8]. Such proofs
are defined only if L is in NP, and hence for every x ∈ L there exists an NP-
witness w that serves as a proof that x ∈ L. We assume that P knows x and
require that the prover not only proves that x ∈ L, but also convinces the verifier
that he knows the corresponding witness w. Defining formally the property of
a prover “knowing” some value is a bit tricky, and we do not do it here (see,
e.g., [24] for such a definition). Very informally, it is usually defined as follows:
for every (possibly malicious) prover P ∗ there exists a polynomial-time machine,
called the knowledge extractor, that can interact with P ∗ (possibly even rewind-
ing it), and at the end it outputs x. The definition that we use here is more
restrictive. First, suppose without loss of generality, that the last two messages
in the protocol are: a challenge c sent by the verifier to the prover, and provers
response r. We require (cf. Sect. 3.3) that the extractor extracts the witness after
being given transcripts of two accepting executions that are identical except that
that the challenge messages are different (and the response messages may also be
different). This class of protocols includes our protocol for selling the factoriza-
tion of the RSA modulus. It is also similar to the sigma-protocols (see, e.g., [20]),
except that it may have more rounds than 3, but on the other hand we require
that the zero-knowledge property holds also against the malicious verifier. Note
that some sigma-protocols, including the Schnorr protocol, are conjectured to
be secure also in this case. Observe also that we can easily get rid of the “honest
verifier” assumption by requiring the verifier to make his message equal to a
hash of some message (chosen by him) [21]. Hence, our method can be used also
to efficiently “sell” a witness of any relation for which an efficient sigma-protocol
exists.
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Instantiations. As explained in the introduction, Bitcoin uses an Elliptic Curve
Digital Signature Algorithm (ECDSA) [19,25], which is a variant of the Digital
Signature Algorithm (DSA). More concretely, it uses the Secp256k1 curve [14],
but to be able to state our theorems in an asymptotic way we will be more
general and define our protocol over arbitrary elliptic curve. The description of
this algorithm appears in [7].

As it turns out, these signatures are not strongly unforgeable: if (r, s) is a valid
signature on some message z, then also (r,−s mod p) (where p is the order over
which the elliptic curve G is defined) is a valid signature with respect the same
public key (see, e.g., [7] for more on this). In order to make our signature scheme
strongly-unforgeable we follow the guidelines from [39]. Namely, we assume that
the only “legal” signatures have a form (r, s) such that s ≤ (p − 1)/2. To this
end, we simply assume that, whenever our protocol gets as input an ECDSA
signature (r, s) with s > (p − 1)/2, it converts it to one with s ≤ (p − 1)/2
by computing s := −s mod p. An ECDSA scheme with only “legal” signatures
being the ones with s ≤ (p − 1)/2 will be called a positive ECDSA.

We can now informally state our strong unforgeability assumption as fol-
lows: “The positive ECDSA defined over Secp256k1 is strongly unforgeable under
chosen-message attack” (or equivalently: the only way to maul the signatures
defined over Secp256k1 is to negate the s). Note that this statement is informal,
and in order to formalize it we would need to express it in an asymptotic way.
See [7] for more on this, and on the general issue of the malleability of Bitcoin
transactions.

We will use the additively-homomorphic public key encryption scheme intro-
duced by Pascal Paillier [35]. Below, we describe only the properties of this
scheme that are needed in this work. For more details the reader can consult, e.g.,
[35]. The public key pk of this encryption scheme contains a modulus n = p · q,
where p and q are large distinct random primes of the same length. The Pail-
lier encryption scheme is homomorphic over (Zn,+). It is semantically secure
under the Decisional composite residuosity assumption [35]. In the sequel we
will assume that (AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryp-
tion scheme. The elements on which we will perform the addition operations
will be the exponents in the elliptic curve group of the ECDSA scheme. Hence,
we need Zn to be larger than G, and, for the reasons that will become clear later,
it will be convenient to have n � |G|. We therefore assume that on input 1λ the
algorithm AddHomGen produces as output (pk , sk) such that the corresponding
group Zn satisfies n > 2 · |G|4.

We use very standard commitment schemes that are based on the hash func-
tions, and are secure in the random oracle model. Let H be a hash function. In
order to commit to x ∈ {0, 1}∗ the committer chooses random r ∈ {0, 1}λ (where
1λ is the security parameter) and produces as output Commit(x) = H(x||r). In
order to open the commitment it is enough to reveal (x, r). The fact that the
scheme is binding follows from the collision-resistance of H. The hiding property
follows from the fact that we model H as the random oracle (and hence H(x||r)
does not reveal any information about x).
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We use the classic timed commitments of [37]. In order to commit to a mes-
sage x ∈ {0, 1}� (for some �) the committer chooses an RSA modulus n, i.e., he
selects two random primes p and q of length λ (where 1λ is the security parame-
ter) and sets n = pq. He then computes ϕ(n) = (p−1)(q−1). Let t be some para-
meter. The committer takes random y ∈ Z∗

n and computes z := y2t

mod n. Since
he knows ϕ(n) he can compute it efficiently by first computing e = 2t mod ϕ(n)
(doing this using the standard square-and-multiply algorithm takes log2 t squar-
ing modulo n), and then letting z := ye mod n. Finally, he computes H(z) and
outputs y and H(z) ⊕ x, where H : Z∗

n → {0, 1}� is a hash function. On the
other hand, it is conjectured [37] that an adversary, who does not know ϕ(n)
needs to perform t squarings to compute z (and hence to compute x). Also, no
practical methods of parallelizing the problem of computing z is known. It is also
easy to see that this algorithm is a commitment in a standard sense, i.e., if the
committer is cooperating with the receiver then he can open the commitment
efficiently (by sending (p, q) to the receiver). To set the parameter t let c be the
number of squarings that the honest receiver can do in one second. We then let
t = τ1 · c (where τ1 is the parameter of the timed commitment scheme).

A short description of the Bitcoin transaction syntax. We now briefly
describe the syntax of the Bitcoin transactions. A more complete description can
be found, e.g., in [5,7,15]. Since we do not use the non-standard transactions we
will provide a simplified description that ignores this feature of Bitcoin. The users
in Bitcoin are identified by their public keys in the ECDSA signature scheme
(SignGen,Sign,Vrfy). Each such a key pk is called an address. In the simplest
case transaction T simply sends some amount Bx (where x can be smaller than
one) from an address pk0 (called an input of T ) to an address pk1 (called the
output of T ). The amount Bx will also be called the value of T . Transaction
T must contain a pointer to another transaction T ′ that appeared earlier on
the ledger and has value at least Bx, and whose destination is pk0. We say
that T redeems T ′. Transaction T is valid only if T ′ has not been redeemed
by some other transaction before. Hence, in the simplest case a transaction
contains a following tuple [T ] := (TXid(T ′), value : Bx, from : pk0, to : pk1),
where TXid(T ′) denotes the identifier of T ′ (we will define it in a moment),
and [T ] is called a simplified transaction T . Of course, in order for [T ] to have
any meaning it needs to be signed with the private key sk0 corresponding to
pk0. Hence, the complete transaction T has a form ([T ],Signsk0

([T ])), and is
valid if all the conditions described above hold, and the signature on [T ] is
valid with respect to pk0. The TXid(T ) is defined simply as a SHA256 hash of
([T ],Signsk0

([T ]))).
Another standard type of the transactions are the so-called multisig

transactions. In this case [T ] has a form (TXid(T ′), value : Bx, from :
pk0, to “k-out-of-n” : pk1, . . . , pkn) where n ≤ 15. It is signed by pk0. It can
be spent by a transaction T ′′ that is signed by k signatures with respect to k
different public keys from the set pk1, . . . , pkn. More precisely the transaction
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T ′′ has to have a form ([T ′′], σi1 , . . . , σik
), where 1 ≤ i1 < · · · < ik ≤ n and for

every 1 ≤ j ≤ k holds Vrfypkij
([T ′′], σij

) = ok.

3 The Protocols

Our model. We will consider two-party protocols, executed between a Buyer
B and a Seller S. If a party is malicious then she may not follow the protocol (in
other words: we consider the active security settings). The parties are connected
by a secure (i.e. secret and authenticated) channel. Such a channel can be easily
obtained using the standard techniques, provided that the parties know each
others public keys. Observe that in order to do any financial transfers in Bitcoin
they anyway need to know each other keys (let (skB , pkB) be the ECDSA key
pair of the Buyer, and let (skS , pkS) the key pair of the Seller), and the par-
ticipating parties can use the same key pairs for establishing the secure channel
between each other. How exactly these public keys pkB and pkS are exchanged
is beyond the scope of this paper.

The security definition. We now outline a construction of our protocol in
which the Seller sells to the Buyer x such that f(x) = true (for some public
f : {0, 1}∗ → {true, false}). We assume that the “price” of x is Bd, and that,
before an execution of the protocol starts, there is some unspent transaction T0

on the blockchain whose value is Bd, and whose output is pkB (i.e.: it can be
spent by the Buyer). The parties initially share the following common input:
a security parameter 1λ, a price Bd for the secret x, parameters a, b ∈ N such
that a > b, an elliptic curve group (G,O, g,+) for an ECDSA signature scheme,
such that log2 |G|� = λ, and parameters (τ0, τ1). We say that the SellWitnessf
protocol is ε-secure if the following properties hold: (1) except with probability
ε+μ(λ) (where μ is negligible), if an honest Buyer loses his funds then he learns
x′ s.t. f(x′) = true, (2) except with negligible probability, if an honest Seller
does not get Buyer’s funds then the Buyer learns no information about x. We
construct a protocol SellWitnessf (for a large class of functions f) in Sect. 3.3.
First, however, we give an outline of our construction. The necessary ingredients
are defined and constructed in Sects. 3.1 and 3.2.

Outline of the construction. Our protocol consists of several stages. The
main idea can be described as follows (we start with describing an “idealized”
protocol and then we show how to modify it to make it efficient and practical).
Imagine that the parties first create, in a distributed way, an ECDSA key pair
(sk , pk) such that the private key sk is secret-shared between the parties, and the
public key pk is known to both of them. Then, the Buyer prepares a transaction
T1 that sends the output of T0 to the public key pk . Obviously for a moment the
Buyer has to keep T1 private, as posting T1 on the ledger would put his money
at risk (as spending money from T1 requires cooperation of the Seller). He now
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creates a simplified transaction1 [T2] that redeems T1 and sends the output to
the public key pkS of the Seller. Then, the parties jointly sign [T2] with the
shared private key sk in such a way that the signature σ = Signsk ([T2]) is known
only to the Seller. Note that this is possible without revealing T1 to the Seller, as
the only thing that is needed from T1 is its transaction identifier, which happens
to be equal to the hash H(T1) of T1 (in the random oracle model H(T1) clearly
reveals no information about T1).

Let us now briefly analyze the situation after these steps are executed: the
Buyer knows T1, and the Seller knows T2 that spends T1 (but she does not know
T1, so for a moment she cannot make any use of T2). The key idea now is: the
Seller will make a commitment to the signature σ in such a way that opening
this commitment will automatically reveal x (and she will convince the Buyer
that the commitment was formed in this way). Now the Buyer can post T1 on
the ledger, and wait until the Seller redeems it. The only way in which she can do
it, is to publish σ (here we use the assumption that the signatures are strongly
unforgeable), so the Buyer can be sure that he learns x.

This construction is similar to the one described in [16]. Unfortunately, in
practice there are several problems with it. Firstly, there is no way for the Buyer
to “force” the Seller to publish σ, and hence the Buyer’s money can be locked
forever in T1. We solve this problem using the time-locked commitments. The
Seller has to commit with such a commitment to her private share of sk , so
that it can be unlocked by the Buyer after some time. In this way he can get
his money back by signing a transaction T ′

2 that redeems T1 and sends the
money to his key pkB . As described in Sect. 1, an alternative solution is to use
the OP CHECKLOCKTIMEVERIFY instruction. We describe this solution in the
extended version of this paper [7].

Secondly, the currently-known protocols for distributed signing with the
ECDSA signatures are rather complicated and involve costly generic zero-
knowledge techniques [30] (see also [23]). Also, the generic zero-knowledge would
need to be used to prove that the timed commitment above is indeed a commit-
ment to Seller’s share in sk .

Our solution to this problem is to use the standard technique, called cut-and-
choose (see, e.g., [28]). Informally, the idea here is to perform a number a of inde-
pendent executions of a protocol. Then the Buyer tells the Seller to “uncover”
a − b (for some parameter b < a) of them, by opening all her commitments
related to these executions. It is easy to see that, if all the opened commitments
were correct, then most probably a significant fraction of the remaining b (“non-
uncovered”) executions will also be correct. Since some executions may still be
incorrect, we will thus create T1 as a multisig transaction (so it can be spent with
less than b signatures). This is done in Sects. 3.1 and 3.2. Thirdly, we need to
describe how to create the commitment to σ in the last step that requires proving
that “opening this commitment will automatically reveal x”. We do it as follows:
we require that the Seller commits to F (σ) (where F is some hash function),

1 Recall (cf. Sect. 2) that a “simplified transaction” means a transaction without a
signature.
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1. The parties run a times the SharedKGen protocol to generate secret-shared signing keys.
2. The Buyer selects b of these keys and uses GenMsgT to produce transactions T1 and T2.
3. The parties run theUSG protocol to sign T2 using all a shared keys and the Seller generates

commitments. Then the Buyer checks the Seller on the unselected a − b executions.
– The single signing iteration is performed using the KSignGen procedure.

4. Using the Zero Knowledge protocol (and again the cut-and-choose technique) the Seller
proves that by revealing any signature the Buyers will extract the witness x from it.

5. The Buyer broadcasts T1. Then the Seller uses the signatures to broadcast T2 and the Buyer
can extract the witness x (or solve the timed commitment to get his funds back).

Fig. 1. The outline of the SellWitnessf protocol and the subprotocols.

and then we use again the cut-and-choose technique (on the elements of F (σ))
to prove that if the whole F (σ) is opened then x is revealed. Technically, this
is done by showing that revealing F (σ) opens commitments to messages from a
zero-knowledge proof of knowledge of x. For the details see Sect. 3.3. The outline
of the SellWitnessf protocol and the subprotocols is presented on Fig. 1.

3.1 The Two-Party ECDSA Key Generation Protocol

The first ingredient of our scheme is a protocol in which two parties, the Seller
and the Buyer, generate a (public key, private key) key pair for the ECDSA
signatures, in such a way that the secret key is secret-shared between the Seller
and the Buyer. To be more precise, fix an elliptic curve (G,O, g,+) constructed
over a field Zp and recall that the secret key in the ECDSA signatures is a private
integer d ∈ Z|G|. We construct a two-party protocol, that we call SharedKGen,
in which both parties take as input a security parameter 1λ and at the end they
both know an ECDSA public key pk = d · g (where d is secret), and additionally
the Seller knows dS ∈ Z|G| and the Buyer knows dB ∈ Z|G| such that dS ·dB = d
(mod |G|) is a secret-sharing. The protocol is very similar to the classic actively-
secure key generation protocols for the discrete log signatures [36]. Because of
the lack of space it is presented in the extended version of this paper [7].

3.2 The Unique Signature Generation Protocol

After the parties generate a key pairs (sk1, pk1), . . . , (ska, pka) using the
SharedKGen protocol, they perform an additional procedure, called unique signa-
ture generation (USG) protocol, whose goal is to sign a message z ∈ {0, 1}∗ with
respect to these keys. The message z is chosen by the Buyer and may depend on
the public keys that were generated in the SharedKGen phase, and on the Buyer’s
private randomness. During the execution of the USG protocol a−b private keys
are “uncovered” (here b < a is some parameter), i.e., they are reconstructed by
the parties. At the end of the execution they are discarded and the output of
the protocol depends only on the key pairs whose private keys were not uncov-
ered. Let (ŝk1, p̂k1), . . . , (ŝkb, p̂kb) denote these key pairs. Each p̂ki is known to
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both parties, and each ŝki remains secret and is shared between the parties (as
a pair (d̂i

S , d̂i
B) of shares). Moreover the Seller knows the ECDSA signatures

σ̂1, . . . , σ̂b on z with respect to p̂k1, . . . , p̂k b (respectively). The Buyer does not
know these signatures, but we require that the Seller is committed (again: using
COM) to each F (σ̂i), where F is a hash function (modeled as a random oracle).
Let Γ1, . . . , Γb denote the commitments created this way. Finally, we want the
Buyer to be able to “force open” the values d̂1S , . . . , d̂b

S after some time τ1, so that
he can reconstruct the private keys ŝk1, . . . , ŝk b and sign any message that he
wants using these keys. This is achieved using a (τ0, τ1)-secure time-locked com-
mitment scheme TLCOM = (TLCommit,TLForceOpen). Let Φ1, . . . , Φb denote
the timed-commitments that were created this way.

To explain informally our security requirements, first let us say what are the
goals of a malicious Seller. One obvious goal is to produce a signature on some
message z∗ �= z (with respect to some p̂k i). A more subtle (and more specific
to our applications) goal for the Seller is to learn some signature σ∗

i on z (with
respect to one of p̂k1, . . . , p̂k b) other than σ̂1, . . . , σ̂b. Finally, she could try to
time-commit to some value other than d̂i

S (so that, after time τ1 passes, the
Buyer cannot reconstruct ŝk i). Formally, we say that the malicious Seller S∗

breaks the key i (for i = 1, . . . , b) if the Buyer did not abort the protocol and
one of the following holds:

– after the execution of the protocol S∗ produces as output (σ̂∗
i , ẑi) such that

σ̂∗
i is a valid signature on ẑi �= z with respect to p̂k i,

– after the execution of the protocol S∗ produces as output σ̂∗
i such that σ̂∗

i is
a valid signature on z with respect to p̂k i, and S∗ opens the commitment Γi

to a value different than F (σ̂∗
i ),

– the value di∗
B that results from forced opening of Φi is such that d̂i

S · di∗
B �= d̂i.

Now, consider a malicious Buyer. Informally, his goal is to learn any valid sig-
nature on z with respect to any key p̂k1, . . . , p̂k b. If he does not succeed in this,
then another goal that he could try to achieve is to learn at least one of the
F (σ̂i)’s. Recall also that the secrets of the Seller are time-locked. Hence after
time τ0 the Buyer can easily “break” the protocol, and our definition has to take
care of it. Formally, we say that a malicious Buyer B∗ wins if the Seller did not
abort the protocol and before time τ0 one of the following holds:

– the B∗ produces as output a signature on z∗ (either z∗ = z or z∗ �= z) that is
valid with respect to one of the p̂k i’s,

– the B∗ learns some information about one of the F (σ̂i)’s.

We say that a USG protocol is (ε, b̂)-secure if (a) for every polynomial-time
malicious Seller the probability that she breaks at least b̂ keys is at most ε+μ(λ),
where μ is negligible, and (b) for every polynomial-time malicious Buyer the
probability that he wins is negligible.
The implementation of the USG protocol. Our USG protocol is depicted
on Fig. 2. We assume that before it is executed the parties run the SharedKGen
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procedure a times (on input 1λ). We denote these executions as SharedKGeni(1λ)
for i = 1, . . . , a. As a result of each execution SharedKGeni, both parties learn
the public keys pk i and they secret-share the corresponding secret keys sk i (let
(di

S , di
B) be the respective shares).

The USG protocol uses as a subroutine the protocol KSignGen from Fig. 3.
This protocol allows the parties to sign a message z using the secret key that
is secret shared d = dS · dB . First they jointly create signing randomness K.
Then the Seller creates a new key in the Paillier encryption scheme and sends
the encryption of his share dS of the signing key d to the Buyer. The Buyer
calculates the encryption of the unfinished signature (using the homomorphic
properties of the Paillier cryptosystem) and sends it to the Seller. Then the
Seller decrypts it and completes the signature σ. At the end the Seller commits
to F (σ) and creates a timed commitment to dS . We now have the following
lemma, its proof appears in [7].

Lemma 1. Suppose Paillier encryption is semantically secure, COM and
TLCOM are secure commitment schemes, and the ECDSA scheme used in the
construction of the USG is Strongly Unforgeable signature scheme. Then the USG

protocol constructed on Fig. 2 is (ε, b̂)-secure for ε = (b/a)b̂.

1. The Buyer chooses a random subset J ⊂ {1, . . . , a}, such that |J | = a − b. Let {j1, . . . , jb}
denote the set {1, . . . , a} \ J .

2. The Buyer chooses a message z to be signed and sends it to the Seller.
3. For i = 1 to a the parties execute the KSignGen(1λ) procedure depicted on Fig. 3. As a result

of each such execution, the Seller is committed to Si = F (σi) and timed-committed to di
S .

4. The Buyer sends J to the Seller.
5. For every j ∈ J the Seller opens the commitments to Sj and dj

S , and sends σj , kj
S and sk j

AH

to the Buyer.
6. The Buyer aborts if any of the commitments did not open correctly. Otherwise he verifies if the

following holds (for every j ∈ J ): (a) Vrfypkj (z, σj) = ok, (b) F (σj) = Sj , (c) dj
S · dj

B · g =

pk j , and (d) Dec
sk

j
AH

(cj
S) = dj

S ,

7. If the verification fails then the Buyer aborts. If he did not abort then the parties use as out-
put the values that were not open in Step 5. More precisely, the parties set (ŝk i, p̂k i, σ̂i) :=
(sk ji , pk ji , σji).

Fig. 2. The USG protocol.

3.3 The Construction of the SellWitnessf Protocol

In this section we show how to use the USG protocol to construct the
SellWitnessf protocol (defined in Sect. 3). Our assumption is that f has a
zero-knowledge proof of knowledge protocol, that we denote F , in which the
Seller can prove that she knows an x such that f(x) = true. Additionally
F consist of two phases: SetupF and ChallengeF . Let the values AF and BF
denote the views of the Seller and the Buyer (respectively) after executing
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reyuBrelleS
sample: kS ← Z

∗
|G|

compute: KS := kS · g Commit(KS)

KB

sample: kB ← Z
∗
|G|,

compute: KB := kB · g

Open(KS)
K := kS · KB

if K = O then abort
K := kB · KS

if K = O then abort

The parties now know pk , K ∈ G. The corresponding discrete logs of these values are
multiplicatively shared between the parties as pairs (dS , dB) and (kS , kB).

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

parse K as (x, y)
r := x mod |G|
if r = 0 then abort

(pkAH, skAH) :=

AddHomGen(1λ)
cS := AddHomEncpkAH(dS) pkAH, cS

c0 := (kB)−1 · H(z) mod |G|
c1 := AddHomEncpkAH(c0)

t := (k−1
B ) · r · dB mod |G|

c2 := c1 ⊗ (cS)t

samples u ← {1, . . . , |G|2}
cB := c2⊗AddHomEncpkAH(u·|G|)s0 := AddHomDecskAH(cB)

s := (kS)−1 · s0 mod |G|
if s = 0 then abort
σ := (r, s)
if Vrfypk (z, σ) = ⊥ then abort
S = F (σ)

cB

Γi := Commit(S)
Φ := TLCommit(dS)

Γi, Φ

Fig. 3. The KSignGen(1λ) procedure. Recall that G is an elliptic curve group for
ECDSA, and (AddHomGen,AddHomEnc,AddHomDec) is a Paillier encryption scheme
which is additively homomorphic over Zn, where n > 2 · |G|4.

the SetupF phase. In the ChallengeF phase the Buyer generates a challenge
message cF = GenChallengeF (BF ) and sends it to the Seller. Then the Seller
calculates the response rF = GenResponseF (x,AF , cF ) and sends it to the
Buyer. At the end the Buyer accepts according to the output of the function
VerifyResponseF (BF , cF , rF ) ∈ {true, false}. The fact that F is a proof of knowl-
edge is formalized as follows: we require that there is also a function ExtractF
s.t. ExtractF (BF , c1F , r1F , c2F , r2F ) = x′ and f(x′) = true if only VerifyResponseF
(BF , ci

F , ri
F ) = true for i = 1, 2 and c1F �= c2F . That means that the witness

x′ can be computed from the correct answers to two different challenges. We
also assume that from the point of view of the Seller the challenge cF is chosen
uniformly from the set XAF . Without loss of generality we also assume that
XAF = {0, 1}.
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The parties use the USG protocol, so we have to describe how the Buyer
produces the message z to be signed. Given the public keys ˆpk1, . . . ,

ˆpk b the
Buyer first creates a transaction T1 that takes Bd from his funds and sends
them to a multisig escrow “b-out-of-(2b − 1)” using public keys ˆpk1, . . . ,

ˆpk b

and b − 1 times his own public key pkB . The Buyer does not broadcast T1

yet. Then he creates a transaction T2 that spends the transaction T1 and sends
all the funds (Bd minus fee) to the public key pkS owned by the Seller. The
simplified transaction z := [T2] is the message that the parties later sign. We
call this procedure GenMsgT . We assume that each Si from the USG protocol is
divided into 2λ parts Si,1, . . . , Si,2λ each of size λ. Additionally we assume that
each part Si,j is committed separately. To explain the idea behind our protocol
assume for simplicity that b = 1. Recall that at the end of the USG protocol the
Buyer knows the transaction T1 that sends his funds to the key secret-shared
between the Seller and the Buyer. Both parties know the transaction T2 that
is redeeming the transaction T1 and sends the money to the Seller. The Seller
knows the signature σ on T2, but she cannot use T2 yet, because the Buyer did
not broadcast T1. When the Buyer learns σ then he will be able to learn the
secret random values S1, . . . , S2λ to which the Seller is committed. Additionally
after some (long) time the Buyer will learn the secret key needed to redeem T1

when only he force-opens the time-locked puzzle hiding dS .
Now the Seller and the Buyer will use cut-and-choose technique again. They

run 2λ times the first part SetupF of the zero knowledge proof of knowledge F of
the x satisfying f . Each time the Seller calculates the responses ri

0 and ri
1 to the

challenges c = 0 and c = 1. The Seller encrypts ri
0 and ri

1 using the same key Si

to get γi
0 and γi

1 and she commits to each ciphertext. Then the Buyer selects λ
indices j1, . . . , jλ and challenges the Seller on them using c1, . . . , cλ ∈ {0, 1}. The
Seller opens commitments to Sj1 , . . . , Sjλ and to γj1

c1 , . . . , γ
jλ
cλ

(the Seller opens
only one of γjk

0 , γjk

1 ) and the Buyer uses secrets Sjk to decrypt γjk
ck

and verify
the response. If the Buyer verifies everything without an error, then the Seller
opens the commitments to γk

0 and γk
1 (but not Sk) for k �= j1, . . . , jλ.

Now the Buyer broadcasts the transaction T1. The Seller can spend it by
revealing σ — in that case the Buyer can compute Sk, decrypt γk

0 and γk
1 to

learn responses rk
0 and rk

1 and from them extract the value x. And if the Seller
does nothing then after some time the Buyer will solve his time-locked puzzle,
learn the secret key and take his funds back. The SellWitnessf protocol is depicted
on Fig. 4. We have the following lemma, its proof appears in [7].

Lemma 2. Suppose Paillier encryption and symmetric encryption are semanti-
cally secure, COM and TLCOM are secure commitment schemes, and the ECDSA
scheme used in the construction of the USG is Strongly Unforgeable signature
scheme. Assume additionally that there is a zero knowledge proof F of knowl-
edge of x s.t. f(x) = true of the required form. Then the SellWitnessf constructed
on Fig. 4 is ε-secure for ε =

(
b
a

)b
.
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1. The parties execute the USG protocol using the provided parameters. The Buyer will generate
transaction T2 to be signed as defined earlier in the procedure GenMsgT .

2. For i = 1 to b:
a) For j = 1 to 2λ: the parties execute the Setupi,j

F phase and the Seller and the Buyer learns
Ai,j

F and Bi,j
F respectively.

b) For j = 1 to 2λ: the Seller calculates the two challenges (in random order) that
can be chosen by the Buyer ci,j

1 and ci,j
2 . Then she calculates the responses ri,j

k =
GenResponseF (x, Ai,j

F , ci,j
k ) for k = 1, 2.

c) For j = 1 to 2λ: The Seller uses the secret Si,j as a key in the symmetric cypher and
encrypts γi,j

k = EncSi,j (ci,j
k , ri,j

k ) for k = 1, 2. Then she commits to γi,j
k for k = 1, 2.

d) The Buyer chooses random subset J i ⊂ {1, . . . , 2λ} of size λ. Then he sends to the Seller
(j, ci,j

B := GenChallengeF (Bi,j
F )) for j ∈ J i.

e) For j ∈ J i: the Seller opens her commitment to Si,j and checks that ci,j
B = ci,j

k for k = 1
or k = 2. She opens the commitments to γi,j

k for only this k.
f) For j J∈� i: the Seller opens her commitments to γi,j

k for k = 1, 2.
g) The Buyer verifies all the commitments.
h) For j ∈ J i: the Buyer decrypts (ci,j , ri,j) = DecSi,j (γi,j

k ). Then he checks that ci,j =
ci,j

B and VerifyResponseF (Bi,j
F , ci,j

B , ri,j) = true.
3. The Buyer broadcasts T1 and the parties wait until it becomes final.
4. The Seller broadcasts T2 using the signatures σ̂1, . . . , σ̂b to get her payment.
5. The Buyer uses signatures σ̂i to calculate secrets Si,j . Then he decrypts all the values γi,j to get

all the challenges and responses ci,j
k , ri,j

k . At the end using any pair of responses he calculates
x′ = ExtractF (Bi,j

F , ci,j
1 , ri,j

1 , ci,j
2 , ri,j

2 ).
6. If the Seller do not redeem the Buyer’s transaction then the Buyer force-opens time-locked

puzzles Φi and uses any of the opened values di
S to get his funds back.

Fig. 4. The SellWitnessf protocol.

Prover Verifier
y sample: x ← Z

∗
n,

if x > n/2 then
set x = n − x,
compute: y = x2 mod nif y is not a square in Zn then set r0, r1 ← Z

∗
n,

otherwise calculate both square roots of y that
are smaller than n/2 and store them in r0, r1 in
a random order Commit(r0),Commit(r1)

x

if x2 �= y mod n or x > n/2 then abort,
let b ∈ {0, 1} be such that rb = x b,Open(rb) accept if and only if

rb = x and the open-
ing of the commitment
verified correctly

Fig. 5. The ZKFactorization(n) protocol

3.4 Protocol for Selling a Factorization of an RSA Modulus

In this section we use the SellWitness protocol to construct the protocol for selling
a factorization of an RSA modulus. To do it, we introduce the ZKFactorization
protocol depicted on Fig. 5 — a zero knowledge proof of knowledge of the
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factorization of the RSA modulus. We now have the following lemma, whose
proof appears in [7].

Lemma 3. Assume that the commitment scheme is hash based and we model
the hash function as a programmable oracle. Then the protocol ZKFactorization
depicted on Fig. 5 is a zero knowledge proof of knowledge of the factorization of
the RSA modulus.

Implementation of the protocol for selling a factorization of an RSA
modulus. We have created a prototype implementation of the protocol for sell-
ing a factorization of an RSA modulus. The main part of the protocol is writ-
ten in C++, it is using the Crypto++ library for cryptographic functions. The
Bitcoin related functionality is written in Java using the bitocinj library. The
communication between C++ and Java is operated by Apache Thrift. The imple-
mentation is only a proof of concept but we were able to verify the feasibility and
efficiency of the protocol. The current version of the protocol can be found on
github.com/SellWitness/ZKFactorization. When using the ZKFactorization pro-
tocol in the SellWitness protocol we were able to simplify the main protocol a
little. In the ZKFactorization protocol the Seller sends the commitments to the
square roots of y but now it is not necessary because we do similar step in the
SellWitness protocol. This is why the only messages exchanged between the par-
ties before the Buyer sends the challenge are: first the Buyer sends yi,j , then the
Seller calculates the square roots ri,j

0 , ri,j
1 of y, encrypts them γi,j

k = EncSi,j (ri,j
k )

and commits to both ri,j
k . In the implementation we use the following parameters:

a = 512, b = 8 and λ = 1024. We use b = 8 because it means “b-out-of-(2b−1)”
multisig transactions, and this kind of multisig transaction are standard in Bit-
coin (for greater b they would be non-standard). We set λ = 1024, so the
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time [s]
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Fig. 6. The running time of the Step 1 and the probability that the Seller successfully
cheats the Buyer in the Step 1 of the SellWitness protocol for the following fixed para-
meters: (i) λ = 1024 and b = 1 (i.e. using only standard single-signature transactions),
and (ii) λ = 512 and b = 8 (i.e. using multi-signature transactions with the greatest
parameters that are standard in Bitcoin) and different values of a. The running time
of Step 1 is proportional to a and does not depend on other parameters. Using greater
b gives much better security.

https://github.com/SellWitness/ZKFactorization
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(i) Step 2: a = 512, b = 1
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Fig. 7. The running time of the Step 2 of the SellWitness protocol for the following
fixed parameter: (i) a = 512 and b = 1 (i.e. using only standard single-signature
transactions), and (ii) a = 1024, and b = 8 (i.e. using multi-signature transactions with
the greatest parameters that are standard in Bitcoin) and different values of λ. The
running time of Step 2 is proportional to b·λ and does not depend on a. The probability
of successfully cheating (by either the Buyer or the Seller) in step 2 is negligible in λ.

ZKFactorization protocol is executed b · 2λ = 8 · 2048 times. Fortunately this
phase does not require any costly public key cryptography operations and there-
fore it is still very efficient. We set a = 512 and b = 8, and hence the probability
of cheating is at most (b/a)b = 2−48. The running time of our protocol (i.e. the
time until the Buyer broadcasts T1) for this configuration (and primes of size
about 512 bits each) is about 1 min — the running time of the USG protocol is
about 33 s and Step 2 in the SellWitnessf protocol takes about 28 s. The numbers
are an average over 10 runs of the algorithm using a single thread on a standard
personal computer. We note that the running time could be improved by using
multiple threads. Additional measurements are presented on Figs. 6 and 7.

We run our protocol on a single machine, and local testing blockchain
(testnet-box) and hence posting on blockchain, and communication between the
parties was almost immediate (our current implementation takes 12 rounds, and
the total communication size is about 60 MB). However, since we use the time-
lock commitment schemes we need a conservative estimate on how much time
would the execution of our protocol take on real blockchain, and when the par-
ties are running in different physical locations. As in our protocol the parties
have to wait for two transactions to be included into the blockchain, we have to
assume that the whole protocol may take up to two hours2. Taking into account
time needed to post messages on the blockchain the running our protocol takes
on average 2 h, we have to have at least τ0 = 5 h, so τ1 should be set to 50 h. Our
tests has shown that an honest user (on an standard personal computer) can
compute about 219 squares (modulo n of size λ = 1024 bits) per second. That
is why in our protocol we set the hardness of the timed commitment to t = 237.

2 It takes on average 10 min for a transaction to be included into the blockchain but
the users are advised to wait for 6 blocks (≈1 h) on top of the transaction.
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