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Abstract. In this paper, auto regression between neighboring observed
variables is added to Dynamic Bayesian Network (DBN), forming the
Auto Regressive Dynamic Bayesian Network (AR-DBN). The detailed
mechanism of AR-DBN is specified and inference method is proposed.
We take stock market index inference as example and demonstrate the
strength of AR-DBN in latent variable inference tasks. Comprehensive
experiments are performed on S&P 500 index. The results show the AR-
DBN model is capable to infer the market index and aid the prediction
of stock price fluctuation.

Keywords: Auto Regressive Dynamic Bayesian Network (AR-DBN) ·
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1 Introduction

Dynamic Bayesian Network (DBN) uses directed graph to model the time depen-
dent relationship in the probabilistic network. The method achieved wide appli-
cation in gesture recognition [17,20], acoustic recognition [3,22], image segmenta-
tion [9] and 3D reconstruction [6]. The temporal evolving feature also makes the
model suitable to model the stock market [7]. The classic DBN model assumes the
observed variable only depend on latent variables, and we know for the instance
of stock market, auto regression widely exists in neighboring observed stock
prices due to the momentum of market atmosphere. So we introduce explicit
auto regressive dependencies between adjacent observed variables in DBN, form-
ing the Auto Regressive Dynamic Bayesian Network (AR-DBN).

In Sect. 2, we have a brief review of previous work in related fields. In Sect. 3,
the structure of the network is formed and probability factors are derived. In
Sect. 4, we specify the parameter estimation of AR-DBN and experiments are
conducted in Sect. 5. Conclusion is reached in Sect. 6.

2 Related Work

Researchers have been using Dynamic Bayesian Networks(DBN) to model the
temporal evolution of stock market and other financial instruments [19]. In 2009,
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Fig. 1. Overview of work flow for AR-DBN model

Aditya Tayal utilized DBN to analyze the switching of regimes in high frequency
stock trading [21]. In 2013, Zheng Li et al. used DBN to explore the dependence
structure of elements that influence stock prices [10]. And in 2014, Jangmin O
built a price trend model under the DBN framework [7]. Auto regression is
an important factor that contribute to the fluctuation of stock prices and has
been studied among researchers in financial mathematics [12–14]. Auto regressive
relationships among adjacent observed variables is also used in Hidden Markov
Models(HMM). In 2009, Matt Shannon et al. illustrated Auto Regressive Hid-
den Markov Model(AR-HMM) and used it for speech synthesis [18]. In 2010,
Chris Barber et al. used AR-HMM to predict short horizon wind with incom-
plete data [2]. And in 2014, Bing Ai et al. estimated the smart building occupancy
with the method [1]. To our knowledge, there haven’t been previous investiga-
tion of auto regression applied to Dynamic Bayesian Network (DBN), and in
this paper, we integrate the auto regressive property into DBN and forms the
Auto Regressive Dynamic Bayesian Network (AR-DBN) (Fig. 1).

3 The Dynamic Bayesian Network for Stock Market
Inference

The original DBN before integrating auto regression is shown in Fig. 2. For each
time slice i, it includes m observed stock price variables Y1i, ..., Ymi and hidden
variable Xi. We denote the graph of each slice as B = (G, θ), where G is the
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structure of Bayesian Network (BN) for the slice, whose nodes corresponds to
the variables and whose edges represent their conditional dependencies, and θ
represents the set of parameters encoding the conditional probabilities of each
node variable given its parent [11]. The distribution is represented as CPD (con-
ditional probabilistic distribution) [5]. In our case, as the observed variables are
continuous, exact inference is achieved with sum product algorithm [4], which
iterate between summation of belief in different states for each clique and com-
bining the belief of neighboring cliques. After the end of each iteration, the
marginal probability of each variable is inferred based on likelihood of the whole
graph [15].

The likelihood of the graph in Fig. 2 is

φ = P (X1, Y11, ..., Ym1,X2, Y12, ..., Ym2, ...,Xn, Y1n, ..., Ymn) (1)

Define

φ1 = P (X1, Y11, ..., Ym1)
φ2 = P (X1, Y11, ..., Ym1,X2, Y12, ..., Ym2)
......

φn = P (X1, Y11, ..., Ym1,X2, Y12, ..., Ym2, ...,Xn, Y1n, ..., Ymn)
ψn = P (Xn, Y1n, ..., Ymn)
ψn−1 = P (Xn−1, Y1(n−1), ..., Ym(n−1),Xn, Y1n, ..., Ymn)
......

ψ1 = P (X1, Y11, ..., Ym1,X2, Y12, ..., Ym2, ...,Xn, Y1n, ..., Ymn)

also define

f(Xi−1,Xi) = P (Xi|Xi−1)
f(Xi, Y1i, ..., Ymi) = P (Y1i, ..., Ymi|Xi)

Based on sum product algorithm, we have

φi =
( ∑

xi−1

φi−1 × f(Xi−1,Xi)
)

× f(Xi, Y1i, ..., Ymi) (2)

X1

Y11

Y21

Ym1

X2

Y12

Y22

Ym2

X3

Y13

Y23

Ym3

Xn

Y1n

Y2n

Ymn

Fig. 2. Structure of Dynamic Bayesian Network (DBN)
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ψi =
( ∑

xi+1

ψi+1 × f(Xi,Xi+1)
)

× f(Xi, Y1i, ..., Ymi) (3)

And after the belief completes one round bidirectional propagation through
the network, the φi and ψi can be readily used to calculate the posterior distri-
bution of each latent variable Xi

P (Xi|Y ) ∝ φi × ψi

f(Xi, Y1i, ..., Ymi)
(4)

And we can similarly calculate the marginal probability of k consecutive
hidden units Xi,Xi+1, ...,Xi+k

P (Xi, Xi+1, ..., Xi+k|Y ) ∝ φi × ψi+k × f(Xi, Xi+1) × ... × f(Xi+k−1, Xi+k)

× f(Xi+1, Y1(i+1), ..., Ym(i+1)) × ... × f(X(i+k−1), Y1(i+k−1), ..., Ym(i+k−1)) (5)

After the sum product algorithm completes, we can use the marginal probability
distribution to estimate the parameters in the network based on EM algorithm.

4 Formulation of Auto Regressive Dynamic Bayesian
Network

As mentioned in Sect. 2, due to the ubiquitous auto regressive relationship in
stock prices, we can add directed auto regressive edges between neighboring
observed variables in the network. The resulting network is shown in Fig. 3. For
each observed variable Yki, with the new assumption, it is not only conditioned
on the latent variable, but also influenced directly by the previous observed
variable.

For each observed variable, we have

Yt = β1Yt−1 + β2Yt−2 + ... + βkYt−k + αUt (6)

Where k is the depth of the regression, Yt−k to Yt−1 is the previous observed
variables and Ut is directly emitted by the latent variable Xt. The coefficients
satisfy β1 + β2 + ... + βk + α = 1.

Denote Y ′
t = Yt − β1Yt−1 − β2Yt−2 − ... − βkYt−k, we have Ut = α−1Y ′

t .
From which we can estimate the parameters in AR-DBN, including conditional
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Fig. 3. Structure of Auto Regressive Dynamic Bayesian Network (AR-DBN)
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probability distribution P (Xi|Xi−1), the initial probability distribution P (X1)
and the emission probability P (Y1i, Y2i, ..., Yki|Xi) which can be modeled as a
multi variable Gaussian distribution N(μ,σ).

Based on EM algorithm, we estimate the parameters with marginal proba-
bilities from (4) and (5) by maximizing the first term of KL divergence

Q(θ, θold) =
∑

X

P (X|Y, θold)lnP (X, Y |θ)

=
∑

X

P (X|α−1Y ′, θold)ln
[
P (X1|π)

N∏

n=2

P (Xn|Xn−1, A)
N∏

n=1

P (α−1Y ′
n|Xn, φ)

]

=
∑

X

P (X|α−1Y ′, θold)lnP (X1|π) +
∑

X

P (X|α−1Y ′, θold)
( N∑

n=2

lnP (Xn|Xn−1, A)

)

+
∑

X

P (X|α−1Y ′, θold)
( N∑

n=1

lnP (α−1Y ′
n|Xn, φ)

)

Applying Lagrange method to fulfill the criteria
∑K

k=1 πk = 1 and
∑K

j=1 Aij = 1
for each i ∈ 1, ...,K, where K is the number of states for the hidden variables,
the parameters are derived by maximizing

R = Q(θ, θold) + λ1(
K∑

k=1

πk − 1) +
K∑
i=1

λ2i(
K∑
j=1

Aij − 1) (7)

After setting the first order partial derivatives of R with respect to each
individual parameter to zero, the explicit expression of the parameters is derived
as below

πk =
P (Xk|α−1Y ′)∑K
j=1 P (Xj |α−1Y ′)

(8)

Ajk =
∑N−1

n=1 P (Xn = j,Xn+1 = k|α−1Y ′)∑K
Xn+1=1

∑N−1
n=1 P (Xn = j,Xn+1|α−1Y ′)

(9)

μi =
∑N

n=1 P (Xn|α−1Y ′)Yin∑N
n=1 P (Xn|α−1Y ′)

(10)

Σi =
∑N

n=1 P (Xn|α−1Y ′)(Yin − μi)(Yin − μi)T∑N
n=1 P (Xn|α−1Y ′)

(11)

After the training phase completed, we infer the hidden states that form
the highest likelihood path with max sum algorithm [8], similar to DBN. The
inferred result for the stock market is shown in the next section.

5 Application in Stock Market

We use the historical S&P 500 stock price dataset provided by Quantquote [16],
covering the period from Jan. 02, 1998 to Aug. 09, 2013. The individual stock
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price temporal fluctuation forms each observed chain and the hidden states are
inferred from the multiple observed chains, as shown in Fig. 3. We randomly pick
k individual stocks out of the dataset, where k varies in [2,12], then we infer the
hidden states and parameters from the data. The trained CPD is visualized and
shown in Fig. 4. From which we can see for the inferring task of 6 individual
stocks (k = 6), 8 hidden state is an overkill with first 3 hidden state actually
not functioning in transition, while 4 hidden states are not enough to represent
all different positions of the market. 6 hidden states is the optimized choice for
the model.

The AR-DBN outperforms DBN both in the ultimate likelihood achieved and
also in the convergence speed, as shown in Fig. 5(a). It reveals that AR-DBN
is more suitable and efficient to apply in stock market. The likelihood is also
positive correlated with the number of latent states as shown in Fig. 5(b).

The inferred latent states with max sum algorithm is shown in Fig. 6. The
latent states plotted in temporal order form the path that produces highest likeli-
hood in the whole network. The absolute value of increase/decrease ratio in S&P
500 index is discretized into three intervals 0 < ratio < 1%, 1% < ratio < 2%

(a) (b) (c)

Fig. 4. The visualization of learned CPD. (a) 4 hidden states for each latent variable,
(b) 6 hidden states for each latent variable, (c) 8 hidden states for each latent variable.

(a) (b)

Fig. 5. (a) The comparison of log likelihood between DBN and AR-DBN with different
number of observed chains. (b) The comparison of log likelihood between different
number of latent states in AR-DBN.
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(a) (b)

Fig. 6. Trend comparison of inferred latent state with S&P 500 fluctuation ratio.
(a) Inference with 2 observed individual stock chains. (b) Inferrence with 6 observed
individual stock chains.

and 2% < ratio, then we compare it with the evolving trend of hidden states
in Fig. 6. It can be seen that with more observable chains included, the corre-
sponding relationship between the latent states and the market index is more

(a) (b) (c) (d)

Fig. 7. The micro view of correlation in stock price trends and hidden states. (a) The
ascending trend. (b) The descending trend. (c) and (d) The “V” reversal.
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obvious and accurate. With 6 observed individual stock chains, the hidden states
in the model is capable to precisely capture the fluctuation of market index. Take
Fig. 6(b) for example, state 1 and state 2 capture the characteristics of the fast
changing market, while the other states reflect the time when the market is
smooth. The hidden states have a direct reflection of the individual stock prices
if we use absolute value of the price as the observed variable. Important trends in
the price movement such as ascending trend, descending trend and “V” reversal
are reflected in hidden states as shown in Fig. 7.

The AR-DBN stock market model we generated is not only useful to unveil
market rules contained in historical stock price, it can also support investment
decision making based on probabilistic prediction of the near future. In this
application, we predict price movement direction (upward/downward) of the 6
observed stocks for the first day following the end of chain based on the para-

Fig. 8. The Gaussian mixture distribution of the predicted fluctuation and the real
price fluctuation for each stock chain, from top left to bottom right corresponds to
observed stock price chain 1 to 6.
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meters we learned. We multiply the latent states inferred from the max sum
algorithm with the conditional probability distribution P (Xt+1|Xt) and turns
the future stock price Yt+1 into a Gaussian mixture distribution conditioned on
the probability distribution of future latent states Xt+1. The prediction result
together with the real fluctuation for each of the stocks is shown in Fig. 8. For 5
out of the 6 stocks, the centroid of the probability distribution are of the same
direction (upward/downward) with the real price trend, which shows our model
can help with the prediction of fluctuation direction.

6 Conclusion and Future Work

We derived Auto Regressive Dynamic Bayesian Network (AR-DBN) by adding
auto regression among the adjacent observed variables in Dynamic Bayesian
Network (DBN). We presented a new approach to model the stock market based
on the proposed AR-DBN and comprehensive inference tasks were implemented
with the model. The results showed the latent variables in the model accurately
inferred the market index fluctuation and the stock price trends.

In this paper, we mainly focused on the inference part of the model. There
is more work to be done with quantitative prediction of future price fluctuations
and also the application of AR-DBN to other temporal analysis domains. We
leave this for future work.
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