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Abstract. Protocols for secure electronic voting are of increasing soci-
etal importance. Proving rigorously their security is more challenging
than many other protocols, which aim at authentication or key exchange.
One of the reasons is that they need to be secure for an arbitrary number
of malicious voters. In this paper we identify a class of voting protocols
for which only a small number of agents needs to be considered: if there
is an attack on vote privacy then there is also an attack that involves at
most 3 voters (2 honest voters and 1 dishonest voter).

In the case where the protocol allows a voter to cast several votes
and counts, e.g., only the last one, we also reduce the number of ballots
required for an attack to 10, and under some additional hypotheses, 7
ballots. Our results are formalised and proven in a symbolic model based
on the applied pi calculus. We illustrate the applicability of our results
on several case studies, including different versions of Helios and Prét-a-
Voter, as well as the JCJ protocol. For some of these protocols we can
use the ProVerif tool to provide the first formal proofs of privacy for an
unbounded number of voters.

1 Introduction

Electronic voting has been adopted in several countries, such as the United
States, Estonia, Australia, Norway, Switzerland, and France, to conduct legally
binding elections (or at least trials for some of them). Electronic voting systems
should ensure the same properties than the traditional paper ballots systems,
despite the fact that malicious users may easily intercept ballots and try to
forge fake ones. One crucial property is vote privacy: no one should know how a
particular voter voted. Symbolic models have been very successful in the analysis
of more traditional protocols that aim at confidentiality or authentication. Many
decision techniques and several tools have been developed (see [1-3] to cite only
a few) which have been successfully applied to a large number of case studies
including widely deployed protocols such as TLS [4]. Vote privacy in symbolic
models can be expressed through a rather simple and natural property [5]: an
attacker should not be able to distinguish the situation where Alice votes 0 and
Bob votes 1 from the situation where the votes are swapped:

Vaiice(0) | Veob(1) = Vaiice(1) | VBob(0)
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Despite its apparent simplicity, this property is difficult to check for several rea-
sons. Firstly, most existing decision techniques apply to reachability properties
(such as authentication and confidentiality) but not to indistinguishability prop-
erties. Another major difficulty comes from the fact that e-voting systems involve
less standard cryptographic primitives and sometimes even specially designed,
ad-hoc primitives (like for the protocol used in Norway [6]). Typical primitives
in e-voting are homomorphic encryption, zero-knowledge proofs, reencryption
mixnets, etc. Some techniques and tools [7-10] for indistinguishability properties
have recently been developed to automatically check indistinguishability prop-
erties and some of them can handle part of the primitives needed in e-voting.
For example, ProVerif and Akiss have both been successfully applied to analyse
some voting protocols [5,10-14]. However, a third source of difficulty is the fact
that voting systems are typically parametrized by the number of voters: both
the bulletin board and the tally processes have to process as many ballots as
they receive. This is typically modeled by considering processes parametrized by
the number of voters. Even though parameterized protocols can be encoded in
a formalism such as the applied pi calculus, such encodings are complicated and
generally beyond the capabilities of what automated tools support. ProVerif,
which to the best of our knowledge is the only tool that supports verification of
indistinguishability properties for an unbounded number of sessions (i.e. allow-
ing replication) generally fails to prove vote privacy. One exception is a case
study of the Civitas voting system by Backes et al. [11] using ProVerif. The
other tools for indistinguishability (e.g. SPEC [8], Akiss [10], and APTE [9]) can
only handle a finite number of sessions. So case studies have to consider a finite
number of voters [10,12-14] unless proofs are conducted by hand [13,15].

Contributions. Our main contribution is a reduction result for a reasonably
large class of voting protocols. If there is an attack on privacy for n voters,
we show that there also exists one that only requires 3 voters: 2 honest voters
are necessary to state the privacy property and then 1 dishonest is sufficient to
find all existing attacks. This result significantly simplifies security proofs: there
is no longer need to consider arbitrarily many voters, even in manual proofs.
Moreover, this result allows the use of automated tools for checking equivalence
properties and justifies previous proofs conducted for a fixed number of voters
(provided at least one dishonest voter was considered).

Several protocols assume voters may revote several times. This is for example
the case of Helios or Civitas. Revoting is actually crucial for coercion-resistance
in Civitas. When revoting is allowed, this should be reflected in the model by
letting the ballot box accept an unbounded number of ballots, and retaining only
the valid ones according to the revote policy. This aspect is typically abstracted
in any existing formal analysis. We show that we can simplify the analysis by
reducing the total number of ballots to 10 for typical revoting policies (e.g. the
last vote counts) and typical tally functions. Altogether, our result amounts in a
finite model property: if there is an attack on privacy on n voters that may vote
arbitrarily, then there is an attack that only requires 3 voters and at most 10
ballots. We can further reduce the number of ballots to 7 for a class of protocols
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that has identifiable ballots, that is ballots that reveal the corresponding public
credentials. Of course, only 3 ballots are sufficient when revoting is disallowed.

Our result holds in a rather general setting provided that the e-voting system
can be modeled as a process in the applied-pi calculus [16]. Of course, this
reduction result cannot hold for arbitrary systems. For example, if the tally phase
checks that at least 4 ballots are present then at least 4 voters are necessary to
conduct an attack. So we model what we think to represent a “reasonable” class
of e-voting systems. The process modeling the voter may be an arbitrary process
as long as it does not depend on credentials of other voters and provided voters
do not need to interact once the tally phase has started. This corresponds to
the “vote and go” property, that is often desirable for practical reasons, but also
excludes some protocols such as [17]. Once the vote is casted the authorities
proceed as follows.

— The bulletin board (if there is one) performs only public actions such as pub-
lishing a received ballot, possibly removing some parts and possibly after some
public tests, i.e. tests that anyone could do as well. Typical public tests are
checks of signature validity, well-formedness of the ballots, or validity of zero-
knowledge proofs. Alternatively, we may consider an arbitrary bulletin board
in case it is corrupted since it is then part of the adversarial environment.

— Next, a revote policy is applied. We consider two particular revote policies: the
policy which selects the last ballot, which is the most common one, and the
policy that selects the first one, which encodes the situation where revoting is
prohibited.

— Finally, the tally is computed according to some counting function. We con-
sider in particular two very common functions: the multiset and the additive
counting functions. The multiset counting function returns the votes in an
arbitrary order and corresponds for example to the output of a decryption
mixnet. The additive counting function returns the number of votes received
by each candidate.

We believe that these conditions are general enough to capture many existing
e-voting schemes.

Applications. To illustrate the applicability of our result, we re-investigate sev-
eral existing analyses of e-voting protocols. First, we consider several versions of
the Helios protocol [18], both in its mixnet and homomorphic versions. These
versions also include the Belenios [19] protocol. We are able to use the ProVerif
tool to show privacy for the mixnet versions of these protocols for a bounded
number of voters and ballots. Our reduction result allows immediately to con-
clude that vote privacy also holds for an arbitrary number of voters. The homo-
morphic version of Helios is out of reach of existing tools due to the presence of
associative and commutative symbols. However, our reduction result does apply,
which means that the manual proof of Helios conducted in [13] did not need to
consider arbitrarily many voters and could be simplified. In case one wishes to
adapt this proof to Belenios [19], our reduction result would alleviate the proof.
The Prét-a-Voter [20] protocol (PaV) has been analysed using ProVerif for 2
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honest voters [12]. Adding a third, dishonest, voter, we can apply our result
and obtain the first proof of vote privacy for an arbitrary number of voters.
Unfortunately, ProVerif did not scale up to verify automatically the protocol
in presence of a dishonest voter. We were also able to apply our result (and a
proof using ProVerif) to a protocol by Moran and Naor and to the JCJ protocol
implemented in Civitas (without a ProVerif proof).

Related work. To our knowledge, the only other reduction result applying to
voting protocols was proposed by Dreier et al. [21]. Their result states that it
is sufficient to prove vote privacy for two honest voters when the protocol is
observationally equivalent to a protocol consisting of the parallel composition
(not sharing any secret) of a partition of the set of voters. Applicability has
however only been shown to examples where this trivially holds, e.g. [17,22] as
these protocols use completely public tallying mechanisms. In general, proving
the required equivalence does not seem easier than proving directly vote secrecy.
Moreover, it does not apply to some well known protocols such as Helios since
a dishonest voter is needed to mount the vote replay attack [13].

The results of [23,24] show how to reduce the number of agents, in the case of
trace properties [23] and equivalence properties [24]. The major difference with
our work is that [23,24] simply reduce the number of agent identities while the
number of sessions (or processes) remains the same. In contrast, we do not only
reduce the number of voter identities but also the number of ballots the ballot
box needs to process, yielding a simpler process.

2 Modelling Security Protocols

As usual in symbolic protocol analysis we model protocol messages as terms.
Protocols are modelled in a process calculus, similar to the applied pi calcu-
lus [16].

2.1 Messages

We assume an infinite set of names N' = {a,b,k,n, ...} (which are used to rep-
resent keys, nonces, ...) and an infinite set of channels Ch = {c, ¢1, ch, chy,...}
(which are used to represent communication channels). We also consider a set of
variables X = {x,y, ...}, and a signature X' consisting of a finite set of function
symbols.

Terms are defined as names, variables, and function symbols applied to other
terms. In particular, a channel is not a term. Let N C N and X C X, the set
of terms built from N and X by applying function symbols in X' is denoted by
T(X,NUX). We write fu(t) (resp. fn(t)) for the set of variables (resp. names)
occurring in a term ¢. A term is ground if it does not contain any variable.

Ezxample 1. We model asymmetric encryption, signatures, and pairs by the sig-
nature

2 senc def {aenc/3, adec/2, pk/1,sig/2, checksig/2, getmsg/1,vk/1, (-,) /2,71 /1, m2/1}
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where f /idenotesthat f hasarity:. Consider termt ef (pk(sk), aenc(pk(sk),r,m))
where sk,7,m € N. The term t represents a pair consisting of the public key
pk(sk) associated to the private key sk and the encryption of message m with pub-
lic key pk(sk) using randomness r. To improve readability, we may sometimes write
(t1,...,t,) instead of (1, (... (tn1,tn) .. )).

We denote by £ = [ty,...,t,] the list of terms ¢1,...,t, and by tg:: £ the list
obtained by adding the term ¢y to the head of the list, i.e., tg :: £ = [to, t1,. .., tn].
Sometimes we interpret lists as multisets and we write £; =# /5 for the equality
of the multisets corresponding to these lists.

A substitution is a partial function from variables to terms. The substitution
o that maps z; to t; (1 <1i <mn)is denoted {1 — t1,...,2, — t,} and we write
dom(o) = {z1,...,x,} for the domain of o. We denote by @ the substitution
whose domain is empty. We always suppose that substitutions are acyclic. As
usual we extend substitutions to terms and write to for the application of ¢ to
term ¢.

To model algebraic properties of cryptographic primitives, we define an equa-
tional theory by a finite set E of equations u = v with u,v € T(X, X). We
define =g to be the smallest equivalence relation on terms, that contains E and
that is closed under application of function symbols and substitutions of terms
for variables.

Ezxample 2. Continuing Example 1 we define the equational theory Esenc by the
following equations.

adec(xy, aenc(pk(zk), Tr, Tm)) = Tm checksig(sig(z,y), vk(y)) = ok
mi({z1,22)) = @ (i € {1,2}) getmsg(sig(z,y)) = =

Then we have that adec(sk, m2(t)) =g, m.

To illustrate our calculus we consider the Helios e-voting protocol as running
example. The Helios protocol relies on zero knowledge proofs. We next specify
the equational theory for the particular zero knowledge proofs built by the Helios
participants.

Ezxample 3. The Helios zero knowledge proofs can be modelled by the signature
Tae = {zkpg/3, checkzkpg /2, okzkpg /0} U {zkpZh, /3, checkzkpiZ, /3, okzkp™h, /0 men

In case of homomorphic tally, the voters should also prove that their vote is
valid, which can be modeled in a similar way. When submitting an encrypted
vote, voters are required to prove that the encryption is well-formed, that is
to say, that they know the corresponding plaintext and randomness. This is
reflected by the following equation.

checkzkpg (zkpg (2T, zv, aenc(zpk, zr, xv)), aenc(xpk, xr, zv)) = okzkpg.

In the decryption mixnets-based variant of the Helios protocol, the talliers output
a zero knowledge proof of correct mix and decryption. Such a proof establishes
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that the output of the decryption mixnet is indeed a permutation of the content
of the encrypted ballots received as input. This is captured by the following
infinite set of equations. For all m € N, and all {i1,...,i,,} = {1,...,m},

checkzkppy (zkppm (zk, xciph, xplain), xciph, xplain) = okzkppy

with zciph = (aenc(pub(xk),zri,zv1),...,aenc(pub(zk), 27, 2v,)) and
aplain = (xv;y, ..., 2v;, ).

In all the examples of this section, we will consider the signature X' = 3, U
2p and the equational theory E = Ezenc U Eqip.

We say that a symbol + is associative and commutative (AC in short) w.r.t.
an equational theory E if E' contains the two equations:

r+y=y+r r+@yt+z)=(@+y +z

2.2 Processes

We model protocols using a process calculus. Our plain processes are similar to
plain processes in applied pi calculus [16] and are defined through the grammar
given in Fig. 1 where c is a channel, ¢,t;,t5 are terms, x is a variable, n is either
a name or a channel, and ¢ € N is an integer. The terms ¢,t;,t2 may contain
variables.

The process 0 does nothing. P | @

PQ:=0 behaves as the parallel execution of processes
P|Q P and Q. vn.P restricts the scope of n. When
vn.P n is a name, it typically represents a freshly
P generated, secret value, e.g., a key or a nonce,
if t1 = to then P else Q in P. When n is a channel, it declares a
c(z).P private channel, that cannot be accessed by
&(t).Q the adversary. Replication !P behaves as an
i P unbounded number of copies of P. The con-

ditional if t; =t then P else ) behaves as
Fig. 1. Syntax of plain processes I if 1 and t are equal in the equational the-
ory and as @ otherwise. The process c(x).P
inputs a message t on channel ¢, binds it to « and then behaves as P where x
has been replaced by ¢. ¢(t).Q outputs message t on channel ¢ before behaving
as Q. Our calculus also introduces a phase instruction, in the spirit of [24,25],
denoted i : P. We denote by Phase(P) the set of phases that appears in P, that
is the set of j such that j : @ occurs in P. By a slight abuse of notations, we
write Phase(P) < Phase(Q) if any phase in Phase(P) is smaller than any phase
in Phase(Q).
As usual, names and variables have scopes, which are delimited by restrictions
and inputs. We write fu(P), bv(P), fn(P) and bn(P) for the sets of free and
bound variables, and free and bound names of a plain process P respectively.
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Ezxample 4. A voter in Helios proceeds as follows. She computes her ballot by
encrypting her vote with the public key pk(skE) of the election. The corre-
sponding secret key is shared among several election authorities, which is not
modeled here. Then she casts her ballot together with her identity and a zero
knowledge proof through an authenticated channel. All this information will be
published on a public bulletin board. The process V (pk(skE), cred, id,v) models
the actions of a voter with identity id and credential cred casting a ballot for
candidate v:

def

V (pk(skE),cred,id,v) = vr. bb({id,sig(bal, cred), prf))

where bal = aenc(pk(skE),r,v) and prf = zkpg(r,v,bal). The authenticated
channel is modelled by a signature although Helios relies on a login/password
mechanism.

Ezxtended processes keep track of additional information during an execution:
the names that have been bound, the currently active processes that are running
in parallel, the history of messages that were output by the process and the
current phase.

Definition 1 (Extended process). An extended process is a tuple (€;P; ;1)
where:

— £ is a set of names and channels that are restricted in P and ®;

— P is a multiset of plain processes with fu(P) = 0;

- & ={x1 = uy,..., Ty — Uy} s a ground substitution where uy,...,u, repre-
sent the messages previously output to the environment.

— 1 15 an integer denoting the current phase.

Ezample 5. The following extended process models two honest Helios voters id 4
and idp ready to cast their ballots v4 and vp respectively in a first phase, and
the Helios tallying authorities Tal ready to tally the cast ballots in a second
phase

Helios(va,vp) &f (£0,1: V4 |1:Vp|2:Tal,0,1)

where & is a set of names with cred 4, credg € &,

Vi 'V (pk(skE), creda,ida, va) and Vi % V(pk(skE), credp, idp, vp)

model the two honest voters where V is defined in Example 4, and
def
Tal = bb(aba).bb(zbp).T
for some process T' modelling the tallying authorities.

Given A = (&;P;®;i), we define the set of free and bound names of A as
m(A) = (fn(P)U fn(P)) N\ &, and bn(A) = bn(P) U E. Similarly free and bound
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variables are defined as fv(A) = (fv(P) U dom(®P)), and bv(A) = bv(P). An
extended process A is closed if fu(A) = dom(P).

The operational semantics of our calculus is defined by a labelled transition
system which allows to reason about processes that interact with their environ-

ment. The transition relation A = B relates two ground extended processes A
and B and is decorated by a label ¢, which is either an input (¢(M)), an output
(vz.e{x)), or a silent action (7). Silent actions are standard, while visible input
and output actions are interactions with the adversary on public channels. An
output label va.¢(x) reflects that messages are output “by reference”: the label
contains the variable added to dom(®) which maps to the ground message that
was output. The input label ¢(M) contains the term M used by the adversary to
compute the message: M may be constructed from previous outputs (addressed
through variables in dom(®)), but is not allowed to use private names. The
transition relation is formally defined in the companion technical report [26].

Notations. Given a set S we denote by S* the set of all finite sequences of
elements in S. We may also write @ for the finite sequence uy, ..., u,. Let A be
the alphabet of actions (in our case this alphabet is infinite and contains the

special symbol 7). For every w € A*, the relation 5 on processes is defined in
the usual way, i.e., we write A = A’ when w = ¢145---£, and A b, Ay L,

L A For s € (A~ {7})*, the relation = on processes is defined by: A = B
if, and only if there exists w € A* such that A = B and s is obtained by erasing
all occurrences of 7 from w.

Ezxample 6. Continuing our running example we illustrate the operational
semantics by the following transitions

) vya.bb{ya) vys.bb{yp) phase 2 (5;T;¢; 2)

Helios(va,vp where

- &E=&U {TA,TB}7

— @ = {ya — (ida,sig(bala,creda), pria),yp — (idp,sig(balp,credp), prip)}
where balc = aenc(pk(skE),rc,ve) and prfo = zkpe(re, ve, bale) for C €
{4, B}.

A frame ¢ = vE.P consists of a set of names £ and a substitution ¢ =
{z1 — u1,...,2, — u,}. The names £ are bound in ¢ and can be a-converted.
Moreover names can be added (or removed) to (from) £ as long as they do
not appear in &. We write ¢ =, ¢’ when frames ¢ and ¢’ are equal up to a-
conversion and addition/removal of unused names. In this way two frames can

always be rewritten to have the same set of bound names. When A = (&;P; ;1)

is an extended process, we define ¢(A) Lea.

Given a frame ¢ = v€.9 an attacker can construct new terms building on
the terms exposed by . For this the attacker applies a recipe on the frame. A
recipe R for a frame ¢ is any term such that fn(R)NE = () and fu(R) C dom(®).
An attacker is unable to distinguish two sequences of messages if he cannot
construct a test that distinguishes them. This notion is formally captured by
static equivalence [16] of frames.
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Definition 2 (Static equivalence). Two frames p1 =, vE.P1 and 2 =,
vE. Py are statically equivalent, noted p1 ~ @o when dom(®1) = dom(P2), and
for all recipes M and N of p1 we have that M®1 =g N®1 if f M®Py =g NP,.

Note that in the above definition the frames (7 and @2 have the same set of
recipes as they bind the same names £ and their substitutions have the same
domain.

Ezample 7. Let @ be the substitution of Example 6 and

P = {ya— (ida,sig(bal)y, creda), prfa), yp — (idp,sig(bal, credp), prfp)}

where baly, = aenc(pk(skE),rc,vp) and prfl, = zkpg(re,vp, baly) for C, D €
{A,B} with C # D. Since adec(skE,m(m1(getmsg(ya))))® =g va, but
adec(skE, w1 (m (getmsg(ya))))P’ #g va, we have that

vskE.vra.vrg.® ~g vskE.vr4.vrp.® while vra.vrg.® g vravrg.d

Indeed, an attacker may distinguish between these two frames as soon as he has
the secret key skFE, by simply decrypting the ballots.

Given two extended processes A and As, we often write Ay ~ A for ¢(A;) ~
#(Az). Given an extended process A we define its set of traces as

traces(A) &' {(tr, B) | A Z B}

We can now define what it means for an attacker to be unable to distinguish
two processes even if he is allowed to actively interact with them. This notion
of indistinguishability is naturally modelled by trace equivalence.

Definition 3 (Trace equivalence). Let A and B be two closed extended
processes. A is trace included in B, written A C B, if for every trace (tr,A’) €
traces(A) there exists B’ such that (tr, B') € traces(B) and A’ ~ B'. A and B
are trace equivalent, denoted A~ B, if AC B and B C A.

Intuitively, as the sequence of visible actions in the labels encode the adver-
sary’s actions the definition requires that for the same interaction with the adver-
sary the protocols produce indistinguishable outputs.

3 Modelling E-Voting Protocols

In this section we explain how we formally model e-voting protocols and state
the assumptions needed for our results.

Since many e-voting protocols use zero-knowledge proofs, we consider a sig-
nature X with zkp, checkzkp,okzkp € X' and we assume an equational theory
that can be described by an AC-convergent (possibly infinite) rewrite theory
such that the only rules in which zkp, checkzkp, and okzkp occur, are of the
form:

checkzkp(zkp(Uy, ..., Un), Vi,...,Vy,) — okzkp
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where zkp, checkzkp, okzkp do not occur in the U;, V;. Since the terms U;, V; are
left unspecified, this captures most existing zero-knowledge proofs. In particular,
it covers the zero-knowledge proofs considered in Example 3.

A voting protocol is a family of processes {H”h’"d7m(CTZh7Crﬁd, Kovs
Kob) } s sng,meN Where

— ny and ng are the number of honest and dishonest voters respectively;

— Crh (resp. Cré ) is the set of ny, (resp. nq) voting credentials which determines
the set of honest eligible voters (resp. dishonest eligible voters), such that
Crl NCrd =0. Each credential ¢r € Crl! UCre is a sequence of terms;

— m is the number of ballots accepted during the tally;
— Koy (resp. Kpp) is the set of all private (resp. public) material.

As usual it is sufficient to consider voting processes that model only the
honest voters and the tally (the dishonest voters are left unspecified as part of
the environment, and their credentials are public). We may assume w.l.0.g. that
the tally process starts with a fresh phase and first reads the ballots on the
board. Formally, we assume that voting processes are of the form:

def

Kov, Kpp) = V(ct1) | V(cr2) |-+ | Vern,) |
tall : bb(z1). ... bb(zp). T (Crp, Kov, Kpb)

mrrem(erh crd

np' Y ing

where Cry, = Cr! UCrd . and for all i € {1,...,n,}, ¢¥; € Crl, . Furthermore,
we require that Phase(V) < tall, Phase(T™™) = 0 and T™"™(Cry, Koy, Kob)
contains at most one output which is performed on the channel tal. We note
that from the above structure of a voting process it follows that all traces are

prefixes of traces of the form
tr’-phase tall-bb(RBy). . .bb(RB,, )-vy.tal(y).

V(ér) models an honest voter, whose credentials are ¢ér. T (Crp, Koy, Kpb) is
the remainder of the tallier process. It is parameterised by the number m of
ballots it accepts and the number n of eligible voters. We require that V(¢r) be
independent of n and m and does not use any other credentials, i.e. fn(V(cér))N
Crn C {cr}. These are the only restrictions on the voter process and we believe
them to be reasonable and natural.

An e-voting protocol proceeds in two phases: vote casting and tallying. Dur-
ing the vote phase all voters simply cast their ballots. The tally phase proceeds
as follows. First m ballots are input. Then a public test is applied to these bal-
lots to carry out a first validity check, e.g. verify some zero knowledge proofs
ensuring that the ballots are well formed. Next, the revote policy is applied to
remove votes cast by a same voter, e.g., keep only the last one. Finally, the
process performs the tally and outputs the result.

3.1 Public Tests

As explained above, the ballot box may apply public tests to the casted ballots.
Public tests are Boolean combinations over atomic formulas of the form M = N
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where M, N € T (X, X), i.e. they do not contain any names. An atomic formula
is satisfied when M =g N and we lift satisfaction to tests as expected.

We assume a family of tests {Test™},,en where m is the number of casted
ballots that are tested and Test™ contains m distinguished variables z1, ..., z,,
to be substituted by the ballots. We write Test” ([By, ..., By]) = T when the
test Test™{xy — Bi,...,Tym — By} is satisfied. Finally we say that a test is
voting-friendly whenever satisfaction is preserved on sublists of ballots, that is
Test™([B1,...,Bp]) = T implies Test"([By,,...,B;,]) = T for any 1 < i) <
e <idp < m.

We believe this condition to be natural. It discards contrived tests that would
accept a ballot only if another ballot is present. Conversely, we may consider tests
that discard lists with duplicate ballots.

Ezample 8. The public test applied by the tallying authorities in the Helios
protocol consists of two parts. First, a local test that checks the zero knowl-
edge proofs of each submitted ballot, and second, a global test that checks
that encrypted votes are pairwise distinct. This is to avoid the replay attack
mentioned in [13]. Such checks are formally reflected by the family of tests
{Test™}en with

Test™([By,..., Bn)) € NZ7 Test(B:) N7, ., &Test(Bi, B;)

i= i,7€{1,.

T if B = (id,bal, prf) and checkzkpg(getmsg(bal), prf) =g okzkpg
L otherwise

T if B = (id, bal, prf) and B’ = (id',bal’, prf’)
gTest(B, B’) def and getmsg(bal) # getmsg(bal’)
1 otherwise

ITest(B) &' {

3.2 Revote Policies

Many e-voting protocols offer voters the possibility to cast several votes, keeping
eventually only one vote per voter, e.g. the last submitted ballot. Which vote
is kept depends on the particular policy. Re-voting intends to guarantee some
protection against coercion. We formalize the notion of policy as a function
Policy™™ which takes a list of m terms (intuitively, the vote and credential) and
a set of n credentials (honest and dishonest) and returns the sublist of selected
terms to be tallied. A protocol will depend on a family of such policy functions
{Policy™™},,.men. We consider two particular, but standard revote policies. The
most usual one selects the last cast vote:

n, def

(Vi Vil Cr) = Vi, oo, Vi

last

Policy

where each Vi, = (v, cr) is the last occurence of the credential ¢r € Cry, in the
list [V1,...,Vin]. We also consider the policy which only keeps the first vote of
each voter:

Policypat ([Vi, - Vins Cra) = [Viy o, Vi)
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where each Vj, = (v,cr) is the first occurence of the credential ¢r € Cr, in
the list [V4,..., Vin]. Such a policy typically models the norevote policy (a voter
cannot revote).

3.3 Extracting Ballots and Counting Votes

A voting protocol should tally the ballots “as expected”. Formally, what is
expected can be formalized through an eztract and a counting function.

Given a ballot B, and two sets of terms Kpp, and K,, representing the
public and private material, the extraction function Extract returns the cor-
responding vote and credential, or 1 when a ballot is not well formed.,
i.e., Extract(B,Kp,Kop) € (V x Cry) U {L}. Moreover, we lift the extract

function to lists of m ballots by applying the function pointwise, i.e.,

Extract™ ([B1, . .., Bm), Koy, Kpb) <

[Extract(B1, Kpy, Kpb), - - -, Extract(Bp,, Kpy, Kpb)]
Similar extract functions have been introduced in [27] to define ballot privacy.

Ezample 9. The Extract function for the Helios protocol decrypts the encrypted
vote and associates it with the signature associated to the ballot:
Extract(B, {skE}, {pk(skE)}) &'
(v, (id, cred)) if B = (id, bal, prf) and bal =g sig(aenc(pk(skE),r,v), cred)
L otherwise

Similarly the counting function defines how the protocol is supposed to tally
the votes. The function Count’ takes as input a list of £ pairs (v,cr) € V x Cr
and returns a list of terms as the election result.

Definition 4. Let {Count’},en be a family of counting functions. {Count®}sen
is voting-friendly if for all m,n and lists of terms Wy of size m, Wy of size n
we have that

1. if Wy =% Wy then Count™(Wy) =7 Count™(Ws);
2. if Count™ (W) =# Count™(W>)
then Countm+1((v1,cr1) W) =7 Count”“((vg7 crg) = Wa) iff v = vy

The first assumption requires that the result does not depend on the order in
which votes are provided (intuitively, only valid votes are kept at this stage). We
believe this property to be natural and it excludes contrived counting functions
that would, e.g., only keep votes at even positions. The second assumption states
that we may count “step by step”. This is more restrictive since it excludes the
majority function, i.e., the function that only outputs the name of the candidate
that received most votes. But, it captures the most common result functions,
namely the multiset and the additive counting functions.
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Ezxample 10. The multiset counting function typically arises in mixnet based
tallies, which simply output the list of votes (intuitively once votes have been
shuffled).

Countiyi ([Vi]) &' [v] and Countj ([Va,. .., Vin]) & v Counti =1 (Va, . .., Vin])

where Vi = (v,¢r) and m > 1. The additive counting function can be defined
similarly. For simplicity consider a binary vote, where we just want to count the
number of 1’s:

Countie([Va]) L'y and Countiie([Va, .-, Vi) L+ Count{i= ([Vay - .., Vinl)

where V4 = (v,ér), m > 1 and + is an AC symbol. Both functions are voting-
friendly.

3.4 Properties

When verifying security properties of e-voting protocols it is common to only
consider processes whose runs satisfy a particular property. For instance, vote
secrecy is typically expressed as the indistinguishability of two processes mod-
elling the situations where two honest voters swap their votes. We need however
to ensure that these two honest voters have indeed cast their votes successfully to
avoid trivial attacks. Indeed, in a run where the attacker blocks one of these vot-
ers, but not the other, the election result will be different and the two processes
would be distinguished. Therefore when checking vote secrecy one typically adds
a check that guarantees that the two honest votes are counted. We simply require
that a check check([b1,...,bm]) applied to a list ballots [by, ..., by, ] satisfies the
two following requirements:

— If check([b1, . . . , by,]) holds then we can identify two (intuitively honest) ballots
bi,, b, such that check holds for any sublist containing b;, and b;,.

— If check([b, . .., bn]) does not hold then it does not hold either for any sublist
of these ballots or if some ballots are replaced by invalid ones (that is replaced
by L).

How such a check is implemented is left unspecified, it could be by listening to
private channels, successively checking signatures, etc.

3.5 E-Voting Processes

As often when considering trace equivalence (e.g. [10,24]), we assume processes to
be deterministic. More precisely, we require the vote phase to be determinate: if
the same sequence of labels leads to two different processes then the two resulting
frames have to be statically equivalent. This typically holds for standard voting
processes since the voter’s behaviour is deterministic. For the tallying phase
we slightly relax this notion and require what we call almost determinate. This
relaxed notion only requires that there exists an output of a tally (among all
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possible outputs, as the particular tally may be chosen non-deterministically)
that ensures static equivalence. This allows us to capture some non-deterministic
behaviors such as mixnet tally.

Definition 5. An e-voting protocol {H”h’”d’m(CTth,CTﬁd,KPV,Kpb)}nh,nd,meN
is almost determinate if for any set of names &, any initial attacker
knowledge ¢, any m,np,ng € N, and any traces (tr,A;),(tr,As) €

traces(&, ™™ (Crl  Crd Koy, Kob), Po, 0) we have that

TR nd’

.tal .tal
VAL Ay 22U gr 3 Ar Ay 22 A g AL~ A

We can now put all the pieces together and link e-voting protocols to the
notions of public tests, revote policies, extraction and counting functions and
properties.

Definition 6. An e—votingprotocol{U"’“”d’m(Crﬁh, Crgd, Kovs Kob) Yrp, na,men 18
voting friendly w.r.t. check, { Test™ },men, {Policy™™ } . men, Extract, {Count’} sex
if it is almost determinate, if {Test™}nmen, {Policy™™ ™} men, Extract, are
voting-friendly, and if for any set of names &y, any initial attacker knowledge
Dy, any m,np,ng, and any trace (tr'-vx.phase tall.bb(RBy)...bb(RB,,), A1) of
(&, IImmmam(Crl  Crd | Kou, Kpb), §o,0), the resulting list of ballots BB =
[B1,...,By] (where B; = RB;¢(A1)) satisfies the following properties.

1) The tally is successful (that is (vy.tal(y), As) € traces(A;1)) if and only if
BB passes the test and the check (Test™(BB) =T and check(BB) =T)

2) Whenever the tally produces an output (that is (vy.tal(y),As) €
traces(A1)) then it outputs a triple yo(As) = (res,nvotes, zkp) where

— res is the result computed by counting the votes once the extraction function
and the revote policy have been applied on the bulletin board;

— nwotes is the number of votes that has been counted;

— zkp is a (valid) zero-knowledge proof that would not be valid for any other list
of ballots different from BB;

— either res is the only result the tally can produce from BB (typically in the
homomorphic case) or the tally can produce any permutation of it (typically
in the miznet case).

A fully formal definition can be found in the companion technical report [26].
We believe most existing protocols satisfy these requirements.

For many protocols ballots can be associated to the public credentials that
were used to cast them. This is the case for Helios and some of its variants
where ballots either contain the voter identity (in the original Helios) or are
signed using private credentials (in the Belenios system). As we will see in the
next section we can get tighter bounds for this class of protocols. Formally we
define protocols with identifiable ballots as follows.
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Definition 7. An e-voting protocol {II™m"¢™(Crl Crd Ko, Kob) by na,men
has identifiable ballots if for all np,ng, m € N, for any trace

(tr'-vx.phase tall.bb(RB1). . .bb(RB,,)vy.tal{y), A)

of Imwmam(Crl  Crd Koy, Kob)) there exists a recipe R and a variable x such
that
V1 <i<m. if Extract([RB;¢(A)], Kpv, ICob) = (V, ¢r) then R;¢p(A) = pub(cr)

where R; = R{x — RB;}.

4 Main Results

Throughout the section we consider two voting protocols
(e (Crg Oy Kows Kob) Y na,men

for 1 < ¢ < 2 which are voting-friendly for check;, {Test™}en,
{Policy™™},, men, Extract;”, {Countf}geN. Note that we assume the same public
test for both protocols. Moreover we assume that ny, > 2 and m > nj, + ng.

Let & be a set of names, and @y a ground substitution representing the
initial attacker knowledge. {Ay""*"™ },, namen and {By"" "™}, . men are
two families of extended processes defined as follows

Apnnam el go g eph e (Cpk Crd Koy, Kob) o, 0) Vrp, ng,m € N

np? np? ng’
np,na,m def h NpyMd,M (o h d
Byt = (€ UCry,, , Ly "™ (Cryy, , Cryy L Ky, Kob) s @0, 0) Vg, ng,m € N

Our reduction results apply to equivalences of the form Aj™"*™ ~ Bj""*™ for
all m,np,ng. Vote privacy is typically modelled in this way [5]. The proofs of
the results presented in this section could not be included due to lack of space,
but are available in the technical report [26].

Our first result states that attacks on such equivalences require at most 3
voters.

oy knka,t Enka,t 2,k 2,k/,, ;o
Proposition 1. If Aj % B" then Ay™*" % By *" for ki, = 0 or
R
=1

Note that this case does not yet bound the number of ballots to be considered.
In particular, when re-voting is allowed the attacker may a priori need to submit
several ballots in order to distinguish the two processes. In other words, the ballot
box is still parameterized by the number of ballots to be received. However,
whenever we assume that II; and Il do not allow voters to revote, we can
deduce immediately that 3 ballots suffice to capture any attack. More formally,
we encode this situation by letting £ = ¢ and considering the re-vote policy that
only keeps the first vote of each voter.
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Theorem 1. If {Policy™™},, meN = {POhcyﬁrst Ynmen and Akh7kd7 % Bkh,kd,k
where k = ky + kq, then A2 Kook % 32 kask forkl,=0ork,=1and k' =2+k).

Intuitively, the case where &/, = 0 corresponds to the case where an attacker
can distinguish the processes playing only with two honest voters. This case for
instance arises when analyzing a naive protocol where each voter simply signs
his vote, hence offering no anonymity at all. The case where k/, = 1 corresponds
to the case where the attacker computes a vote which depends on the honest
votes. The above results state that an attacker does not need more then one
ballot in that case. An example of such an attack is the vote copy attack on
Helios described in [13]. We could actually encode any attack with 2 voters into
an attack with 3 voters by letting the adversary play like a useless, honest, voter.
This would require however to formalize the fact that the attacker may always
simulate an honest voter, that is, the voting process.

We now consider the case where re-voting is allowed. In this case we can
bound the number of ballots that need to be considered to 4 + 2k (for & number
of voters in total).

Proposition 2. If Ag"’kd’é % Bg’“kd’l, then there exists £y,m < 4+ 2k such that
Agh,kdlmm 7,,5 th,kdlmm where k = ky, + k.

Combining the reductions on the number of voters and the number of ballots
we obtain the following theorem.

Theorem 2. If Agh’kd’e % Bg’“kd’z, then there exists klj € {0,1}, Cpin < 442k
such that A Kabmin oy BYFatmin where k=2 + k.

This is an immediate consequence of Propositions1 and 2 and yields a bound
of 44+2x3=10. When protocols have identifying ballots (Definition7) we can

tighten our reduction of the number of ballots: we only need to consider 4 + &
ballots.

Corollary 1. If II; and IIs have identifying ballots and A’gh’kd’é % th’kd’e,
then Wpim < 4+ k. AprFatmin g ghnkalmin yhere | = k) + kg,

This is a corollary of the proof of Proposition 2. With identifiable ballots, we
know that the ballots selected by the revoting policy on the left and on the right
hand-side are the same. Again, we combine this result with the reduction on the
number of voters.

Theorem 3. If IIy and Il have identifying ballots and Agh’kd’e % Bg’“kd’e then
3k, € {0,1}, lpin < 4+ k such that A2 Kasbmin &% Bg’kd’e””" where k = 2 + k.

This follows from Corollary 1 and Proposition1 and yields a bound of 44+3=7
ballots.
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5 Case Studies

We apply our results on several case studies: several versions of Helios [18,19,28]
and Prét-a-Voter [20], as well as the JCJ protocol [29] implemented in the Civitas
system [30]. For some of these protocols we show that the ProVerif verification
tool [1] can be used to perform a security proof that, thanks to our results, is
valid for an arbitrary number of voters and ballots.

For the other protocols, ProVerif is not able to verify the protocols, either
due to the fact that equational theories with AC symbols are not supported
by ProVerif or simply because of a state explosion problem. In these cases we
show that our results nevertheless apply. Given recent progress in automated
verification for equivalence properties [9,10,31] we hope that verification of some
of these protocols will be possible soon. Our results would also be useful to
simplify proofs by hand.

The results in this section are summarized in Fig.2. Our hypotheses were
always satisfied wherever applicable. For several protocols, we could not conduct
the analysis with ProVerif, either because the equational theory is out of reach
of the tool or because we had to stop ProVerif execution after a couple of hours.
The case studies are further detailed in the companion report [26]. The results
in this section rely on ProVerif scripts available at http://3voters.gforge.inria.fr.

3 ballots
7 ballots 10 ballots
(Theorem 1)
; (Theorem 3) | (Theorem 2)
Hyp|ProVerif . .
Hyp|ProVerif|Hyp|Pro Verif
PaV (DM) v v - - -
Helios mix (weeding) | v/ v v X
PaV (RM) v X —

- - - Helios mix (id in zkp) | v/ v v X
Helios mix (weeding) | v/ v - -

- — Helios hom (weeding)| v X v X
Helios mix (id in zkp) | v/ v 7 ” 7 »
Helios hom (weeding) | v/ X tHelios hom (id in zkp)

- — Belenios mix v v v X
Helios hom (id in zkp)| v/ X -

- - Belenios hom v X v X
Belenios mix v v 7CT 7 ” 7 »
Belenios hom v X

(b) Protocols with revoting.

(a) Protocols without revoting.

Fig. 2. Summary of application of our results on case studies. A X in the “ProVerif”
column indicates that we could not successfully run the analysis with ProVerif.

6 Conclusion

In this paper we propose reduction results for e-voting protocols that apply to
vote privacy. We believe they also apply to stronger properties such as receipt-
freeness. Our first reduction result states that whenever there is an attack, there
is also an attack with only two honest voters and at most one dishonest voter.
This considerably simplifies the proofs and encodings otherwise needed to verify
such protocols using automated verification tools. We moreover consider the


http://3voters.gforge.inria.fr

258 M. Arapinis et al.

case where the protocol allows a voter to cast multiple votes and selects one
vote according to a given re-vote policy, e.g. select the last vote casted. In that
case verifying privacy is still complicated even when restricted to three voters.
We therefore show a second reduction result that allows to consider at most
10 ballots. In case the protocol has identifiable ballots we reduce the number
of necessary ballots to 7. We have shown that the hypotheses of our theorems
are satisfied by many protocols: several variants of Helios, Prét-a-Voter, as well
as Civitas. For several of these protocols we were able to apply automated tool
verification and provide the first automated proofs for an unbounded number
of voters and ballots. For the decryption mixnets-based PaV protocol, we even
provide the first proof of vote privacy.

An interesting direction for future work is to further tighten the bound on the
number of ballots, possibly characterizing properties enjoyed by voting protocols.
We also foresee to show similar reduction results for other properties of e-voting,
such as verifiability. Given that the result is stated in a symbolic model, we also
plan to investigate if the result can be transposed to a computational model.
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