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Abstract. Software implementations of block ciphers are widely used
to perform critical operations such as disk encryption or TLS traffic
protection. To speed up cipher execution, many implementations rely
on pre-computed lookup tables, which makes them vulnerable to cache-
timing attacks on modern processors. For time-driven attacks, the overall
execution time of a cipher is sufficient to recover the secret key. Testing
cryptographic software on actual hardware is consequently essential for
vulnerability and risk assessment. In this work, we investigate the effi-
cient and robust evaluation of cryptographic software on modern proces-
sors under a time-driven attack. Using a practical case study, we dis-
cuss necessary adaptations to the original attack and identify promising
new micro-architectural side-channels for it. To leverage the leakage of
multiple side-channels, we propose a simple, heuristic way to combine
their corresponding attacks. As an additional benefit, combined attacks
simplify a comprehensive evaluation of cryptographic software across
multiple different processors. We finally formulate practical evaluation
suggestions based on the results of our case study.

Keywords: ARM · New side-channels · Efficient evaluation · Vulnera-
bility testing · Exploiting performance events · Rank estimation · AES

1 Introduction

Block ciphers are commonly used to protect bulk data. Their implementations
provide high throughput and consequently focus on fast execution time. In soft-
ware, processing steps can be saved by using pre-computed lookup tables. The
transformation tables of AES are a prominent example of this speed-up tech-
nique. The disadvantage of lookup tables is that if they are accessed depending
on a secret (e.g. a key), they can introduce a timing side-channel when the soft-
ware is executed on a processor with cache. In the past, this gave rise to the field
of cache attacks. In literature, cache attacks are typically split into three groups:
access-driven, trace-driven, or time-driven. Access-driven cache attacks allow a
spy program to precisely learn the part of the processor cache (e.g. which cache
line) that was accessed by a victim program [18]. In trace-driven cache attacks,
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the spy is able to observe the results of a sequence of cache requests issued by
the victim (e.g. hit, miss, miss, ...) [1]. For time-driven cache attacks, the spy
requires only the overall time the victim needs to complete a cipher run [6–8].

In this work we focus on the time-driven cache attack proposed by Bern-
stein in 2005 [6], because it is a well-studied attack with minimalistic assump-
tions about the hardware under attack. It has been applied in settings ranging
from mobile phones [14,15] and embedded systems [22,23] to virtual machines
used in cloud computing [2]. As the attack relies on execution time measure-
ments, the resolution and quality of the timing source is crucial to the suc-
cess of the attack. In the original publication [6], time is measured with a
hardware-based clock cycle counter. Similarly, Spreitzer and Plos [15], Spreitzer
and Gérard [14], and Weiß et al. [22,23] successfully use the cycle count register
of ARM Cortex-A8/-A9 processors in the attack. Atici et al. [5] use a level 1 (L1)
data cache (D-cache) miss counter on various x86 processors in an adaptation of
Bernstein’s attack targeted at the last round of AES. In other work, Tiri et al. [17]
use an L1 cache miss counter to verify their analytical model for time-driven
cache attacks on multiple not further specified processors. Uhsadel et al. [19]
investigate the L1/L2 D-cache miss counters as well as a clock cycle counter
on x86 processors and apply them in the time-driven cache attack proposed by
Bonneau and Mironov [8]. These publications show that so-called hardware per-
formance events like clock cycles and cache misses are valuable side-channels
for time-driven cache attacks. As a consequence, these performance events are
also critical in an evaluation context, because they allow to construct a worst-
case attack scenario. The more an implementation is resistant against attacks
using high resolution performance events, the better it withstands less power-
ful attacker models that are more likely in practice. In addition, the better the
side-channel source, the fewer measurements are required to identify leaks in the
implementation.

Because of these benefits, we investigate hardware performance events known
from literature and new events that have not yet been analyzed in the context of
Bernstein’s attack. For a fair comparison of the events, the original attack needs
to be adapted, because it does not reliably determine the remaining entropy of
the secret key after the attack. We therefore extend it with a recent key rank
estimation algorithm. To further improve evaluation efficiency and robustness,
we propose a new and heuristic way of combining multiple attacks. The combi-
nation of attacks is strongly advisable given that all of the performance events in
our tests leak information about the secret key. Combined attacks thereby help
to construct an improved worst-case test scenario, as they leverage the leakage of
multiple performance events while filtering out noisy or poor-quality ones. Given
that not all events leak equally on every processor, combined attacks can be used
as a global measure to simplify testing across multiple different processors. For
our case study, we use the modified attack by Bernstein to test a vulnerable
AES implementation taken from the OpenSSL library on an ARM Cortex-A9
processor. Based on the results, we provide practical evaluation suggestions. To
the best of our knowledge, our work is the first that discusses Bernstein’s cache
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attack exclusively in an evaluation context and provides efficient ways to deter-
mine the vulnerability of a software component to the attack.

The rest of the paper is organized as follows. Background information about
the time-driven cache attack by Bernstein is provided in Sect. 2. The application
of key rank estimation and its benefits to the attack are discussed in Sect. 3. Our
proposal for attack combination is given in Sect. 4. The selection of hardware
performance events is discussed in Sect. 5. We shortly present our measurement
setup in Sect. 6 before we discuss the results of our case study in Sect. 7. Based on
the results, we provide practical suggestions in Sect. 8 before we finally conclude
in Sect. 9. Further details about the AES implementation under attack are given
in Appendix A.

2 Bernstein’s Time-Driven Cache Attack

In 2005, Bernstein [6] proposed a profiled time-driven cache attack and success-
fully applied it to the T-table-based AES implementation that is part of the
OpenSSL library v0.9.7a. The attack is embedded in a client-server scenario,
with the client being the spy and the server being the victim. The attack itself
consists of four phases: the learn phase, the attack phase, the correlation phase,
and the brute-force key search phase.1

The learn phase is the profiling phase of the attack. The spy knows the
secret key k and sends a set of plaintexts to the victim. The responses of the
victim contain the overall encryption times. By randomly choosing the inputs
and keeping track of the corresponding processing times, the spy creates a cache
profile of the lookup tables under the known key k. This is possible, because
the lookup indices in the first round of AES are given by the XOR of plaintext
and initial key: p⊕k. The cache profile is written as matrix CPk[b][v] with one
row for each input byte in the plaintext (indexed by b) and one column for each
byte value (indexed by v). For AES, CP has the shape 16×256. Every timing
measurement is added b times to CP, while the plaintext is used to index the
matrix. The input byte positions determine the row, the input byte values spec-
ify the column. After all measurements have been added, the average timing is
computed for each matrix element and subtracted by the total average of all tim-
ings. After sufficient timing observations, the cache profile contains information
about which input bytes and values cause longer or shorter processing times.
Since the key k is known in this phase, the cache profile indicates which parts
of the lookup tables are cached and which are not cached on average in the first
round of AES. In the original work, the known key k is set to zero and the key
length is 128 bits. In the attack phase, an unknown key k̃ is used by the victim.
The spy again sends a set of plaintexts, keeps track of the processing times and
creates a second cache profile CPk̃[b][v], now for the unknown key.

In the correlation phase, the spy permutes the profile of the attack phase and
correlates it with the one from the learn phase. Permutation is done by accessing
the attack profile with indices that are XOR’ed with a possible key hypothesis
1 Naming convention borrowed from the work by Neve et al. [13].
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h: CPk̃[b][v ⊕ h], h ∈ {0, ... , 255}. The correlation is then calculated for each
row in the profiles. The profile of the learn phase will be similar to the profile
of the attack phase, if permuted by the correct key hypothesis hc: CPk[b][v] ≈
CPk̃[b][v⊕hc]. In this case the correlation will peak. The underlying assumption
is that in the first round of AES the same parts of the lookup tables are cached or
not cached. This causes both profiles to capture the same cache state and allows
the correlation phase to compare them. The correlation values for each key byte
b and each hypothesis value h are then entered in the correlation matrix C[b][h].
The final step in this phase eliminates hypotheses with low correlation using a
variance-based threshold decision. A brute-force key search phase is added to
assemble key candidates from all left-over hypotheses and to test them against a
known plaintext-ciphertext pair. For this step, the attack code iterates over the
most likely key candidates and stops when the correct key has been found.

The original attack by Bernstein has a success rate limit that is determined
by the cache line size of the target processor and the lookup table entry size of
the cipher implementation. If multiple table entries fit on one cache line, they all
exhibit the same timing behavior when accessed by the processor. This causes
the values of each input byte to form groups with similar timing values in the
cache profiles. The number of values per group, which equals the number of
table entries per cache line, is denoted as L in this paper. For each hypothesis of
a group, the correlation phase generates similar correlation values. As a conse-
quence, a single hypothesis becomes indistinguishable from other members of its
group and all of them have to be tested in the brute-force step. This introduces
a minimum brute-force effort that cannot be reduced further with the original
attack. More information about Bernstein’s attack including the success rate
limit can be obtained from the work by Neve et al. [13].

3 Key Rank Estimation in Bernstein’s Attack

Instead of using the threshold decision in the correlation phase to eliminate
unlikely key byte hypotheses, we implement a key rank estimation algorithm,
which ranks the correct key against all other key candidates. The rank of the
correct key represents the true brute-force effort an attacker would have to spend
to recover it. Key rank estimation is necessary during evaluation, because the
original threshold decision might eliminate the correct key byte hypothesis from
each list. This can happen, if there is little statistical information for one key
byte in the measurements. If a correct hypothesis is eliminated, the brute-force
step cannot recover the key and fails. In this case there is no resulting brute-force
effort that can be evaluated or compared to other attacks. As a consequence,
attacks that are marginally successful will hardly ever show useful results. In
an evaluation, this must be avoided, because the attack effort is required to
determine the current level of security. Especially for testing an implementation
on multiple different systems and comparing the results obtained from them, the
attack effort must always be available.

In literature, the adverse impact of the threshold decision is noted by
Spreitzer and Gérard [14], who rank key candidates instead of eliminating
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hypotheses with the threshold. In their work they discuss the key rank tech-
niques proposed by Veyrat-Charvillon et al. [20,21]. In contrast, we implement
the key rank estimation algorithm proposed by Glowacz et al. [10], because it
has an improved time and memory efficiency and scales better to larger key sizes.
Since the algorithm expects probabilities instead of correlations, two transforma-
tion steps have to be done. First, we calculate Pearson’s correlation coefficient
instead of taking the original values from the correlation phase. This is neces-
sary, because the original values are not bound to the interval [-1, 1]. With the
standard formula for Pearson’s correlation coefficient we obtain

C′[b][h] =

∑255
j=0 CPk[b][j] · CPk̃[b][j ⊕ h]

√∑255
j=0 CPk[b][j]2 ·

√∑255
j=0 CPk̃[b][j ⊕ h]2

. (1)

C′[b][h] denotes the new correlation matrix with key byte position b and key
byte hypothesis h. The second step is to convert the correlation coefficients
to probabilities. Using the formula proposed by Gérard and Standaert [11] we
obtain

P[b][h] = normalize
(
e2·C′[b][h]

)
, (2)

which is a simplified Bayesian extension of the correlation coefficient distribu-
tion approximated with Fisher’s transform. P[b][h] denotes the final probability
matrix, which is the input to the key rank estimator. The function normalize
scales all values such that each row b in P sums up to 1. The output of the
estimation algorithm is the estimated rank r of the secret key that is limited by
an upper (u) and a lower (l) estimation bound, all given in log2. An attacker
would face an estimated brute-force effort of 2r, but at least 2l and at most 2u,
to recover the secret key. For a precise estimation, the bound tightness (u − l)
must be kept small. We choose the estimation precision such that (u − l) ≤
1.07 for all estimations in our experiments. As this is sufficiently small for our
discussions, we only refer to the estimated key rank r (or the log2 thereof) in
subsequent sections.

4 Proposal for Attack Combination

In the original work by Bernstein, multiple attacks are combined by assigning
weights to leftover key byte hypotheses depending on the lengths of the lists they
are on. This approach does not work with key rank estimation, because key byte
hypotheses are not removed from their lists anymore. We therefore propose a
new method for attack combination using the multiplication and normalization
step discussed by Mather et al. [12]. To illustrate our method we start with M
separate attacks. First, their probability matrices Pm[b][h], m ∈ {0, ... ,M − 1}
are calculated as previously explained. Combining two attacks n and n + 1 is
done by multiplying the probability matrices Pm element-wise and normalizing
the rows of the resulting matrix PComb such that they again sum up to 1. The
multiplication and normalization step is defined as

PComb[b][h] = normalize (Pn[b][h] · Pn+1[b][h]) . (3)



8 A. Zankl et al.

This step affects probabilities differently based on their values. In theory, an
attack with no information about a key byte will yield a uniform probability dis-
tribution for all 256 hypotheses values. All probabilities in one row of P will have
the value 1

256 . To illustrate the combination effects, assume an attack m0 was
given with a probability for the correct hypothesis phc

> 1
256 . If this attack is com-

bined with an attack m1 with a uniform probability distribution, the combined
attack will exhibit the identical probability values as m0. If attack m1 contains
a probability phc

> 1
256 , then after the normalization step the combined attack

exhibits a phc
that is higher than the maximum of m0 and m1. This is desirable,

because the correct hypothesis is easier to find in the brute-force search. If attack
m1 contains a probability phc

< 1
256 , the combined attack exhibits a phc

that is
smaller than the one in m0. This should be avoided, as it increases the brute-
force effort. Naturally, it is best to combine only those attacks that improve the
probabilities of the correct hypotheses. If all “bad” attacks would yield a uni-
form probability distribution and all “good” attacks would exhibit a phc

> 1
256 ,

combination can be done by simply multiplying and normalizing all available
probability matrices. Our practical experiments, however, show that bad attacks
often have a slight non-uniform probability distribution with phc

< 1
256 . Including

them in the combination would degrade the combined attack.
We thus propose a heuristic filter approach that excludes bad attacks from

the combination. In the first step, all M attacks are ranked according to the
sum of their L highest probabilities for a given key byte b. The reason why the L
highest probabilities are taken into account is that on a processor where L lookup
table entries fit on one cache line, good attacks arrange the hypotheses of one
key byte into groups of size L. All hypotheses within a group have almost equal
probabilities and are indistinguishable in the rest of the attack. Bad attacks do
not exhibit this behavior in our experiments and are thus less likely to get a high
rank, if the first L probabilities are considered. More details about the value L
in Bernstein’s original attack are provided in Sect. 2. Given the ranking of all M
attacks, we start with attack m1st that has the largest sum and combine it with
attack m2nd that has the second largest sum. We decide to keep the combination,
if the probabilities of the L most likely hypotheses from attack m1st increase
in the combined attack. Otherwise, the combination is discarded and attack
m1st is combined with m3rd. This step is repeated until all available attacks are
processed. After the filter and combination step, the combined probabilities for
key byte b are stored in matrix PComb[b][h], which is eventually used to estimate
the key rank of the combined attack.

This method assumes that the best out of M available attacks (the one with
the largest sum) is always a good one. This is consistent with our experiments,
where good attacks have a higher deviation from the uniform distribution than
bad attacks. In addition, considering L probabilities at once makes the filter
step more robust against bad attacks. The combination step helps to achieve a
better overall attack, which is desirable when evaluating software in a worst-case
scenario. The advantage of our heuristic approach is that it allows to automat-
ically combine multiple attacks by only providing the value L, which is easily
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derived from the cache line size of the processor and the lookup table entry size
of the tested implementation. The simplicity of our approach is based on the
observations about “good” and “bad” attacks, its effectiveness is shown by our
practical experiments.

5 Performance Events on ARM Processors

Performance events provide detailed insight into the micro-architecture of a
processor while it is working on a task. They are typically needed for debugging
and performance evaluations on real hardware. Because of the fine granular-
ity with which a processor can be observed, performance events can be powerful
side-channels for the profiled cache attack by Bernstein. Previous literature illus-
trated that clock cycle and cache miss events allow to successfully perform the
attack. Since these events are only a small subset of performance events that are
typically available, we propose a more comprehensive study.

Table 1. Selection of performance events
and corresponding descriptions according to
the ARM manuals [3,4].

ID Lit. Description

A
R
M

v
7
-A

/
R

03h
√

Level 1 D-cache refill

04h - Level 1 D-cache access

05h - Level 1 data TLB refill

06h - Load instructions

11h
√

CPU cycles

CCNT
√

Clock cycle counter

C
o
rt
e
x
-A

9

50h - Coherent linefill miss

61h - D-cache stall cycles

65h - D-cache eviction requests

72h - Load/store instructions

85h - Data micro TLB stall cycles

Table 2. Selection of ARMv7-
A/R processor cores and avail-
able hardware counters.

Core #

Cortex-A5 2

Cortex-A7/8 4

Cortex-A9/15/17 6

Cortex-R4/5 3

Cortex-R7 8
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Our target platform is an ARM Cortex-A9 processor, which belongs to the
ARMv7-A/R architecture family. The ARMv7-A/R reference manual [4] defines
hardware performance events that can be measured on all compliant processors.
The ARM Cortex-A9 MPCore reference manual [3] specifies events that are
additionally available on the Cortex-A9. Each event is identified by an event ID
and can be counted by one of the hardware counters present on every processor
core. Table 1 shows the two selections of performance events we analyze in our
case study. The first set of events is common to all ARMv7-A/R compliant
processors, the second one is specific to the ARM Cortex-A9. The events are
displayed with their event IDs and descriptions as found in the reference manuals.
All events previously used in literature in the context of Bernstein’s attack are
labeled with

√
in the table, illustrating that most events are used for the first

time.
Measuring multiple performance events in parallel is possible but limited by

the number of hardware counters available. Table 2 shows a selection of current
ARMv7-A/R processor cores and the number of available hardware counters
taken from the corresponding MPCore reference manuals. Each counter can be
configured to capture a specific event. The counter is then enabled and contin-
uously counts occurrences of the configured hardware event. Configuration and
access to the counter values is realized through registers of the co-processor 15.
By default, this is only allowed from privileged (e.g. kernel) code. As the goal
of our work is an efficient evaluation and not an improved attack, this poses
no limitation. The subsequent paragraphs in this section discuss the selection of
performance events in more detail. They are organized in categories clock cycles,
cache, TLB, and memory access.

Clock Cycles. The clock cycle event labeled CCNT is counted by the register
called PMCCNTR, which does not occupy any of the available hardware counters.
The event is known from literature and for the purpose of comparison, we include
it in our event selection. In addition, the clock cycle event can also be measured
through event ID 11h. We analyze it in our experiments to compare it to the
CCNT.

Cache. Cache miss events have also been investigated in Bernstein’s attack.
To provide a link to previous literature, we analyze level 1 data cache misses
(03h). In addition, we include events that have a close relation to L1 D-cache
misses. Those events are cache requests that miss coherently in all processor cores
(50h), clock cycles the processor core is stalled because of a pending request from
a cache miss (61h), and the number of cache eviction requests that are caused
by cache misses (65h). All of them are likely to show similar key-dependent
variations as those expected for L1 D-cache miss events.

TLB. Similar to the processor cache, the translation lookaside buffer (TLB)
is also involved in fetching data from main memory. It is used by the memory
management unit to speed up translations of virtual addresses. Since TLBs are
buffers with limited size, lookups can result in hits or misses. On the ARM
Cortex-A9, the micro TLB is a first level TLB that is separated into instruction
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and data part. The main TLB is a unified second level TLB, which catches
the misses in the underlying micro TLBs. Because of the similarities to the
processor cache, we include TLB-related events in our experiments. In particular,
we measure misses in the data micro or main TLB (05h) and stall cycles caused
by misses in the data micro TLB (85h).

Memory Access. Based only on the ARM reference manuals, it is difficult
to conclude whether some events are applicable to the selected cache attack.
Either not enough information is provided in the event descriptions or events are
by definition counted approximately rather than precisely or the final counting
behavior is defined by the processor implementation itself. Because of these
uncertainties, we analyze memory read and write operations causing accesses
to at least the L1 data or unified cache (04h) as well as the number of load
respectively load and store instructions (06h and 72h). Note that the tested
AES software performs a constant number of memory accesses as discussed in
Appendix A.

6 Measurement Setup

For our practical case study, we implement a client-server setup as proposed
in the original attack by Bernstein. The client, or spy, establishes a network
connection to the victim, which is running on a Linux server system (kernel
v3.19.0) featuring an ARM Cortex-A9 quad-core processor. The measurements
are performed with enabled L1 and L2 caches, program flow prediction, cache
pre-fetcher and cache critical word first filling. We choose a full Linux operating
system and leave all hardware acceleration features enabled to provide a realistic
setting for our evaluation.

Direct access to the performance monitoring registers of the co-processor 15 is
by default only allowed from kernel mode. User space access can either be enabled
in the PMUSERENR register or realized by exposing the performance counter sub-
system of the kernel with the perf tool set. While perf enables convenient
user access to all the events tested in this work, using it adds another potential
source of measurement noise. We avoid this by enabling direct user access in the
PMUSERENR register with a custom system call. This has to be done once and
gets reset when the system is powered off. As we conduct our experiments in an
evaluation rather than an attack context, such low-level control over the target
system is given.

As some of the measured performance events occur in core-private caches or
TLBs, we force the victim program to run on one specific processor core. This is
done with the taskset program from the Linux utilities. Restricting the victim
to one core is no disadvantage but even beneficial. Letting the victim program
float between processor cores adds noise to the measured performance events,
which (1) prolongs the measurement phase until a stable attack success rate is
achieved and (2) is no worst-case attack scenario that we aim to establish for this
evaluation. During the measurements, the target system is idling and the victim
program is competing for resources with itself and the system processes that
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run in the background. The AES-128 implementation under attack is written
in ARM assembly, uses a 1 kiB lookup table, and executes a constant and key-
value-independent number of instructions during encryption. More details about
the implementation are given in Appendix A.

For every attack we take two sets of 30 · 106 (≈ 224.84) measurements, one
for the learn phase and one for the attack phase. In the learn phase, we use a
zero key, in the attack phase we use a random one. The attack is then performed
with additional key rank estimation. For each of the selected performance events,
we repeat this process 33 times in order to achieve a reasonable statistical sig-
nificance for our practical experiments. We choose 33 repetitions to keep the
measurement effort manageable. In the last step, the estimated key ranks of all
33 attacks are averaged for each event to form the final key ranks presented in
the next section.

7 Discussion of Practical Results

Table 3 shows the attack results for the performance events in our case study.
The left side of the table displays event IDs, coverage in previous literature, and
descriptions. The right side of the table shows the average estimated key ranks
in log2 that are achieved using the corresponding performance events. The com-
bination ARMv7 combines attacks from all tested ARMv7-A/R compliant events
according to our method proposed in Sect. 4. The combination ALL combines
all available attacks and additionally includes the events specific to the ARM
Cortex-A9.
The first and most interesting observation from Table 3 is that all analyzed per-
formance events reduce the entropy of the secret key. The average key ranks
range between 2120 and 251. This is a significantly lower effort compared to
searching for a full-entropy 128-bit key with an expected average key rank of
2127. The best attacks with the current event selection are based on events 11h
and CCNT, which both count clock cycles. A further reduction of key entropy
is only achieved by combining multiple attacks. The key ranks of the combina-
tions ARMv7 and ALL fall below those of the CCNT by 22 and 23, respectively.
Although these improvements might seem moderate, they show that our pro-
posed combination and filter method indeed excludes poor-quality side-channels
and constructively combines the available leakage to improve the overall result.
Events with poor attack results, such as 03h, 50h, and 65h, do not degrade the
ARMv7 and ALL combinations. Instead, the available side-channels improve the
already good attack results retrieved from the CCNT measurements. The improve-
ment is more significant, if fewer measurements are available to the attack. This
is illustrated in Fig. 1, which shows the attack results over an increasing number
of measurements.
Every plot in the figure shows the average estimated key ranks in log2 as the
y-coordinate and the number of measurements as the x-coordinate. Note that
the plots end at 15·106 measurements to better illustrate the early attack stages,
in which fewer measurements are available. In this phase the combined attacks
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Fig. 1. Estimated key ranks over an increasing number of measurements. Top plot
shows results for ARMv7-A/R events, bottom plot shows ranks for Cortex-A9 events.
Combined attacks ARMv7 and ALL are plotted with dashed lines and marked with bold
labels.



14 A. Zankl et al.

Table 3. Estimated key ranks achieved with the selected performance events.

ARMv7 and ALL clearly exhibit the lowest average key ranks and consequently
the best attack results in our experiments. Compared to the CCNT, the average
key rank of the ARMv7 combination is smaller by up to 211. The average rank
of the ALL combination falls below the one of the CCNT by up to 216. These
improvements decrease with more measurements, as previously noted. Further
observations from both Table 3 and Fig. 1 are discussed in the following para-
graphs.

Clock Cycles. The clock-cycle-based events 11h and CCNT yield low average
key ranks of 257 and 251, respectively. We assume that the CCNT shows slightly
better results, because once enabled, it is accessible with only one read request to
the co-processor 15. All other events are counted such that their corresponding
hardware counter has to be selected first in order to read its current value. This
additional request to the co-processor 15 adds noise to the measurements, but is
necessary if multiple events are counted in parallel. Because of its superior attack
results and because it does not occupy any of the limited hardware counters in
the processor, the PMCCNTR register is clearly recommended to measure the clock
cycle event on our target system.

Cache. Among the cache-miss-related performance events, the D-cache stall
cycles (61h) yield the best attack result with an average key rank of 267. In con-
trast, cache misses, coherent linefill misses, and data eviction requests (03h, 50h,
and 65h) do not exhibit average key ranks below 2116. One possible explanation
is that stall cycles incorporate additional and more fine-grained key-dependent
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variations that are not reflected in the total number of cache misses or eviction
requests counted by the other events.

TLB. The results of the TLB refill and TLB stall cycle events (05h and 85h)
show that translation lookaside buffers offer a potent side-channel source for the
implemented attack. These events perform superior to most cache-miss-related
events on our target system. With an average key rank of 283 compared to 291,
the D-micro TLB stall cycles yield better results than the L1 D-TLB refills. We
assume that the stall cycles again contain more exploitable information and that
less noise in the micro TLB renders their results more successful.

Memory Access. The attacks based on L1 D-cache accesses as well as load and
store instructions (04h, 06h, and 72h) are successful, which is counter-intuitive
given that the number of memory accesses in the tested AES implementation
is constant and independent of the key value. This suggests that these events
incorporate key-dependent variations such that the attack is able to reduce the
secret key entropy. Since detailed information about the implementation of these
events is not publicly available, further investigations are necessary to identify
the source of their leakage.

Combined Attacks. The additional, Cortex-A9 specific events added to the ALL
combination improve the average key rank of the ARMv7 combination by at most
29. This maximum difference is shown in Fig. 1 before the attacks reach the 5·106

measurements mark. When more measurements are added, the improvement
becomes approximately 21, as illustrated in Table 3. Given our event selection,
this shows that good results can already be obtained using generic ARMv7-A/R
events. On the other hand, combinations of platform-specific events not analyzed
in this work may still be able to outperform ARMv7-A/R generic combinations.

8 Practical Evaluation Suggestions

Our case study shows that hardware performance events offer a promising pool
of side-channels that can be exploited in the profiled cache attack by Bernstein.
For a fair and complete assessment of the leakage contained in the events, key
rank estimation has proven to be a useful tool. Although it adds complexity,
determining the attack effort is unreliable in practice with the original approach.
To control the computational cost, one can adapt the estimation bound tightness
to one’s specific requirements.

Within our selection of performance events, each one allows to reduce the
entropy of the secret key. Among these events, clock cycles provide the best
results on our ARM Cortex-A9 test system. If minimum measurement and post-
processing effort are required, the evaluation can be limited to the CCNT. It is
a high-resolution side-channel source that is available on all ARMv7-A/R com-
pliant processor cores. It consequently allows to compare the leakage behavior
of multiple systems in a simple way. However, further studies are necessary to
verify that it also performs best on other ARM-Cortex-based systems. For now,
we strongly recommend to consider more than just the clock cycle event.
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Since attacking multiple performance events increases the measurement and
post-processing effort, a minimum selection of events with maximum leakage
is desirable. The lack of detailed information in the public ARM manuals and
the uncertainty of how a processor actually counts certain events show that
an optimal choice of performance events is not trivial to make. According to
our case study, the ARMv7-A/R compliant performance events provide good
results on the selected test system. Their combination is only slightly inferior
compared to the combination of all tested events, including those specific to the
ARM Cortex-A9. To maintain platform independence, we recommend to limit
the tested events to ARMv7-A/R compliant ones. If fewer hardware counters are
available on the processor under test, the results displayed in Table 3 and Fig. 1
can be a starting point for reducing the number of measured events. In order to
compare the leakage behavior of multiple processors, we suggest to combine the
attacks of each system with our proposed method. The resulting combinations
represent robust overall attacks, regardless of which specific event leaks the most
information on each processor. This allows to get a comprehensive view of the
vulnerability of a cipher implementation on a range of different systems.

9 Conclusion

In this work, we studied the evaluation of a block cipher implementation on
a modern processor with the profiled time-driven cache attack proposed by
Bernstein. The application of key rank estimation as well as the combination
of multiple attacks are generic extensions that might also be of interest in other
cache attack work. In our case study, we identified new micro-architectural side-
channels on our ARM-based test system that can successfully be exploited in
Bernstein’s attack. Since performance counters are not only available on ARM
systems, we assume that new side-channels can also be found on other modern
(e.g. x86) processors. As all tested events in the case study leak information
about the secret key, the practical results strongly suggest that even more per-
formance events might be exploitable than those analyzed both in literature
and in our work. Together with the fact that the counting behavior of certain
events is not properly documented and is even defined by the final processor
implementation, a comprehensive study of performance events across multiple
processors is a promising direction for future work. Furthermore, it is an open
question whether a more effective filter approach exists that better separates
good and bad attacks in the combination step. Eventually, these directions may
lead to an optimal choice of events needed to evaluate the profiled cache attack
by Bernstein with maximum efficiency.
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A AES T-table Implementation

The profiled time-driven cache attack by Bernstein targets a software imple-
mentation of AES that uses so-called transformation tables. These T-tables are
proposed by Daemon and Rijmen [9] to speed up AES in software. The tables
reduce a round of AES to 16 table lookups and 16 XOR operations with 4-byte
operands. The encryption process uses four 1 kiB T-tables T0..3 for all rounds
except the initial and the last one, which lacks the MixColumns transformation.
Encryption using T-tables is illustrated in Eq. 4. Note that it does not define
the initial state, s(0), and the final one, s(R), because of their different treatment
in the cipher. The cipher state in round r ∈ {1, ... , R − 1}, R ∈ {10, 12, 14} is
given as s(r)i..i+3 whereas the round key is given as k(r)

i..i+3 , with (i..i+3) denoting a
consecutive 4-byte chunk of the state and the round key, respectively. The initial
state s(0) is a simple XOR operation between the plaintext p and the initial key
k(0), s(0) = p ⊕ k(0).

s(r)0..3 = T0[s
(r−1)
0 ] ⊕ T1[s

(r−1)
5 ] ⊕ T2[s

(r−1)
10 ] ⊕ T3[s

(r−1)
15 ] ⊕ k(r)

0..3

s(r)4..7 = T0[s
(r−1)
4 ] ⊕ T1[s

(r−1)
9 ] ⊕ T2[s

(r−1)
14 ] ⊕ T3[s

(r−1)
3 ] ⊕ k(r)

4..7

s(r)8..11 = T0[s
(r−1)
8 ] ⊕ T1[s

(r−1)
13 ] ⊕ T2[s

(r−1)
2 ] ⊕ T3[s

(r−1)
7 ] ⊕ k(r)

8..11

s(r)12..15 = T0[s
(r−1)
12 ] ⊕ T1[s

(r−1)
1 ] ⊕ T2[s

(r−1)
6 ] ⊕ T3[s

(r−1)
11 ] ⊕ k(r)

12..15

(4)

In order to reduce the storage space required by the T-table implementation,
three of the T-tables can be exchanged for 12 extra rotations per round of AES.
This is because each entry of a T-table is the byte-wise rotation of the same entry
of any other table. The rotation factor remains constant for each table. Hence,
we can rewrite Eq. 4 as follows, assuming T = T0 is the only table available.
The function ror(v,n) rotates the 4-byte value v by n number of bytes cyclically
to the right.

s
(r)
0..3 = T[s

(r−1)
0 ] ⊕ ror(T[s

(r−1)
5 ], 1) ⊕ ror(T[s

(r−1)
10 ], 2) ⊕ ror(T[s

(r−1)
15 ], 3) ⊕ k

(r)
0..3

s
(r)
4..7 = T[s

(r−1)
4 ] ⊕ ror(T[s

(r−1)
9 ], 1) ⊕ ror(T[s

(r−1)
14 ], 2) ⊕ ror(T[s

(r−1)
3 ], 3) ⊕ k

(r)
4..7

s
(r)
8..11 = T[s

(r−1)
8 ] ⊕ ror(T[s

(r−1)
13 ], 1) ⊕ ror(T[s

(r−1)
2 ], 2) ⊕ ror(T[s

(r−1)
7 ], 3) ⊕ k

(r)
8..11

s
(r)
12..15 = T[s

(r−1)
12 ] ⊕ ror(T[s

(r−1)
1 ], 1) ⊕ ror(T[s

(r−1)
6 ], 2) ⊕ ror(T[s

(r−1)
11 ], 3) ⊕ k

(r)
12..15

(5)

In our experiments we test a 1 kiB T-table implementation of AES that fol-
lows Eq. 5. It is part of the OpenSSL software library v1.0.2 and written in
ARM assembly. The code is located under crypto/aes/asm/aes-armv4.pl in
the GitHub repository of the library [16]. As suggested by the equation, the
chosen implementation uses a constant and key-value-independent number of
instructions. The only conditional branch in the code is used to realize the AES
encryption loop. For each plaintext that is encrypted with AES-128, the proces-
sor performs 144 T-table lookups with ldr instructions and 16 S-box lookups
with ldrb instructions, which are needed in the last encryption round. As it
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is common to many T-table-based implementations of AES, the secret key is
leaked only through the table lookups themselves, because it is used to compute
the indices of the tables.
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