Skip to main content

Part of the book series: Biologically-Inspired Systems ((BISY,volume 7))

Abstract

Attachment is one of the major types of interactions between an organism and its environment. There are numerous studies that deal with this phenomenon in lizards, frogs, insects, barnacles, mussels and echinoderms, but the second largest class of arthropods, the Arachnida, is highly neglected. This book surveys the attachment organs and structures, and adhesive secretions occurring in this class of animals and discusses the relationship between morphology and function, evolutionary trends, and biomimetic potential. In this chapter we give a brief introduction into the topic, describe the methodologies used, provide a unifying terminology of attachment organs in arachnids, and give an overview on the attachment principles and their distribution among arachnid orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33(1):3–30

    Article  PubMed  Google Scholar 

  • Beutel RG, Friedrich F, Yang XK, Ge SQ (2013) Insect morphology and phylogeny: a textbook for students of entomology. Walter de Gruyter, Berlin/Boston

    Book  Google Scholar 

  • Bird TL, Wharton RA, Prendini L (2015) Cheliceral morphology in Solifugae (Arachnida): primary homology, terminology, and character survey. Bull Am Mus Nat Hist 916(1):1–356

    Article  Google Scholar 

  • Blick T, Harvey MS (2011) Worldwide catalogues and species numbers of the arachnid orders (Arachnida). Arachnologische Mitteilungen 41:41–43

    Article  Google Scholar 

  • Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol 24(15):1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Cloudsley-Thompson JL (1961) Some aspects of the physiology and behaviour of Galeodes arabs. Entomol Exp Appl 4(4):257–263

    Article  Google Scholar 

  • Coddington JA (2005) Phylogeny and classification of spiders. In: Ubick D, Paquin P, Cushing PE, Roth V (eds) Spiders of North America: an identification manual. American Arachnological Society, Poughkeepsie, pp 18–24

    Google Scholar 

  • Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592

    Article  Google Scholar 

  • Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J (2010) Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol Phylogenet Evol 56(1):222–241

    Article  PubMed  Google Scholar 

  • Dashman T (1953) Terminology of the pretarsus. Ann Entomol Soc Am 46(1):56–62

    Article  Google Scholar 

  • De Meijere JC (1901) Über das letzte Glied der Beine bei den Arthropoden. Zool Jahrb Anat 14:417–476

    Google Scholar 

  • Donovan BJ, Paul F (2005) Pseudoscorpions: the forgotten beneficials inside beehives and their potential for management for control of varroa and other arthropod pests. Bee World 86(4):83–87

    Article  Google Scholar 

  • Duncan RP, Autumn K, Binford GJ (2007) Convergent setal morphology in sand-covering spiders suggests a design principle for particle capture. Proc R Soc B 274(1629):3049–3057

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunlop J (2002) Character states and evolution of the chelicerate claws. In: Toft S, Scharff N (eds) European arachnology 2000 (Proceedings of the 19th European Colloquium of Arachnology, Århus 17–22 July 2000), Aarhus University Press, Aarhus, pp 345–354. ISBN 87 7934 001 6

    Google Scholar 

  • Dunlop J, Alberti G (2008) The affinities of mites and ticks: a review. J Zool Syst Evol Res 46(1):1–18

    Google Scholar 

  • Fernández R, Giribet G (2015) Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida). R Soc Open Sci 2(6):150065

    Article  PubMed  PubMed Central  Google Scholar 

  • Garwood RJ, Dunlop J (2014) Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders. PeerJ 2:e641

    Article  PubMed  PubMed Central  Google Scholar 

  • Giribet G, Sharma PP (2015) Evolutionary biology of harvestmen (Arachnida, Opiliones). Annu Rev Entomol 60:157–175

    Article  CAS  PubMed  Google Scholar 

  • Giribet G, McIntyre E, Christian E, Espinasa L, Ferreira RL, Francke ÓF, Harvey MS, Isaia M, Kováč Ĺ, McCutchen L (2014) The first phylogenetic analysis of Palpigradi (Arachnida)–the most enigmatic arthropod order. Invertebr Syst 28(4):350–360

    Google Scholar 

  • Gnaspini P (2007) Development. In: Pinto-da-Rocha R, Machado G, Giribet G (eds) Harvestmen: the biology of Opiliones. Harvard University Press, Cambridge, MA, pp 455–472

    Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Springer Science & Business Media, Dordrecht/Boston/London, 305 pp

    Google Scholar 

  • Gorb SN (2011) Biological fibrillar adhesives: functional principles and biomimetic applications. In: da Silva LFM, Öchsner A, Adams RD (eds) Handbook of adhesion technology. Springer, Berlin/Heidelberg, pp 1409–1436

    Chapter  Google Scholar 

  • Griswold CE (1993) Investigations into the phylogeny of the lycosoid spiders and their kin (Arachnida: Araneae: Lycosoidea). Smithsonian Contrib Zool 539:1–39

    Article  Google Scholar 

  • Groh S, Giribet G (2014) Polyphyly of Caddoidea, reinstatement of the family Acropsopilionidae in Dyspnoi, and a revised classification system of Palpatores (Arachnida, Opiliones). Cladistics 31(3):277–290

    Article  Google Scholar 

  • Harvey MS (2003) Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing, Melbourne, 400 pp

    Google Scholar 

  • Hedin M, Tsurusaki N, Macías-Ordóñez R, Shultz JW (2012) Molecular systematics of sclerosomatid harvestmen (Opiliones, Phalangioidea, Sclerosomatidae): geography is better than taxonomy in predicting phylogeny. Mol Phylogenet Evol 62(1):224–236

    Article  PubMed  Google Scholar 

  • Holway RT (1935) Preliminary note on the structure of the pretarsus and its possible phylogenetic significance. Psyche 42(1):1–24

    Article  Google Scholar 

  • Homann H (1957) Haften Spinnen an Einer Wasserhaut? Naturwissenschaften 44(11):318–319

    Article  Google Scholar 

  • Kästner A (1941) 2. Ordnung der Arachnida: Pedipalpi Latreille = Geißel-Scorpione. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie: Chelicerata, vol 3. Walter de Gruyter & Co., Berlin, pp 1–76

    Google Scholar 

  • Klompen H, Lekveishvili M, Black WC (2007) Phylogeny of parasitiform mites (Acari) based on rRNA. Mol Phylogenet Evol 43(3):936–951

    Article  CAS  PubMed  Google Scholar 

  • Klußmann-Fricke BJ, Wirkner CS (2016) Comparative morphology of the hemolymph vascular system in Uropygi and Amblypygi (Arachnida): complex correspondences support Arachnopulmonata. J Morphol 277(8):1084–1103

    Article  PubMed  Google Scholar 

  • Kury AB (2015) Classification of Opiliones. Museu Nacional/UFRJ website. Online at: http://www.museunacional.ufrj.br/mndi/Aracnologia/opiliones.html. Accessed 27 Feb 2016

  • Lekveishvili M, Klompen H (2004) Phylogeny of infraorder Sejina (Acari: Mesostigmata). Zootaxa 629:1–19

    Article  Google Scholar 

  • Maggenti MA, Maggenti AR, Gardner SL (2005) Online dictionary of invertebrate zoology: complete work. Armand R Maggenti Online Dictionary of Invertebrate Zoology Paper 2. doi:http://digitalcommons.unl.edu/onlinedictinvertzoology/2

  • Maxwell M (1978) Two rapid and simple methods used for the removal of resins from 1.0 μm thick epoxy sections. J Microsc 112(2):253–255

    Article  CAS  PubMed  Google Scholar 

  • Nachtigall W (1974) Biological mechanisms of attachment: the comparative morphology and bioengineering of organs for linkage, suction, and adhesion. Springer, Berlin/Heidelberg, 194 pp

    Book  Google Scholar 

  • Norton RA, Kethley JB, Johnston DE, O’Connor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman & Hall, New York, pp 8–99

    Chapter  Google Scholar 

  • OConnor BM (1984) Phylogenetic relationships among higher taxa in the Acariformes, with particular reference to the Astigmata. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol I. Ellis-Horwood Ltd., Chichester, pp 19–27

    Google Scholar 

  • Pepato AR, da Rocha CE, Dunlop JA (2010) Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 10(1):235

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez MJ (2014) The morphology and phylogeny of dionychan spiders (Araneae, Araneomorphae). Bull Am Mus Nat Hist 390:1–374

    Article  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463(7284):1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Rein JO (2015) The scorpion files. In: Roskov Y, Abucay L, Orrell T et al (eds) Species 2000 & ITIS catalogue of life. Naturalis, Leiden. Digital resource at www.catalogueoflife.org/col

    Google Scholar 

  • Schönhofer AL (2013) A taxonomic catalogue of the Dyspnoi Hansen and Sørensen, 1904 (Arachnida: Opiliones). Zootaxa 3679(1):1–68

    Article  PubMed  Google Scholar 

  • Seiter M, Wolff J, Hörweg C (2015) A new species of the South East Asian genus Sarax Simon, 1892 (Arachnida: Amblypygi: Charinidae) and synonymization of Sarax mediterraneus Delle Cave, 1986. Zootaxa 4012(3):542–552

    Article  PubMed  Google Scholar 

  • Selden PA, Shear WA, Sutton MD (2008) Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proc Natl Acad Sci U S A 105(52):20781–20785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma PP, Giribet G (2011) The evolutionary and biogeographic history of the armoured harvestmen–Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebr Syst 25(2):106–142

    Article  Google Scholar 

  • Sharma PP, Wheeler WC (2014) Cross-bracing uncalibrated nodes in molecular dating improves congruence of fossil and molecular age estimates. Front Zool 11:57

    Article  Google Scholar 

  • Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G (2014) Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol 31(11):2963–2984

    Article  CAS  PubMed  Google Scholar 

  • Shear WA, Palmer JM, Coddington JA, Bonamo PM (1989) A Devonian spinneret: early evidence of spiders and silk use. Science 246(4929):479–481

    Article  CAS  PubMed  Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linnean Soc Lond 150(2):221–265

    Article  Google Scholar 

  • Shultz JW, Regier JC (2001) Phylogenetic analysis of Phalangida (Arachnida, Opiliones) using two nuclear protein-encoding genes supports monophyly of Palpatores. J Arachnol 29(2):189–200

    Article  Google Scholar 

  • Smith AM, Callow JA (2007) Biological adhesives. Springer Science & Business Media, Berlin/Heidelberg/New York, 284 pp

    Google Scholar 

  • Smrž J, Kováč Ĺ, Mikeš J, Lukešová A (2013) Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in Slovak caves–a curiosity among Arachnida. Plos One 8(10):e75989

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitzthum H (1931) 9. Ordnung der Arachnida: Acari = Milben. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie: Chelicerata, vol 3, vol 2. de Gruyter & Co., Berlin, 160 pp

    Google Scholar 

  • von Byern J, Grunwald I (2010) Biological adhesive systems: from nature to technical and medical application. Springer, Vienna/New York, 304 pp

    Book  Google Scholar 

  • Weygoldt P (1969) Biology of pseudoscorpions. Harvard University Press, Cambridge, MA, 145 pp

    Google Scholar 

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. Plos One 8(5):e62682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JO, Schönhofer AL, Martens J, Wijnhoven H, Taylor C, Gorb SN (2016) The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida, Opiliones). Zool J Linnean Soc. Online pre-pub. doi:10.1111/zoj.12375

    Google Scholar 

  • World Spider Catalog (2016) World spider catalog. Natural History Museum Bern. Online at http://wsc.nmbe.ch, version 17.0. Accessed 26 Feb 2016

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolff, J.O., Gorb, S.N. (2016). Overview. In: Attachment Structures and Adhesive Secretions in Arachnids. Biologically-Inspired Systems, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-45713-0_1

Download citation

Publish with us

Policies and ethics