
Chapter 12

Utilising NIRS for Qualitative and Non-

destructive Identification of Seed Mutants

in Large Populations

Johann Vollmann and Joanna Jankowicz-Cieslak

Abstract Phenotyping of large plant populations for genetic research or plant

breeding is often time-consuming and expensive. Seed composition is a primary

breeding objective as this determines quality for various markets, e.g. food, fodder
and industrial processing. Near-infrared reflectance spectroscopy (NIRS) is a fast

developing analytical tool for seed composition screening. For example, it is

utilised in plant breeding programmes to predict compositional concentrations in

various samples. NIRS can be used to detect variation between seed lots and

between individual seeds and can be used to identify and isolate new phenotypes

including mutants based on spectroscopic sample properties. Spectral data of seed

samples may be subjected to principal component analysis to separate groups and

individuals with distinct compositional properties. Spectroscopic outliers such as

mutants with novel seed quality alleles may then be selected based on principal

component scores. Outliers represent a small subset of the entire population, and

these may be subject to more rigorous analyses (chemical, physiological and

genetic). In determining their potential exploitation, NIRS is a high-throughput

phenotyping platform that can be used to reduce large sample sizes, e.g. a mutant

population to manageable numbers.
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12.1 Introduction

Field, glasshouse and laboratory-based phenotyping of large and genetically

diverse populations are often time-consuming and costly and are considered a

major bottleneck in plant genetic improvement (Araus and Cairns 2014). Rapid

developments in genotyping have generated massive data banks, but this has not

been matched by phenotyping; this has led to the so-called phenotype gap which

limits our ability to link genes to traits. Near-infrared reflectance spectroscopy

(NIRS) is a fast analytical method based on reflection/absorption from functional

chemical groups in the near-infrared region of light (about 800–2500 nm wave-

length range). This is suitable to predict the concentration of major organic com-

ponents in seed or other biological materials without requiring extensive sample

preparation. Non-destructive NIRS methods enable rapid prescreening that may be

performed on seed prior to field or glasshouse propagation. While most NIRS

applications are implemented in agriculture, food and environmental industries, it

is also becoming popular in pharmaceutical and medical fields due to improvements

in instrumentation and in statistical analysis (Bosco 2010). Owing to the low

per-sample cost and speed of measurement and analysis, NIRS has the potential

to serve as a component of high-throughput phenotyping platforms in various crop

improvement and quantitative genetics studies.

In plant breeding, NIRS has been utilised in two ways. Quantitative analysis

involves the prediction of concentrations of identified components. In this

approach, calibration standards need to be developed to assign measured spectra

to specific components accurately (e.g. Sato et al. 2012; Xie et al. 2014). The

second major approach is qualitative analysis. This involves the classification of

samples according to their spectroscopic properties. Samples are clustered

according to their similarity/dissimilarity (Munck 2007). This is based on “spec-

troscopic fingerprints” of each sample. Different statistical criteria can be applied to

separate outliers from “normal” samples. This approach is ideally suited to projects

involving large populations where outliers are expected at a rare frequency, such as

with chemically or irradiated mutant plant populations. Low densities of induced

mutations typically mean that many thousands of plants need to be screened to

identify rare variants with the desired improved trait (Jankowicz-Cieslak

et al. 2011). Moreover, in contrast to quantitative analysis for predicting concen-

trations of individual analytes, qualitative NIRS analysis does not require reference

samples and reference chemistry analysis for the development of calibrations.

Apart from genotype identification and verification based on seed (Turza

et al. 1998; Wu et al. 2008), NIRS can be used in the identification of transgenic

food materials (Alishahi et al. 2010) or seeds, such as separating RoundupReady®

from non-GMO soybeans (Esteve Agelet et al. 2012). NIRS can also be used in

mutant identification, for example, barley endosperm mutants such as those

expressing high lysine or high and low beta-glucan can be differentiated from

normal barley genotypes based on their chemometric patterns (Jacobsen

et al. 2005). In wheat, starch mutants carrying non-functional alleles in the amylose
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synthesis gene resulting in the “waxy” phenotype can be detected by NIRS

(Delwiche et al. 2011). A major step forward in NIRS is the analysis of single

seeds, e.g. NIRS analysis can distinguish individual amylose-free seeds in both

hexaploid and tetraploid wheat (Dowell et al. 2009). Thus, waxy wheat seeds could

be selected in segregating populations, for purifying advanced breeding lines or for

mutant identification and isolation. In maize, prediction of constituents such as

starch, oil or protein concentration and seed weight is feasible on individual seeds

through classical calibrations based on partial least square regression statistics,

while oil, starch and protein mutant phenotypes can be identified from principal

component analysis of spectral data, implemented using single seed glass tube NIR

spectrometer. The design of the instrument enables high-throughput data collection

and is of great interest for single seed-based selection, genetic screening and seed

phenomics (Spielbauer et al. 2009).

Evidence from different crop species demonstrates the potential of utilising

NIRS spectral data for classifying seed samples according to spectral similarity.

A major concern in identifying mutants (traditionally mutagenised by seed treat-

ments with chemical or physical mutagens) is their low frequency; usually thou-

sands of individuals or lines must be evaluated to identify the rare novel phenotypes

of interest. We have developed a high-throughput preselection method utilising

qualitative NIRS analysis of rice seed in which rare and novel phenotypes can be

identified. Since the outliers are from the same population and share a common and

highly homogenous genetic background, any change is easily picked up and is a

potential mutant that may be validated by further analyses. A practical, user-

friendly method for NIRS-based screening of mutant seed populations is given

below for spectroscopic outlier detection.

12.2 Materials

12.2.1 Equipment and Hardware

1. NIRS equipment, e.g. Bruker Matrix-I FT-NIR machine (see Note 1)
2. Mill, equipped with grid nets for uniform grinding, e.g. CT 1093 Cyclotec Sample

Mill (FOSS, Sweden)

3. Funnel

4. Spoon

5. Brush

6. Small scale vacuum cleaner

7. Sample glass cuvettes compatible with NIRS equipment
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12.2.2 Software

1. OPUS 7.5 (Bruker, Ettlingen, Germany) or software compatible with NIRS

equipment

2. Unscrambler® (Camo Software AS, Oslo, Norway)

3. Standard spreadsheet software for data handling

12.2.3 Plant Materials

1. Mutant populations (see Note 3).
2. Dry seeds with moisture content below 14 % (see Notes 4 and 5).

12.3 Methods

12.3.1 Seed Preparation

1. Dry mature seed per mutant population or line to have moisture content below

14 %, in a standard desiccator or a dry room under ambient conditions (see Note
5).

2. Grind seed to a fine powder (see Note 6).

12.3.2 NIRS Analysis

12.3.2.1 Destructive Approach

1. For each accession or a mutant line, grind 3–5 g of dry seeds (see Note 7).
2. Disassemble the mill and clean it with a vacuum cleaner and brush so that no

particles of the previous sample remain (see Note 8).
3. Fill the sample containers with the milled sample according to manufacturer’s

instructions.

4. Scan sample in the NIRS instrument to collect and record spectral reflectance

characteristics of the samples (see Note 9).
5. Repeat the measurement 2–4 times, turning the sample cup or mixing the sample

each time (see Note 10).
6. Perform statistical analysis (see Notes 11–15, Figs. 12.1, 12.2 and 12.3).
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12.3.2.2 Non-destructive Approach

1. For each accession/mutant line prepare 3–5 g of dry seeds.

2. Fill sample containers with milled samples according to manufacturer’s
instructions.

3. Scan sample in the NIRS instrument to collect and record spectral reflectance

characteristics of the samples (see Note 9).
4. Repeat the measurement 2–4 times, turning the sample cup or mixing the sample

prior to each measurement. If the amount of sample material permits, use a new

portion for each measurement.

Fig. 12.1 Classification of a test set of 12 rice mutant lines based on principal component analysis

of NIRS spectra as influenced by sample pretreatment such as dehulling or grinding of samples

Fig. 12.2 Classification of a mutant population of 329 rice samples using PC analysis of

spectroscopic data. Spectroscopic outliers are visualised as samples outside the boundaries of a

Hotelling’s T2 statistics ellipse
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5. Keep the seed for future analysis or for mutant multiplication.

6. Perform statistical analysis (see Notes 11–15, Fig. 12.1, Fig. 12.2 and Fig. 12.3).

12.3.3 Statistical Analysis

1. Download spectroscopic data from the NIRS computer.

2. Import sample spectra to Unscrambler or other statistical software suitable for

multivariate data analysis.

3. Carry out principal component analysis for data reduction and clustering of

samples (see Notes 12–15).
4. Save PCA scores calculated for each sample of the population in a spreadsheet

software programme.

5. Use PCA scores to plot x–y graphs of the samples to visualise clustering (similar

phenotypes) and outliers (unique phenotypes).

12.4 Notes

1. Various types of NIRS instruments with different technologies are available on

the market at present. Newer models often have better performance so that more

spectral information can be recovered from a sample. Among important prop-

erties are resolution, light throughput, wavenumber accuracy, repeatability and

signal-to-noise. Beside the near-infrared region (typically 800–2500 nm), some

instruments have an extended wavelength range (e.g. 400–2500 nm) including

the range of the visible spectrum of light; this may be of interest in measuring

colour differences which can be caused by variation in carotenoids, anthocya-

nins or other components of seed samples. NIRS instruments also differ in

Fig. 12.3 Spectroscopic

classification of 329 rices

mutant lines with the top

5 % of samples highest in

seed protein content

highlighted in red
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sample presentation methods which have an influence on surface reflection,

particle size and other effects; depending on sample presentation modes, seed

samples might either need to be finely ground, might be scanned

non-destructively or analysed as single intact seeds. Here we provide Bruker

Matrix-I as an example of a modern FT-NIR instrument which is very well

suited for combined single seed and bulk material analysis.

2. Proprietary software is required for most instruments in order to carry out basic

instrument operations such as optical adjustments or collection of spectral data

from samples. Programmes are normally available to assist in the development

and validation of chemometric calibrations from sample sets with reference data,

or they can be used to predict seed composition from external calibrations. These

are commercially available for major crop species and include the most impor-

tant grain components such as for instance starch, protein and pigments.

3. Mutant populations should be developed following established procedures (Lee

et al. 2014). It is important to note that the first (M1) generation after mutagen-

esis is chimeric, and most mutations will not be heritable, also the M1 generation

suffers from physiological disorders as a result of mutagenic treatments. There-

fore, mutation screening should not be carried out until the M2 or subsequent

generations. Seed weight and number are important considerations when

selecting the generation to screen. One should select a generation where there

is at least 3–5 g of seed per line.
4. In quantitative NIRS analysis for predicting particular analytes using calibra-

tions, reference samples need to be collected from different environments (e.g.
locations, growing seasons) to cover environmental variation. In qualitative

NIRS analysis for classifying samples, spectral variation caused by environmen-

tal effects might bias classification results. Therefore, samples to be classified

have to be grown in the same environment (field location, greenhouse) to avoid

environmental effects. Moreover, repeated controls have to be used to be able to

monitor and estimate environmental variation effects. A dry seed with moisture

content below 14% is a suitable material for NIRS analysis. Samples differing in

water content cannot be analysed, as very broad water peaks in certain regions of

the NIRS spectrum mask useful spectral variation between samples.

5. Generally, seed of cereal crops can be stored at a moisture level of 14 % or

below. In dry environments, this level is reached at full maturity; in moist or

high-humidity environments, some postharvest drying may be necessary. Mois-

ture level of 14 % or below is reached when single seeds cannot be indented with

finger nails.

6. Depending on seed size and the sample presentation method of the NIRS

instrument, grinding of seeds into a homogeneous powder or replicated mea-

surements (e.g. mix by inverting the vial 2–4 times) of the sample might be

needed for avoiding surface reflection and to obtain representative and repro-

ducible spectral data. Larger amounts of sampling materials measured in higher

number of replications might avoid the need for grinding thus enabling

non-destructive measurements in nonhomogenous (i.e. large seeded) samples.

However, non-destructive measurement vs. grinding or dehulling of samples has

a strong effect on spectroscopic sample classification, as shown in Fig. 12.1.
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7. The method described here is a destructive method that involves grinding the

entire seed (embryo and endosperm) tomake themeasurement. In advanced lines,

induced mutations should segregate in a Mendelian fashion. In order to recover

mutations identified in NIRS, one should retain 20 or more seeds per line.
8. Cross-over contamination from previous measurements can lead to errors.

9. Depending on the NIRS instrument and the measuring mode used, scanning a

sample takes between 30 s and 2 min.

10. For qualitative NIRS analysis to classify samples, general statistical software

packages suitable for data reduction andmultivariate analysis could be utilised. A

machine-independent software package dedicated to spectral data analysis (spec-

tra pretreatment and transformation, calibration development and validation,

multivariate classification, etc.) is Unscrambler® (Camo Software AS, Oslo,

Norway), which is widely used in multivariate analysis of spectroscopic data.

11. In spectroscopic data analysis for sample classification, specific data

pretreatment methods such as multiplicative scatter correction or standard

normal variate transformation are used to adjust for radiation-scattering effects.

Various other data pretreatment methods such as first or second derivative

functions might be applied as well for reducing data noise and enhancing

sample signals on a trial-error basis, but data pretreatment might cause infor-

mation loss thus reducing the discrimination power of spectral data.

12. Spectral data are subject to principal component analysis (PCA), and PCA

scores for samples are calculated and further used in score plots to visualise

classification results. Either full spectra or specific wavelength regions can be

utilised to calculate PCA models. PCA classification models can be validated,

and models can be selected based on the level of total variance explained. In

mutant populations, spectroscopic outliers can subsequently be detected based

on the distance to untreated control genotypes of the same genetic background.

In Fig. 12.2, 329 rice samples derived from a mutant population are classified

by PCA analysis of spectroscopic data; outliers are visualised as samples

outside the boundaries of a Hotelling’s T2 statistics ellipse which could be

subject to further analysis.

13. In sample populations segregating for qualitative characters such as the waxy

wheat trait, samples with known group membership (e.g. waxy vs. normal

starch) could be used as anchors to classify unknown samples or for developing

discriminant analysis functions based on the PCA scores.

14. If calibrations for quantitative determination of individual analytes are avail-

able, they might be combined with spectroscopic classifications to gain addi-

tional information about individual samples. In Fig. 12.3, the sample set of

Fig. 12.2 (329 rices samples, mutant population) was subject to quantitative

analysis of seed protein content: The majority of the 5 % of samples with

highest protein content are appearing in the lower right section of the scatter

plot as highlighted. Using quantitative calibrations, the concentrations of var-

ious other seed components of interest can be calculated and considered for

further selection steps, as given in Table 12.1 for the highlighted samples of

Fig. 12.3.
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15. False detections: In addition to genotype, the composition of a seed is

influenced by the environment in which it develops. Environmental effects

could be at the scale of the plant environment or the micro-environment in

which the seed develops. For example seeds that develop at the extremities of

an inflorescence may not receive the same nutrient supplies as those that

develop in central locations and have better links to the vascular system; seed

composition may also be affected by pests and diseases. Such affected seeds

may be detected as having abnormal NIR spectra. Measures can be taken to

discard such “off-type” seeds, e.g. they are often small or deformed and

removed by sieving. Or they can be included in the preselections and retested

in subsequent generations.
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Table 12.1 Protein content

and other parameters of the

top 5 % in protein content of

Fig. 12.3 rice mutant

population as compared to the

control mean

Line Ash Fat Fibre Protein Moisture

281 4.58 5.19 3.50 13.45 9.96

52 4.20 5.78 4.89 13.52 8.78

27 4.20 5.74 4.07 13.65 9.24

189 4.00 5.92 4.90 13.78 9.78

97 4.52 5.79 5.94 13.80 9.33

315 4.08 5.73 4.71 14.12 8.29

241 4.90 5.52 4.69 14.24 9.68

11 4.55 6.45 6.18 14.41 7.78

297 4.61 5.39 4.34 14.60 9.92

21 4.31 5.88 5.73 14.63 9.43

304 3.82 5.97 4.59 14.76 10.29

248 4.35 5.96 4.68 15.30 10.13

90 4.75 5.96 3.73 16.34 9.15

17 4.80 6.10 5.45 16.55 9.45

Control mean 3.75 4.94 5.51 11.25 4.65
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