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Abstract. Today’s increasingly complex information infrastructures
represent the basis of any data-driven industries which are rapidly
becoming the 21st century’s economic backbone. The sensitivity of those
infrastructures to disturbances in their knowledge bases is therefore of
crucial interest for companies, organizations, customers and regulating
bodies. This holds true with respect to the direct provisioning of such
information in crucial applications like clinical settings or the energy
industry, but also when considering additional insights, predictions and
personalized services that are enabled by the automatic processing of
those data. In the light of new EU Data Protection regulations applying
from 2018 onwards which give customers the right to have their data
deleted on request, information processing bodies will have to react to
these changing jurisdictional (and therefore economic) conditions. Their
choices include a re-design of their data infrastructure as well as pre-
ventive actions like anonymization of databases per default. Therefore,
insights into the effects of perturbed/anonymized knowledge bases on
the quality of machine learning results are a crucial basis for success-
fully facing those future challenges. In this paper we introduce a series
of experiments we conducted on applying four different classifiers to an
established dataset, as well as several distorted versions of it and present
our initial results.

Keywords: Machine learning -+ Knowledge bases -+ Right to be
forgotten - Perturbation + Anonymization - k-anonymity - SaNGreeA -
Information loss - Structural loss - Cost weighing vector - Interactive
machine learning

1 Introduction and Motivation for Research

Privacy aware machine learning [6] is an issue of increasing importance, fos-
tered by anonymization concepts like k-anonymity [14], in which a record is
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released only if it is indistinguishable from k other entities in the data set. How-
ever, k-anonymity is highly dependent on spatial locality in order to effectively
implement the technique in a statistically robust way, and in arbitrarily high
dimensions data becomes sparse, hence, the concept of spatial locality is not
easy to define. Consequently, it becomes difficult to anonymize the data without
an unacceptably high amount of information loss [1]. Therefore, the problem of k-
anonymization is on the one hand NP-hard, on the other hand the quality of the
result obtained can be measured at the given factors: k-anonymity means that
attributes are suppressed or generalized until each row in a database is identical
with at least k — 1 other rows [15]; I-diversity as extension of the k-anonymity
model reduces the granularity of the data representation by generalization and
suppression so that any given record maps onto at least k other records in the
data [12]; t-closeness is a refinement of l-diversity by reducing the granularity
of a data representation, and treating the values of an attribute distinctly by
taking into account the distribution of data values for that attribute [11]; and
delta-presence, which links the quality of anonymization to the risk posed by
inadequate anonymization [13], but not with regard to the actual security of
the data, i.e., the re-identification through an attacker. For this purpose, certain
assumptions about the background knowledge of the hypothetical enemy must
be made. In this work, we are going to measure the effects of the anonymization
of knowledge bases on the performance of machine learning algorithms in order
to give valuable feedback to data holders and anonymization providers.

Another challenge for data processing entities is increasingly imposed on
them by the law. At least within the European Union, where a new Data Pro-
tection Reform will apply from 2018 onwards, customers are given a right to
be forgotten, which means that an organization is obligated to remove a cus-
tomer’s personal data upon request. Since information in a modern, data driven
infrastructure is not only usable for the customer herself, but also constitutes
the basis for machine learning algorithms providing better insights and services,
this information loss might be problematic, if only in competition with com-
panies/organizations which do not fall under such jurisdiction. The ability to
quantify the effects of information loss by erasure of sensitive data is therefore
of great importance and the other core focus of our work.

2 Scenarios of Incurring Information Loss in Datasets

2.1 Selective Perturbation

Within a modern information infrastructure, several layers of data storage and
processing might be affected by the right to be forgotten. The first and probably
most benign impact would be the one on so-called Front-End databases; those are
customer-facing databases on the backend which handle the bulk of day-to-day
data transmissions and contain the customer’s data in full detail. Erasing a data
entry from this Front-end is therefore simple and of manageable consequences.
The second layer impacted by data erasure are archival and backup systems,
which are necessary in case of failures on the Front-end. Although data erasure
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does not pose any technical problem here either, it is necessary to consider it
on an organizational level in order to not inadvertently re-introducing already
“forgotten” items.

Significant problems are to be expected when executing selective data era-
sure on statistical databases or knowledge bases prepared for machine-learning.
Both kinds of DBs will usually not hold the original user information but merely
statistically relevant fragments of it; this difficulty is compounded by the fact
that in many cases it might not be technically necessary to even store a link
to the original data. In such cases is it not only impossible to delete the rele-
vant fragments from such data stores (not to mention the statistical/parametric
results obtained by algorithms working on them), but the whole databases might
have to be recreated upon every user deletion request. It is therefore absolutely
crucial to have an insight into the results of potential data perturbation, if only
to be able to redesign (parts of) an information infrastructure.

2.2 Tabular Anonymization

Figure 1 illustrates the original tabular concept of anonymization: Given an input
table with several columns, we will in all probability encounter three different
categories of data:

— Personal identifiers are data items which directly identify a person without
having to cross-reference or further analyze them. Examples are first and last
names, but even more so an (email) address or social security number (SSN).
As personal identifiers are dangerous and cannot be generalized (see Fig. 2) in
a meaningful way (e.g. one could generalize an email address by only retain-
ing the mail provider fragment, but the result would not yield much usable
information), this category of data is usually removed. The table shows this
column in a red background color.

— Sensitive data, also called ‘payload’, which is the kind of data we want to
convey for statistics or research purposes. Examples for this category would
be disease classification, drug intake or personal income level. This data shall
be preserved in the anonymized dataset and can therefore not be deleted or
generalized. The table shows this column in a green background color.

— Quasi identifiers (QI’s), colored in the table with an orange background,
are data that in themselves do not directly reveal the identity of a person,
but might be used in aggregate to reconstruct it. For instance, [16] mentioned
that 87 % of U.S. citizens in 2002 had reported characteristics that made them
vulnerable to identification based on just the 3 attributes zip code, gender
and date of birth. But although this data can be harmful in that respect, it
might also hold vital information for the purpose of research (e.g. zip code
could be of high value in a study on disease spread). The actual point of all
anonymization efforts is therefore to generalize this kind of information, which
means to lower its level of granularity. As an example, one could generalize
the ZIP codes 41074, 41075 and 41099 to an umbrella version 410**, as shown
in Fig. 3.
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Name Age Zip Gender Disease
25 41076 Male Allergies

Fig. 1. The three types of data considered in (k-)anonymization

Level 2 {A+, A, A-,B+,B,B-}
Level 1 {A+ A, A-} {B+, B, B-}
A+ A A- B+ B B-

Figure 1: A possible generalization hierarchy for the attribute “Quality”.

Fig. 2. Example of a typical generalization hierarchy

As described in [5], k-anonymization requires that in each data release every
combination of values of quasi-identifiers must be identical to at least k — 1
other entries in that release, which can be seen as a clustering problem with
each cluster’s (also called equivalence class) quasi-identifier state being identical
for every data point. This can be achieved via suppression and generalization,
where suppression means simply deletion, whereas in generalization we try to
retain some usable value.

The process of generalization works through a concept called generalization
hierarchies, which form a tree, whose root denotes the most general value avail-
able for an attribute (usually the ‘all’ value) and then branches to more and
more specific occurrences, with its leafs representing the set of exact, original
values (see Fig. 2). In generalizing the original input value, one traverses the tree
from the leaf level upwards until a prerequisite is fulfilled. Usually, this comes
in the form of the k-anonymity requirement, so that we want to find a group of
other data entries whose generalized QI'’s match the data point being processed.

Each level of generalization involves a certain cost in information loss, so we
do not want to construct our clusters in any random sequence but minimize the
overall information loss [2]. This makes k-anonymization an NP-hard problem
due to an exponential number of possible generalized QI combinations.
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Node | Name | Age Zip Gender Disease Node Age Zip Gender | Disease
X1 |Alex 25 41076 [Male |Allergies X1 25-27 | 4107* [Male Allergies
X2 [Bob 25 41075 |Male |Allergies X2 25-27 | 4107* [Male IAllergies
X3 |Charlie 27 41076 [Male |Allergies X3 25-27 | 4107* |Male IAllergies
X4  |Dave 32 41099 |Male Diabetes X4 30-36 | 41099 | Diabetes
X5 [Eva 27 41074 |Female |Flu X5 27-33 | 410 |* Flu
X6 |Dana 36 41099 |Female |Gastritis X6 30-36 | 41099 |* Gastritis
X7 |George 30 41099 |Male Brain Tumor X7 30-36 | 41099 |* Brain Tumor
X8 |Lucas 28 41099 [Male Lung Cancer X8 27-33 | 410** |* Lung Cancer|
X9  |Laura 33 41075 |Female |Alzheimer X9 27-33 | 410** |* IAlzheimer

Fig. 3. Tabular anonymization: input table and anonymization result

2.3 Graph (Social Network) Anonymization

Hitherto we were solely concerned with tabular data; however, as social networks
have gained huge popularity over the previous decade, and are widely applicable
in other areas as well, the question of how to efficiently anonymize networks has
gained ever more significance over the years.

As a start, one could see a graph just as a collection of nodes, where each node
contains some kind of feature vector, akin to the row in a data table. Adopting
that view, we could be tempted to simply ignore the existence of edges and apply
some kind of algorithm suitable to the anonymization of tabular data. The main
problem with this however lies in the fact that the structural environment of
a node (the constellation of its neighbors within the greater network) provides
some additional information. That is, even if we successfully (k-)anonymize the
feature vectors of a graph according to the methods described in the previous
chapter, we still run the risk of too much information remaining in the form of
a known local subgraph structure.

Consider Fig.4 for example, in which the nodes of a graph have already
been k-anonymized into groups of size 3 and 7, respectively. In this figure, local
subgraphs (b) and (c) are actually (3)-anonymized, because as each node has the
exact same local neighborhood structure, the additional information of a node
possessing a degree of 0 (or 2) is of no additional value. For local subgraphs (a)
and (d) on the other hand, the additional information of a node being of degree
(x) has the potential to reveal its identity, meaning it is not indistinguishable
from its neighbors within the equivalence class any more.

Several methods have been proposed to make re-identification of nodes in
anonymized social graphs harder. [4] for example introduce the idea of vertex
addition to labeled and unlabeled datasets. While an algorithm on the former
remains NP complete, they provide an efficient (O(nk)) algorithm for unlabeled
data. Experimenting on several well known datasets, they show that commonly-
studied structural properties of the network, such as clustering coefficient, are
only minorly distorted by their anonymization procedure.

Person re-identification is both a hard and important problem in many dif-
ferent domains and is challenging. Most approaches aim to model and extract
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d)

Fig. 4. Local subgraph neighborhoods as additional anonymization obstacle.
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Fig. 5. Initial distribution of six selected data columns of the adult dataset.
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distinctive and reliable features. However, seeking an optimal and robust similar-
ity measure that quantifies a wide range of features against realistic conditions
from a distance is still an open and unsolved problem for person re-identification
techniques [17].

In order to develop protection techniques in social networks it is necessary
to consider three aspects [18]: (1) the privacy information which may be under
attack; (2) the background knowledge that an adversary may use to attack the
privacy of target individuals; and (3) a specification of the usage of the published
social network data so that an anonymization method can try to retain the utility
of the data as much as possible whilst the privacy is preserved.

The authors of [9] take the approach of adding edges to an edge-labeled
graph like the Netflix movie database (with users and movies being nodes
and edge weights representing movie ratings). They define tables as bipartite
graphs and prove NP-hardness for the problems of neighborhood anonymity,
i-hop anonymity and k-symmetry anonymity.

Campan [3], whose local subgraph problem we already encountered, proposed
a solution in the form of a greedy clustering algorithm which takes into account
not only the information loss incurred by generalizing features of nodes, but also
introducing a structural loss function based on the local neighborhood within
an equivalence class (and between them). The author of this thesis implemented
that approach utilizing GraphiniusJS and will demonstrate the algorithm in
Sect. 3.2 as well as the anonymized results in Sect. 4.

3 Experiments

The following sections will describe our series of experiments in detail, encom-
passing the data source selected, the algorithm used as well as a description of
the overall process employed to obtain our results.

3.1 Data

As input data we chose the adults dataset from the UCI Machine Learning repos-
itory which was generated from US census data of 1994 and contains approx-
imately 32,000 entries; from those 30,162 were selected after preprocessing. Of
the attributes (data columns) provided only one was deleted because it was also
represented by a column containing its numerical mapping (education => edu-
cation_num). Figure 5 shows the attribute value distribution of the original input
dataset with the exception of the sample weights.

As one can see, there are several attributes with one value clearly dominating
the others; native-country being the most prominent example with the entry
for the United States dwarfing all other countries (which comes as no surprise
given the data origin). As anonymization generalizes different countries together
if necessary, it was interesting for the author to see how these distributions
would change under a relatively large k-factor. Figure 6 shows the same attribute
distribution with its values anonymized by a factor of k& = 19. Although the



258 B. Malle et al.

native-country education-num marital-status
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10000
4000

2000

Own-child

Husband
Prof-specialty
manual-labor

Fig. 6. Anonymized distribution of six selected data columns of the adult dataset,
anonymization factor of k=19, equal weight for each attribute.

dominance of the United states was successfully “broken” by this method, in
several instances the generalized-to-all-value (*) now skews the data set even
more. Apart from the expected generalization information loss this is another
reason why one would assume worse results from a machine learning classifier
applied to an anonymized dataset.

3.2 Algorithm

SaNGreeA stands for Social network greedy clustering and was introduced by [3].
In addition to‘clustering’ nodes of a graph according to the minimum general
information loss (GIL) incurred as described in Sect. 2.2, this algorithm also
considers the structural information loss (SIL) incurred in assigning a node to
a certain cluster. The SIL quantifies the probability of error when trying to
reconstruct the structure of the initial graph from its anonymized version.
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S

B size(gen(cl)[N;])
GIL(el) = el] (2 size(mingen (X[Ny]), mazgen (X[N;]))

t

height(A(gen(cl)[Cy]))
+ Z height(Hc,) )

j=1

where:

- |el] denotes the cluster cl’s cardinality;

- size([il,i2]) is the size of the interval [il,42], i.e., (12 — i1);
- A(w), weHg, is the sub-hierarchy of He, rooted in w;

- height(Hc,) denotes the height of the tree hierarchy Hc;

The total generalization information loss is then given by:
GIL(G,S) = > GIL(cl))
j=1

And the normalized generalization information loss by:

GIL(G, S)

NGIL(G,8) = = =5

The SIL is composed of two different components: (1) the intra-cluster struc-
tural loss, signifying the error probability in trying to reconstruct the original
edge distribution within an equivalence class (= anonymized cluster), and (2) the
inter-cluster structural loss which represents the error probability in trying to
reconstruct the original configuration of edges between two equivalence classes.

For the exact mathematical definitions of SIL & NSIL the reader is kindly
referred to the original paper. Because the structural information loss cannot be
computed exactly before the final construction of clusters, the exact computa-
tions were replaced by the following distance measures:

Distance between two nodes:

(Il =1.n AL #1,j;bi #b]]

dist(X*, X7) =
ist(X*, X7) —

Distance between a node and a cluster:

o dist(X, X7
diSt(X, Cl) = ZXJECI |1j|( : )
C

The algorithm starts with initializing a first cluster by a randomly choosing a
node. Then, for every new node encountered, the weighted sum of the above two
information loss metrics will yield a certain overall information loss in case the
node was added to that cluster - the candidate with minimal information loss
is then added to the cluster. This process is repeated until the cluster reaches
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a certain constraint (e.g. size :=k -factor) upon which another random node is
chosen to constitute the next cluster. This procedure is repeated until all nodes
have been assigned; if a cluster of size <k should remain, its member nodes are
dispersed accordingly.

Since the algorithm does not take all possible node combinations into account,
but simply chooses an arbitrary node and compares all the candidates in a loop,
the algorithm runs in quadratic time w.r.t. the input size in number of nodes.
This worked well within milliseconds for a problem size of a few hundred nodes,
but took up to 60 mins. on the whole adult dataset.

In implementing and demonstrating this algorithm, the authors intended
to recreate the original paper’s experiment. However, as no suitable real-world
graph structure was available to the authors at the time of this writing and any
artificially generated network would result in dubious results for the classification
tasks applied, we decided to leave out the structural component of the algorithm
and focus only on the generalization information loss for this paper, leaving the
entire approach to future research initiatives.

3.3 Process

To examine the impact of perturbation and anonymization of datasets on the
quality of a classification result, we designed the following processing pipeline:

1. Taking the original (preprocessed) dataset as input, we transformed its
attributes to boolean values, so instead of native-country — > United-States
we considered United-States — > yes/no.

2. We then ran 4 different classifiers on it and computed precision, recall as well
as F1 score. The four classifiers used were gradient boosting, random forest,
logistic regression and linear SVC.

3. From the obtained results we extracted the 3 attribute values most contribut-
ing to a “positive” (>50k) result as well as the top 3 attribute values indi-
cating a “negative” (<=50k) prediction as depicted in Fig.7

4. For each of these 6 attribute values, we subsequently deleted a specific per-
centage of data rows containing that value from the original dataset, resulting
in 30 reduced datasets. The 5 percentages used were 0.2, 0.4, 0.6, 0.8 as well
as 1.0.

5. To each of those datasets we re-applied the four chosen classifiers successively
and recorded the respective impact on the quality of the classification result.
The results can be seen in Figs. 9 and 10.

6. In order to measure the effects of k-anonymization on classifier performance,
we used the SaNGreeA’s GIL component described in the following section
to generate datasets with a k-factor of k = 3, k = 7, k = 11, k = 15 as
well as £ = 19. Furthermore, we used each of these settings with 3 different
weight vectors: (1) equal weights for all attributes, (2) age information pre-
ferred (w(age) = 0.88, w(other_attributes) = 0.01) and (3) race information
preferred (w(race) = 0.88, w(other_attributes) = 0.01). We then re-executed
all classifiers on the resulting 15 datasets and recorded the respective results,
which can be seen in Fig. 8.
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4 Results and Discussion

We expected a steady decline in the quality of classification results over all
three scenarios: (1) anonymization of datasets, (2) perturbation by selectively
deleting attribute values of positive significance w.r.t the result, (3) perturbation
by selectively deleting attribute values of negative significance w.r.t the result.
The actual results satisfied our expectations only in the first two cases, with
the shape of the actual outcomes being a little bit surprising. As can be seen
in Fig. 8, the F1 score of all algorithms applied declines more drastically at the
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Fig.7. The attribute values of the adult dataset which contribute most posi-
tively /negatively to the classification result. The columuns to the right strongly indicate
a yearly income of above 50k, whereas the columns to the outer left indicate a yearly
income of below 50k. The least significant columns in the middle part were cut out.



262 B. Malle et al.
F1 score dependent on anonymization, gradient boosting F1 score dependent on anonymization, linear SVC
\ e—e equal weights 065 e—e equal weights
070 +— age preferred +— age preferred
\ o+ race preferred o+ race preferred
0.60
0.65
v g
] S 055
ind ind
0.60
050
055
045
none 3 7 11 15 19 none 3 7 11 15 19
anonymization k-factor anonymization k-factor
F1 score dependent on anonymization, logistic regression F1 score dependent on anonymization, random forest
e—e equal weights e—e equal weights
0651 \\ +— age preferred +— age preferred
\ +— race preferred 065 +— race preferred
060 \
v v
] S 0.60
T 055 il
A
055
0.50
\\\
= ~_
~
==
45 050
none 3 7 11 15 19 none 3 7 11 15 19

anonymization k-factor anonymization k-factor

Fig. 8. The impact of anonymization on the F1 score of different classifiers

beginning, with more benign further losses as the k-factor of anonymization
increases. Whereas the F1 curves for gradient boosting, linear SVC and logistic
regression approximate a 1/x curve, the random forest classifier reacts more
sensitively to even slight anonymization, but seems to stay more robust with
higher values of k.

Considering the exact performance, Linear SVC and logistic regression
yielded the worst outcomes under anonymization, which is not further surprising
given their lower scores on the original input data to begin with.

As far as the second case is concerned (Fig.9), our experiments showed the
expected drop in algorithm performance, although the impact shows a different
behavior: In the case of deleting rows with capital gain values of >2000 US-
Dollars, the decline seems to be linear, whereas for the other two attribute values
the performance seems to collapse with higher rates of erasure. Moreover, this
behavior is more or less the same for all applied algorithms. This seems to
point to the fact that especially significant attribute values can uphold a good
performance even in low quantities.

The only real surprise occurred with applying our classifiers to the datasets
perturbed by deleting percentages of attribute values indicating a low yearly
income (Fig. 10). As with scenario 2 we expected to see a progressive decline in
performance - but with all classifiers the results either stayed approximately the
same or even improved in some cases (please consider the extremely narrow scale
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Fig. 9. The impact of perturbation (selectively deleting quantiles of rows containing one
of the TOP 3 positively contributing attributes) on the F1 score of different classifiers

in the respective plots). As the classification score is dependent on (in-)correctly
classifying both positive and negative outcomes, this seems rather surprising and
will require further investigation.

5 Open Problems Future Challenges

— Explain the unexpected behavior for the datasets perturbed by selectively
deleting rows containing the TOP 3 negatively contributing attribute values.

— Find a natural dataset which already contains a graph structure emerged
in the real-world rather than a graph generator. We assume that for many
modern applications the experiments conducted in this work would be highly
relevant to social network analysis and anonymization, and we are planning
to conduct such a research effort in a sequel to this investigation.

— Consider the structural information loss on a suitable real-world graph
and re-apply our methodology to that data-structure. Once realistic results
have been obtained, the effects of the same algorithm on artificially generated
graphs might be examined, offering another perspective on the information con-
tent /structure introduced into datasets by different types of such generators.
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Fig. 10. The impact of perturbation (selectively deleting quantiles of rows containing
one of the TOP 3 negatively contributing attributes) on the F1 score of different
classifiers

— Analyze the exact influence different kinds of information loss due to
anonymization/perturbation have on the different algorithms. In this work, we
have only chosen a series of classifiers to demonstrate our approach. However,
other classes of machine learning algorithms might yield interesting results as
well, and we are motivated to conduct such future research ourselves.

— Interactive machine learning. We have, amongst other settings, experi-
mented with different weight vectors in our approach regarding anonymiza-
tion. However, such parameters do not easily lend themselves to be produced
by an algorithm, since minimizing an artificial metric of information loss does
not produce safe datasets in itself. Moreover, data utility is highly depen-
dent on the specific area of application; therefore choosing parameters with
regard to the particular demographic and cultural clinical environment is best
done by a human agent. The problem of (k-)anonymization thus represents
a natural application domain for interactive Machine Learning (iML) with a
human-in-the-loop [7,8,10]. The authors will strive to design and implement
such experiments in the future.



The Right to Be Forgotten 265

6 Conclusion

This paper examined the question of how different ways of perturbing or
anonymizing knowledge bases would influence the results of machine learning
algorithms applied to those datasets. We have seen that newly introduced regu-
lations (inside the European Union) as well as data privacy concerns of database
owners naturally lead to the challenge of minimizing the cost/efficiency impact
of those requirements not only on the technical, but also the machine learning
infrastructure of affected businesses and organizations. Consequently, we con-
ducted a series of experiments to simulate the decline in the F1 score of several
classification algorithms on an established dataset. Our results show that selec-
tive deletion of valuable data items is less destructive than general anonymiza-
tion, so that complying with regulations concerning the “right to be forgotten” is
still preferable to taking preemptive steps to de-identify personal information in
databases. Our results are highly selective however and should be corroborated
by applying a wider spectrum of algorithms to larger, more diverse datasets.
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