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Abstract. In this work a novel ensemble technique for generating ran-
dom decision forests is presented. The proposed technique incorporates
a Naive Bayes classification model to increase the diversity of the trees
in the forest in order to improve the performance in terms of classifica-
tion accuracy. Experimental results on several benchmark data sets show
that the proposed method archives outstanding predictive performance
compared to other state-of-the-art ensemble methods.
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1 Introduction

In machine learning and data mining, ensemble methods make use of single
or multiple learning algorithms in order to generate a diverse set of classifiers
aiming to improve performance/robustness over a single underlying classifier
[16]. Experimental studies and machine learning applications prove that a certain
supervised learning algorithm outperforms any other algorithm for a particular
problem or for a particular subset of the input dataset, but it is unusual to
discover a single classifier that will reach the best performance on the overall
problem domain [17].

Ensembles of classifiers can be generated via several methods [2]. Common
procedures that are used to create an ensemble of classifiers include, among
others, (i) Using different splits of a training data set with a single learning algo-
rithm, (ii) Using different training parameters with a single learning algorithm,
(iii) Using multi-learning methods.

Diversity [21] between the base classification models is considered to be a
key aspect when constructing a classifier ensemble. In this work, we propose a
variation of the Random Forests [6] algorithm that incorporates new features
using Naive Bayes [8] before the construction of the forest. The new generated
features aim to increase the diversity among the trees in the forest. Our empirical
evaluation concludes that the new features increase the diversity and that they
leed to a better final classifier.
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The rest of the paper is organized as follows. In Sect. 2 some of the most well-
known techniques for generating ensembles, that are based on a single learning
algorithm, are discussed. In Sect. 3 the proposed method is presented. Further-
more, the results of the experiments on several real and laboratory data sets,
after being compared with state-of-the-art ensemble methods, are portrayed and
discussed. Finally, Sect. 4 concludes the paper and suggests further directions in
current research.

2 Background Material

This section presents a brief survey of techniques for generating ensembles using
a sole learning algorithm. These techniques rely on modifying the training data
set. Methods of modifying the training data set include, among others, sampling
the training patterns, sampling the feature space, a combination of the two and
modifying the weight of the training patterns.

Bagging is a method for creating an ensemble of classifiers that was proposed
by Breiman [5]. Bagging generates the classifiers in the ensemble by taking ran-
dom subsets of the training data set with replacement and building one classifier
on each bootstrap sample. The final classification prediction for an unseen pat-
tern is constructed by taking the majority vote over the class labels produced
by the base classification models.

While Bagging relies on random and independent changes in the training data
implemented by bootstrap sampling, Boosting [11] encourages guided changes
of the training data to direct further classifiers toward more “difficult cases”. It
assigns weights to the training patterns, which are then modified according to
how well the coupled case is learned by the classifier. The weights for misclas-
sified patterns are increased. Thus, re-sampling happens based on how well the
training patterns are classified by the previous base classifier. Given that the
training set for one classification model depends on the previous one, boosting
requires sequential runs and therefore is not easily adapted to a parallel process.
After several iterations, the prediction is made by taking a weighted vote of the
predictions of each classifier, with the weights being relative to each classifiers
accuracy on its training set. AdaBoost is a practical version of the boosting
approach [11].

Ho [15] constructed a forest of decision trees named Random Subspace
Method that preserves highest accuracy on the training patterns and improves
on generalization accuracy as it grows in complexity. Random Subspace Method
consists of global multiple decision trees created systematically by pseudoran-
domly selecting half of the available features, i.e. trees built in randomly chosen
subspaces. The final classification prediction for an unseen pattern is constructed
by averaging the estimates of posterior probabilities at the leaves of all the trees
in the forest.

Random Forests [6] is an alternate method for building ensembles. It is a
combination of Bagging and Random Subspace Method. In Random Forests,
every tree in the forest is constructed from a bootstrapped sample from the



Increasing Diversity in Random Forests Using Naive Bayes 77

training set. Additionally, the split that is selected in tree construction is not
the best split between all the available features. Instead, it is the best split among
a random selection of the features [22].

Despite the fact that Random Forests yields one of the most successful [9]
classification models, the improvement of its classification accuracy remains an
open problem for the machine learning research field. Several authors [3,19,24]
have studied and proposed techniques that could improve the performance of
Random Forests. In [19] it is illustrated that the most important improvement
in the performance of Random Forests is achieved by changing the mechanism
of voting in the prediction. In [24] the authors implemented a similar approach,
where class votes by trees in the forest are weighed according to their perfor-
mance; Therefore, heavier weights are assigned to better performing trees. The
authors of [3] experimentally show that the classification accuracy is enhanced
when a random forest is composed of good and uncorrelated trees with high
accuracies, while correlated and bad trees with low classification accuracies are
ignored.

3 The Proposed Method

In this work, a modified version of Random Forests is proposed that is con-
structed not only by pseudorandomly selecting attribute subsets but also by
encapsulating Naive Bayes estimation in the training phase, as well as in the
classification phase.

Given a class variable y and a dependent feature vector x1 through xn, Bayes
theorem states the following relationship:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . xn | y)

P (x1, . . . , xn)
. (1)

Under the assumption that features are conditionally independent

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y), (2)

for all i Eq. (2) is simplified to

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
. (3)

Since P (x1, . . . , xn) is constant given the input the formula used by the Naive
Bayes classifier is

P (y | x1, . . . , xn) ∝ P (y)
n∏

i=1

P (xi | y) ⇒ ŷ = arg max
y

P (y)
n∏

i=1

P (xi | y). (4)

The assumption of independence is almost always wrong. Besides this, an
extensive comparison of a simple Bayesian classifier with state-of-the-art algo-
rithms showed that the former sometimes is superior to other supervised learn-
ing algorithms even on datasets with important feature dependencies [8]. In [12]
Friedman explans why the simple Bayes method remains competitive.
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Our intention is to generate a forest of decision trees that will be as diverse as
possible for producing better results [4]. For this reason, in the training phase,
we trained a classifier using the Naive Bayes algorithm. Afterwards, we used
the same training set to generate predictions and class membership probabili-
ties using the Naive Bayes classifier. The predictions and the class membership
probabilities will increase the original feature space by concatenating them as
new features. As far as predictions are concerned, a new feature vector will be
generated. This vector will contain only the class label for each instance that is
predicted by the Naive Bayes model. In the case of class membership probabil-
ities, new feature vectors will be generated, as many as the number of classes.
Assuming that we have a sample of a dataset with four features as presented
in Table 1 and three classes. An example of the above process is illustrated in
Tables 2 and 3. After the concatenation, a Random Forests classifier will be
trained using the new n-dimensional feature vector. The same procedure, the
generation of new feature vectors, will be used in the classification phase. The
predicted class of an unseen instance will be the vote by the trees in the forest,
weighted by their probability estimates. The proposed method is presented in
Algorithm 1.

3.1 Numerical Experiments

In order to verify the performance of the proposed method, a number of exper-
iments on some classification tasks were conducted and the results are reported

Table 1. Original feature space

x0 x1 x2 x3 y

4.7 3.2 1.3 0.2 0

4.6 3.1 1.5 0.2 0

6.4 3.2 4.5 1.5 1

6.9 3.1 4.9 1.5 1

5.8 2.7 5.1 1.9 2

7.1 3.0 5.9 2.1 2

Table 2. Feature space augmented with Naive Bayes model’s predictions

x0 x1 x2 x3 f0 y

4.7 3.2 1.3 0.2 0 0

4.6 3.1 1.5 0.2 0 0

6.4 3.2 4.5 1.5 1 1

6.9 3.1 4.9 1.5 2 1

5.8 2.7 5.1 1.9 2 2

7.1 3.0 5.9 2.1 2 2
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Table 3. Feature space augmented with Naive Bayes model’s class membership prob-
abilities

x0 x1 x2 x3 f1 f2 f3 y

4.7 3.2 1.3 0.2 1.000 0.000 0.000 0

4.6 3.1 1.5 0.2 1.000 0.000 0.000 0

6.4 3.2 4.5 1.5 0.000 0.945 0.055 1

6.9 3.1 4.9 1.5 0.000 0.456 0.544 1

5.8 2.7 5.1 1.9 0.000 0.025 0.975 2

7.1 3.0 5.9 2.1 0.000 0.000 1.000 2

in this section. From the KEEL data set repository [1] fourteen data sets were
chosen and used as is without any further preprocessing. In Table 4 the name,
the number of patterns, the attributes, as well as the number of different classes
for each data set are shown.

All data sets were partitioned using a ten-fold cross-validation procedure.
This method divides the instances in ten equal folds. Each tested method was
trained using nine folds and the fold left out was used for evaluation, using the
metric of classification accuracy. This was repeated ten times. Then the average
accuracy across all trials was computed.

Algorithm 1. NB Forest
procedure Training(X, y, generateNBProbas, generateNBPredictions)

Build a Naives Bayes (NB) model using X and y
Xgen ← GenerateFeatures(X,generateNBProbas,generateNBPredictions)
Build a Random Forest model using Xgen and y

end procedure
procedure Classification(X, generateNBProbas, generateNBPredictions)

Xgen ← GenerateFeatures(X,generateProbabilities,generatePredictions)
Use the Xgen to classify a test instance

end procedure
function GenerateFeatures(X, generateNBProbas, generateNBPredictions)

Xgen ← X
if generateNBProbas then

Use NB to generate class membership probabilities as Xprobas

Xgen ← Xgen ∪ Xprobas

end if
if generateNBPredictions then

Use NB to generate class predictions as Xpredictions

Xgen ← Xgen ∪ Xpredictions

end if
return Xgen

end function
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Table 4. Benchmark data sets used in the experiments

Data set #attributes #patterns #classes

appendicitis 7 106 2

banana 2 5300 2

cleveland 13 297 5

ecoli 7 336 8

glass 9 214 7

led7digit 7 500 10

libras 90 360 15

phoneme 5 5404 2

ring 20 7400 2

segment 19 2310 7

spambase 57 4597 2

texture 40 5500 11

twonorm 20 7400 2

yeast 8 1484 10

Firstly, we ran experiments using different settings of the proposed method
and compared them to the original Random Forests (RF) algorithm. The exper-
iments were performed in python using the scikit-learn [18] library. All classifiers
were built using the default settings in scikit-learn, which means that all ensem-
bles were generated using ten base classifiers.

In Table 5 the results obtained using variants of the proposed method is pre-
sented. The variant that is better than the original Random Forests is reported
in bold.

NBFB denotes a Random Forests classifier that was trained using the original
space along with class membership probabilities generated by the Naive Bayes
model. NBFD denotes a Random Forests classifier that was trained using the
original space along with predictions generated by Naive Bayes model. NBFBD
was trained using both class membership probabilities and predictions that were
generated by the Naive Bayes model, concatenated with the original feature
space. With the intention to discard the parameters of the proposed method,
i.e. which new features should be generated by the Naive Bayes model, and
get the most out of the generated features, we ran an experiment by selecting
the best of RF, NBFB, NBFD and NBFBD using 5-fold cross-validation in the
training set. The model selection was performed by selecting the variant that
gave the minimum average error rate across all folds. The last variant is denoted
as NBFCV. In the last row of the Table 5 counted the W(ins)/T(ies)/L(osses)
of the algorithm in the column against the original Random Forests algorithm
obtained by the Wilcoxon Singed Ranks Tests [23]. Apart from the combined
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Table 5. Average accuracy of Random Forests variants

Data set RF NBFB NBFD NBFBD NBFCV

appendicitis 0.85000 0.87000 0.87909 0.85000 0.86909

banana 0.89000 0.88830 0.88962 0.89094 0.89170

cleveland 0.54555 0.54624 0.60362 0.57051 0.57336

ecoli 0.81569 0.79795 0.83957 0.80704 0.82487

glass 0.74536 0.71355 0.74304 0.73080 0.74575

led7digit 0.70600 0.71400 0.70800 0.70200 0.70800

libras 0.78056 0.77500 0.78611 0.76111 0.79722

phoneme 0.89415 0.89433 0.89896 0.89026 0.89637

ring 0.92946 0.97824 0.97892 0.97865 0.97905

segment 0.97229 0.97229 0.97662 0.96667 0.97576

spambase 0.94736 0.94649 0.94758 0.94562 0.94758

texture 0.96709 0.96709 0.97073 0.96473 0.96964

twonorm 0.94054 0.97689 0.97865 0.97878 0.97865

yeast 0.57277 0.56940 0.58159 0.58828 0.58426

Statistic −0.235 −2.919 −0.035 −3.296

p-value 0.814 0.004 0.972 0.001

W/T/L 6/2/6 12/0/2 5/1/8 14/0/0

methodology, it is clear that almost every variation of the proposed method
performs better that the original Random Forests method in most cases.

We chose NBFCV and RF and we measured the diversity using two artifi-
cial data sets. The first data set was generated by taking a multi-dimensional
standard normal distribution and defining classes separated by nested concen-
tric multi-dimensional spheres, so that, roughly, equal numbers of samples are in
each class (quantiles of the χ2 distribution). The second data set is a binary clas-
sification problem used in [14]. The data set has ten features that are sampled
from standard independent Gaussian and the target class y is defined by:

Y =

⎧
⎨

⎩

1, if
10∑

i=1

X2 > 9.34

−1, otherwise.

In Table 6 the name, the number of patterns, the attributes as well as the
number of different classes for each data set are shown.

We used the five-fold cross-validation procedure and measured the diversity
in each test fold using the Kohavi-Wolpert Variance [21]. In Table 7 the mean of
the Kohavi-Wolpert Variance across all testing folds is presented. The diversity
increases as the variance decreases, so the lower the better. In parentheses the
mean accuracy score across all folds is reported. The results of Table 7 indicate
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Table 6. Artificial data sets for measuring diversity

Data set #attributes #patterns #classes

Gaussian quantiles 10 1000 2

Hastie 10 12000 2

Table 7. Average measurement of diversity using Kohavi-Wolpert Variance

Data set RF NBFCV

Gaussian quantiles 0.159 (0.775) 0.040 (0.945)

Hastie 0.074 (0.855) 0.004 (0.990)

Table 8. Average accuracy of compared algorithms

Data set NBFCV RF NB BGT BGN BST BSN RT RN VTN

appendicitis 0.869 0.850 0.850 0.860 0.851 0.804 0.743 0.879 0.887 0.860

banana 0.892 0.890 0.613 0.888 0.614 0.747 0.600 0.585 0.605 0.889

cleveland 0.573 0.546 0.553 0.549 0.530 0.452 0.493 0.566 0.559 0.543

ecoli 0.825 0.816 0.589 0.795 0.426 0.780 0.601 0.738 0.631 0.688

glass 0.746 0.745 0.448 0.732 0.442 0.663 0.581 0.735 0.444 0.615

led7digit 0.708 0.706 0.672 0.712 0.590 0.698 0.662 0.690 0.666 0.686

libras 0.797 0.781 0.631 0.758 0.639 0.722 0.675 0.747 0.633 0.650

phoneme 0.896 0.894 0.761 0.905 0.762 0.872 0.561 0.813 0.760 0.845

ring 0.979 0.929 0.980 0.927 0.980 0.874 0.980 0.936 0.970 0.980

segment 0.976 0.972 0.798 0.975 0.798 0.964 0.851 0.951 0.750 0.894

spambase 0.948 0.947 0.821 0.938 0.822 0.944 0.721 0.945 0.795 0.893

texture 0.970 0.967 0.774 0.961 0.773 0.931 0.855 0.975 0.772 0.839

twonorm 0.979 0.941 0.979 0.937 0.979 0.843 0.976 0.937 0.970 0.977

yeast 0.584 0.573 0.141 0.570 0.183 0.503 0.350 0.513 0.406 0.228

that involving Naive Bayes for feature generation makes the ensemble more
diverse and this results in an increment of classification accuracy.

Afterwards, we trained models using different ensemble methods that were
presented in Sect. 2. We trained a Naive Bayes (NB) classifier, a Bagging classi-
fier that used Decision Tree (BGT) as a base learning algorithm and a Bagging
classifier that used Naive Bayes (BGN) as a base learning algorithm. Also, we
trained Boosting (AdaBoost) and Random Space Method ensembles using Deci-
sion Tree (BST, RT) and Naive Bayes (BSN, RN) as base learners. Finally, we
trained a voting classifier, denoted as VTN, using Random Forests and Naive
Bayes that predicts the average of class membership probabilities. All ensemble
methods were built by using ten base classifiers apart from Boosting methods
that were built by using fifty base classifiers.
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The results obtained are presented in Table 8. In the comparisons, we include
the NBFCV variant because it performed better against the original Random
Forests. According to Table 8 the proposed method seems to perform better than
the well-known ensemble methods.

Demšar [7] recommends that the non-parametric tests should be preferred
over the parametric in the context of machine learning, since they do not assume
normal distributions or homogeneity of variance. Hence, in order to validate the
significance of the results, the Friedman test [13], which is a rank-based non-
parametric test for comparing several machine learning algorithms on multiple
data sets, was used. The null hypothesis of the test states that all the methods
perform equivalently and thus their ranks should be equivalent. The average
rankings, according to the Friedman test, are presented in Table 9.

Table 9. Average rankings of the algorithms according to the Friedman test

Algorithm Ranking

NBFCV 1.7143

RF 3.7500

BGT 4.0714

RT 4.6786

VTN 5.5714

BST 6.0000

NB 7.1071

RN 7.2143

BGN 7.3571

BSN 7.5357

Statistic 49.5896

p-value <10−6

Friedman’s test ranks our algorithm in the first place. Besides this, assuming
a significance level of 0.05 in Table 9, the p-value of the Friedman test implies
that the null hypothesis has to be rejected. So, there is at least one method that
performs statistically different from the proposed method. In order to investigate
the aforesaid, Finner’s [10] hoc procedure was used.

In Table 10 the p-values obtained by applying post hoc procedure, over the
results of the Friedman statistical test, are presented. Finner’s procedure rejects
the hypotheses that have unadjusted p-values ≤ 0.05. That said, the adjusted
p-values obtained through the application of the Finner’s post hoc procedure are
presented in Table 11.

The results obtained by Tables 9 and 11 indicate that the proposed method
performs better than any other method. Nonetheless, when involving other algo-
rithms in the comparisons the proposed variant does not seem to perform sta-
tistically better than the original Random Forest method.
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Table 10. Post hoc comparison for the Friedman test

i Algorithm z = (R0 − Ri)/SE p Finner

9 BSN 5.087130 <10−5 0.005683

8 BGN 4.931083 <10−5 0.011334

7 RN 4.806246 <10−5 0.016952

6 NB 4.712618 <10−5 0.022539

5 BST 3.745127 0.000180 0.028094

4 VTN 3.370614 0.000705 0.033617

3 RT 2.590379 0.009587 0.039109

2 BGT 2.059820 0.039416 0.044570

1 RF 1.778935 0.075250 0.050000

Table 11. Post hoc comparison for the Friedman test with adjusted p-values

i Algorithm pUnadjusted pFinner

9 BSN <10−5 <10−5

8 BGN <10−5 <10−5

7 RN <10−5 <10−5

6 NB <10−5 <10−5

5 BST 0.000180 0.000325

4 VTN 0.000750 0.001125

3 RT 0.009587 0.012309

2 BGT 0.039416 0.044232

1 RF 0.075250 0.075250

4 Conclusions and Future Work

An ensemble of classifiers is a collection of classification models whose individual
predictions are blended, typically by weighted or unweighted voting, to assign
a class label to each new pattern. The creation of effective ensemble methods
is an active research field in machine learning. Ensembles of classifiers are usu-
ally significantly more accurate than the individual underlying classifiers. The
main explanation is that many learning algorithms apply local optimization tech-
niques, which may get stuck in local optima.

It was demonstrated after a number of comparisons with Random Forests
and other well-known ensembles, that increasing the feature space of a small
random forest with predictions and class membership probabilities of a Naive
Bayes model can increase the performance in terms of classification accuracy, in
most cases.

In a following work, the proposed method will be investigated as far as regres-
sion problems and the problem of choosing the right number of trees in the for-
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est are concerned. Also, the implementation and the evaluation of the proposed
method in on-line learning [20] problems will be addressed.
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