
Chapter 8
Digital Signal Processing

The use of digital rather than analog instrumentation offers important practical
advantages in the transmission of signals over long baselines, the implementation
of compensating time delays, and the measurement of cross-correlation of signals.
In digital delay circuits, the accuracy of the delay depends on the accuracy of the
timing pulses in the system, and long delays accurate to tens of picoseconds are
more easily achieved digitally than by using analog delay lines. Furthermore, there
is no distortion of the signal by the digital units other than the calculable effects
of quantization. In contrast, with an analog system, it is difficult to keep the shape
of the frequency response within tolerances while delay elements are switched into
and out of the signal channels. Correlators with wide dynamic range are readily
implemented digitally, including those with multichannel output, as needed for
spectral line observations. Analog multichannel correlators employ filter banks to
divide the signal passband into many narrow channels. Such filters, when subject
to temperature variations, can be a source of phase instability. Finally, except at the
highest bit rates (frequencies), digital circuits need less adjustment than analog ones
and are better suited to replication in large numbers for large arrays.

Digitization of the signal waveforms requires sampling of the voltages at periodic
intervals and quantizing the sampled values so that each can be represented by a
finite number of bits. The number of bits per sample is usually not large, especially
in cases in which the signal bandwidth is large, requiring high sampling rates.
However, coarse quantization results in a loss in sensitivity, since modification
of the signal levels to the quantized values effectively results in the addition of
a component of “quantization noise.” In most cases, this loss is small and is
outweighed by the other advantages. In designing digital correlators, there are
compromises to be made between sensitivity and complexity, and the number of
quantization levels to use is an important consideration.

There are two ways to determine the spectrum of a random noise signal, as
shown in Fig. 8.1. The autocorrelation function of the signal can be measured and
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310 8 Digital Signal Processing

Fig. 8.1 The relationship
between two random
processes, x.t/ and y.t/, of
duration T, and their
cross-correlation function,
Rxy.�/ and the cross
spectrum, Sxy.�/. If x.t/ and
y.t/ are the same, Rxx.�/ is
the autocorrelation function,
and Sxx.�/ is the power
spectrum. The spatial
counterpart to this diagram is
shown in Fig. 5.5.

then Fourier transformed into a power spectrum after a specified integration period.
Alternately, the signal can be Fourier transformed first and the square modulus
taken. In the first case, the resolution of the spectral estimate is approximately the
reciprocal of the number of lags of the autocorrelation function calculated. In the
direct Fourier transform route, the data stream must be segmented to control the
spectral resolution, i.e., the resolution is approximately the reciprocal of the data
segment length. The power spectra from all of the segments are summed over the
integration period. To compare results between these methods, the number of lags in
the correlator is set equal to the number of segment samples. For interferometry, the
same two methods can be applied. The cross-correlation function can be calculated
and Fourier transformed into a cross spectrum (called the XF technique), or the
direct Fourier transform of one can be multiplied by the conjugate of the other to
form the cross spectrum (the FX technique). These two methods are explored in
detail in this chapter.

Digital signal processing in radio astronomy began in the early 1960s when
Weinreb (1963) built a digital 64-channel autocorrelator that operated on the signal
sampled at the Nyquist rate and quantized with one bit per sample.1 At that time, the
modern fast Fourier transform (FFT) algorithm (Cooley and Tukey 1965) was not
known, although there are historical precedents in the mathematical literature going
back to Gauss in the early nineteenth century. For the next two decades, virtually all
spectrometers for single-dish and interferometric applications were based on the
auto- or cross-correlation approach. By the 1990s and the advent of very large
spectral processing systems (in terms of frequency channels and baselines), the
advantages of the FX approach became apparent. All modern interferometers have
spectral analysis capabilities, not only for observations of spectral lines but also for
mitigation of the effects of radio frequency interference (RFI) and of instrumental
bandwidth smearing.

1A similar device was used by Goldstein (1962) to detect radar echoes from Venus.
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8.1 Bivariate Gaussian Probability Distribution

The bivariate normal probability function is central to all signal analysis. If x and y
are joint Gaussian random variables with zero mean and variance �2, the probability
that one variable is between x and xC dx and, simultaneously, the other is between
y and yC dy is p.x; y/dx dy, where

p.x; y/ D 1

2��2
p

1 � �2
exp

��.x2 C y2 � 2�xy/

2�2.1 � �2/

�
; (8.1)

and � is the correlation coefficient equal to hxyi=phx2ihy2i, where h i denotes the
expectation, which, with the usual assumption of ergodicity, is approximated by the
average over many samples. The form of this function is shown in Fig. 8.2. Note
that �1 � j�j � 1: For j�j � 1, the exponential can be expanded, giving
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1C �xy
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�
; (8.2)

which for � D 0 is simply the product of two Gaussian functions. Equation (8.1)
can also be written as

p.x; y/ D 1

�
p

2�
exp

��x2

2�2

�
1

�
p

2�.1 � �2/
exp

� �.y � �x/2

2�2.1 � �2/

�
: (8.3)

Fig. 8.2 Contours of equal
probability density from the
bivariate Gaussian
distribution in Eq. (8.1). The
contours are given by
x2 C y2 � 2�xy D const. For
� D 0, they become circles;
for � D 1, they merge into the
line x D y; and for � D �1,
they merge into x D �y.
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If this expression is integrated with respect to y from �1 to C1, it reduces to
a Gaussian function in x. As � approaches unity, Eq. (8.3) becomes the product
of a Gaussian in x and a Gaussian in y � x; the latter has a standard deviation
�
p

1 � �2, which tends to zero as � approaches 1. Equations (8.1) and (8.2) will
be used in examining the response of various types of samplers and correlators.
For autocorrelators used with single antennas, the quantity to be measured is the
autocorrelation function R.�/ D hv.t/v.t� �/i, where v is the received signal. This
case can be treated with x D v.t/ and y D v.t � �/.

8.2 Periodic Sampling

8.2.1 Nyquist Rate

If the signal is bandlimited, that is, its power spectrum is nonzero only within a
finite band of frequencies, no information is lost in the sampling process as long
as the sampling rate is high enough. This follows from the sampling theorem
discussed in Sect. 5.2.1. Here, we sample a function of time and must avoid aliasing
in the frequency domain. For a baseband (lowpass) rectangular spectrum with an
upper cutoff frequency ��, the width of the frequency spectrum, including negative
frequencies, is 2��. The function is fully specified by samples spaced in time
with an interval no greater than 1=.2��/, that is, a sampling frequency of 2��

or greater. This critical sampling frequency, 2��, is called the Nyquist rate2 for the
waveform. For further discussion, see, for example, Bracewell (2000) or Oppenheim
and Schafer (2009). In some digital systems in radio astronomy, the waveform
that is digitized has a baseband spectrum and is sampled at the Nyquist rate. For
a rectangular passband of this type, the autocorrelation function, which by the
Wiener–Khinchin relation is the Fourier transform of the power spectrum, is

R1.�/ D sin.2��� �/

2��� �
; (8.4)

where the subscript1 indicates unquantized sampling (that is, the accuracy is not
limited by a finite number of quantization levels). Nyquist sampling can also be
applied to bandpass spectra, and if the spectrum is nonzero only within a range of
n�� to .nC 1/��, where n is an integer, the Nyquist rate is again 2��. Thus, for
sampling at the Nyquist rate, the lower and upper bounds of the spectral band must
be integral multiples of the bandwidth. The autocorrelation function of a signal that
has a flat spectrum over such a band is

R1.�/ D sin.��� �/

��� �
cos

�
2�
	
nC 1

2



�� �

�
: (8.5)

2Shannon (1949) cites several references relevant to the development of this result, of which the
earliest is Nyquist (1928).



8.2 Periodic Sampling 313

Zeros in this function occur at time intervals � that are integral multiples of
1=.2��/. Therefore, for a rectangular passband, successive samples at the Nyquist
rate are uncorrelated. Sampling at frequencies greater or less than the Nyquist rate is
referred to as oversampling or undersampling, respectively. For any signal, adjusting
the center frequency so that the spectrum conforms to the bandpass sampling
requirement described aboveminimizes the sampling rate required to avoid aliasing.

8.2.2 Correlation of Sampled but Unquantized Waveforms

We now investigate the response of a hypothetical correlator for which the input
signals are sampled at the Nyquist rate but are not quantized. It is necessary
to consider only single-multiplier correlators since complex correlators can be
implemented as combinations of them, as indicated in Fig. 6.3. The system under
discussion can be visualized as one in which the samples either remain as analog
voltages or are encoded with a sufficiently large number of bits that quantization
errors are negligible. Since no information is lost in sampling, the signal-to-noise
ratio of the correlation measurement may be expected to be the same as would be
obtained by applying the waveformswithout sampling to an analog correlator. There
is probably no reason, in practice, to build a correlator for inputs with unquantized
sampling. However, by comparing the results with those for quantized sampling,
which we discuss later, the effects of quantization are more easily understood.

Two bandlimited waveforms, x.t/ and y.t/, are sampled at the Nyquist rate,
and for each pair of samples, the multiplier within the correlator produces an
output proportional to the product of the input amplitudes. The integrator allows
the output to be averaged for any required time interval. Now the (normalized)
cross-correlation coefficient of x.t/ and y.t/ for zero time delay between the two
waveforms is

� D hx.t/y.t/i
rD

Œx.t/�2
E D

Œy.t/�2
E : (8.6)

(The cross-correlation coefficient � should not be confused with the autocorrelation
function of x or y, R1.) Since x and y have equal variance �2,

hx.t/y.t/i D ��2 : (8.7)

The left side is the averaged product of the two waveforms and thus represents the
correlator output. The output of the digital correlator after NN samples is

r1 D NN
�1

NNX

iD1

xiyi ; (8.8)
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where the subscript N denotes the Nyquist rate. Since the samples xi and yi obey the
same Gaussian statistics as the continuous waveforms x.t/ and y.t/, we can clearly
write

hr1i D ��2 : (8.9)

Thus, the output of the correlator is a linear measure of the correlation �. The
variance of the correlator output is

�21 D hr21i � hr1i2 ; (8.10)

and

hr21i D NN
�2

NNX

iD1

NNX

kD1

hxiyixkyki

D NN
�2

NNX

iD1

hxiyii2 C NN
�2

NNX

iD1

X

k¤i

hxiyixkyki ; (8.11)

where we have separated the terms for which i D k and i ¤ k. The first summation
on the right side of Eq. (8.11) has a value of �4.1C2�2/NN

�1: from Eq. (8.3), it can
be shown that

Z 1

�1

Z 1

�1
x2y2p.x; y/dx dy D �4.1C 2�2/ : (8.12)

The second summation term in Eq. (8.11) is readily evaluated by using the fourth-
order moment relation in Eq. (6.36). Because successive samples of each signal are
uncorrelated (a rectangular passband is assumed), hxiyixkyki D hxiyiihxkyki, and the
second summation term has a value of .1�NN

�1/�2�4. Returning to Eq. (8.10), we
can write

�21 D .1C 2�2/�4NN
�1 C .1 � NN

�1/�2�4 � �2�4

D �4NN
�1.1C �2/ : (8.13)

The signal-to-noise ratio with unquantized sampling is

Rsn1 D hr1i
�1
D �

p
NNp

.1C �2/
' �

p
NN ; (8.14)

where the approximation applies for � � 1. Note that the condition � � 1

is satisfactory in many practical circumstances. For the case in which � & 0:2,
see Sect. 8.3.6. (The signal-to-noise ratio at the correlator output, which we are
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calculating here, is of interest mainly for weak signals.) For a measurement period
� , NN D 2��� , which is commonly 106–1012. From Eq. (8.14), the threshold of
detectability of a signal is given by �

p
NN ' 1, that is, � ' 10�3–10�6. In terms

of the signal bandwidth and measurement duration, Rsn1 D �
p

2�� � . Now for
observations of a point source with identical antennas and receivers, � is equal to
the ratio of the resulting antenna temperature to the system temperature, TA=TS.
Thus, the present result is equal to that given by Eq. (6.45) for an analog correlator
with continuous unsampled inputs and TA � TS.

Before leaving the subject of unquantized sampling, we should consider the
effect of sampling at rates other than the Nyquist rate. Successive sample values
from any one signal are then no longer independent. We consider a sampling
frequency that is ˇ times the Nyquist rate3 and a number of samples N D ˇNN . The
sample interval is �s D .2ˇ��/�1. Samples spaced by q�s, where q is an integer,
have a correlation coefficient that, from Eq. (8.4), is equal to

R1.q�s/ D sin.�q=ˇ/

�q=ˇ
(8.15)

for a rectangular baseband response. Since the samples are not independent, we
must reconsider the evaluation of the second summation term on the right side of
Eq. (8.11). For those terms for which q D ji � kj is small enough that R1.q�s/ is
significant, there will be an additional contribution given by

�
�2R1.q�s/

�2
: (8.16)

Now R21 is very small for all but a very small fraction of the N.N � 1/ terms
in the second summation in Eq. (8.11). From Eq. (8.15), R21, at its maxima,
is equal to .ˇ=�q/2 and for q D 103 is of order 10�6. However, as shown
above, N is likely to be as high as 106–1012. Thus, in the second summation in
Eq. (8.11), the contribution made by the terms for which the i and k samples are
effectively independent remains essentially unchanged. The products for which R21
is significant make an additional contribution equal to

2�4N�2

N�1X

qD1

.N � q/R21.q�s/ ' 2�4N�1

1X

qD1

R21.q�s/ : (8.17)

The variance of the correlator output now becomes

�21 D �4N�1

2

41C 2

1X

qD1

R21.q�s/

3

5 ; (8.18)

3ˇ is referred to as the oversampling factor.
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and the signal-to-noise ratio of the correlation measurement is (see Appendix 8.1)

Rsn1 D �
p

ˇNNq
1C 2

P1
qD1 R

21.q�s/
: (8.19)

Compare this result with Eq. (8.14) for Nyquist sampling. For values of ˇ of 1
2
, 1

3
,

1
4
, and so on, which correspond to undersampling, R1 D 0 and the denominator in

Eq. (8.19) is unity. The sensitivity thus drops as one would expect from the decrease
in the data. For oversampling, ˇ > 1, and the summation of R21.q�s/ in Eq. (8.19)
is shown in Appendix 8.1 to be equal to .ˇ�1/=2. The denominator in Eq. (8.19) is
then equal to

p
ˇ, so the sensitivity is the same as that for sampling at the Nyquist

rate. This is as expected, since in Nyquist sampling, no information is lost, and
thus there is none to be gained by increased sampling. The result is different for
quantized sampling, as will appear in the following sections.

8.3 Sampling with Quantization

In some sampling schemes, the signal is first quantized and then sampled, and in
others, it is sampled and then quantized. Ideally, the end result is the same in either
case, and in analyzing the process, we can choose the order that is most convenient.
Suppose that a bandlimited signal is first quantized and then sampled. Quantization
generates new frequency components in the signal waveform, so it is no longer
bandlimited. If it is sampled at the Nyquist rate corresponding to the unquantized
waveform, as is the usual practice, some information will be lost, and the sensitivity
will be less than for unquantized sampling. Also, because quantization is a nonlinear
operation, we cannot assume that the measured correlation of the quantized
waveforms will be a linear function of �, which is what we want to measure.
Thus, to utilize digital signal processing, there are three main points that should be
investigated: (1) the relation between � and the measured correlation, (2) the loss in
sensitivity, and (3) the extent to which oversampling can restore the lost sensitivity.
Investigations of these points can be found in the work of Weinreb (1963), Cole
(1968), Burns and Yao (1969), Cooper (1970), Hagen and Farley (1973), Bowers
and Klingler (1974), Jenet and Anderson (1998), and Gwinn (2004).

Note that in discussing sampling with quantization, it is common practice to
refer to Nyquist sampling when what is meant is sampling at the Nyquist rate for
the unquantized waveform. We also follow this usage.

8.3.1 Two-Level Quantization

Sampling with two-level (one bit) quantization provided the earliest digital form
of radio astronomy signals (Weinreb 1963). Although larger numbers of levels are
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Fig. 8.3 Characteristic curve
for two-level quantization.
The abscissa is the input
voltage x and the ordinate is
the quantized output Ox.

now routinely used, this subsection is included as an introduction to the subject.
The quantization characteristic for two-level sampling is shown in Fig. 8.3. The
quantizing action senses only the sign of the instantaneous signal voltage. In
many samplers, the signal voltage is first amplified and strongly clipped. The zero
crossings are more sharply defined in the resulting waveform, and errors that might
occur if the sampling time coincides with a sign reversal are thereby minimized.

The correlator for two-level signals consists of a multiplying circuit followed by
a counter that sums the products of the input samples. The input signals are assigned
values of +1 or �1 to indicate positive or negative signal voltages, and the products
at the multiplier output thus take values of +1 or �1 for identical or different input
values, respectively. We consider sampling both at the Nyquist rate and at multiples
of it and represent by N the number of sample pairs fed to the correlator. The two-
level correlation coefficient is

�2 D .N11 C NN1N1/� .NN11 C N1N1/

N
; (8.20)

where N11 is the number of products for which both samples have the value +1,
N1N1 is the number of products in which the x sample has the value +1 and the y
sample �1, and so on. The denominator in Eq. (8.20) is equal to the output that
would occur if, for each sample pair, the signs of the signals were identical. �2 can
be related to the correlation coefficient � of the unquantized signals through the
bivariate probability distribution Eq. (8.1), from which

P11 D N11

N
D 1

2��2
p

1 � �2

Z 1

0

Z 1

0

exp

��.x2 C y2 � 2�xy/

2�2.1� �2/

�
dx dy ;

(8.21)

where P11 is the probability of the two unquantized signals being simultaneously
greater than zero. The other required probabilities are obtained by changing the
limits of the integrals in Eq. (8.21) as follows:

R 0

�1
R 0

�1 for PN1N1;
R 0

�1
R1

0
for PN11;
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and
R1

0

R 0

�1 for P1N1. Note that P11 D PN1N1 and P1N1 D PN11. Thus,

�2 D 2.P11 � P1N1/ : (8.22)

The integral in Eq. (8.21) is evaluated in Appendix 8.2, from which we obtain

P11 D 1

4
C 1

2�
sin�1 � : (8.23)

Similarly,

P1N1 D
1

4
� 1

2�
sin�1 � ; (8.24)

so

�2 D 2

�
sin�1 � : (8.25)

Equation (8.25), known as the Van Vleck relationship,4 allows � to be obtained from
the measured correlation �2. For small values, � is proportional to �2.

To determine the signal-to-noise ratio of the correlation measurement, we now
calculate �2

2 , the variance of the correlator output r2:

�2
2 D hr2

2i � hr2i2 ; (8.26)

where

r2 D N�1

NX

iD1

Oxi Oyi : (8.27)

In this chapter, the circumflex ( O ) is used to denote quantized signal waveforms.
Since �2 D hOxOyi, then from Eq. (8.27), hr2i D �2. Thus, r2 is an unbiased estimator
of �2. The expression for hr2

2i is equivalent to Eq. (8.11) for unquantizedwaveforms:

hr2
2i D N�2

NX

iD1

hOx2
i Oy2

i i C N�2

NX

iD1

X

k¤i

hOxiOyi Oxk Oyki : (8.28)

4This result was first derived by J. H. Van Vleck during World War II in a classified report,
when studying the power spectrum of strongly clipped noise, which was used for electromagnetic
jamming (Van Vleck 1943). The work was later declassified, and a brief summary of it appeared
in Vol. 24 of MIT’s Radiation Laboratory Series (Lawson and Uhlenbeck 1950). A fuller account
was given by Van Vleck and Middleton (1966).
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The first summation term on the right side of Eq. (8.28) is equal to N�1 since the
products Oxi Oyi take values of ˙1 for two-level sampling. In evaluating the second
summation term, the situation is similar to that for unquantized sampling. The factor
�4 in Eq. (8.17) is here replaced by the square of the variance of the quantized
waveform, which is unity for two-level quantization. For all except a small fraction
of the terms, q D ji�kj is large enough that samples i and k from the same waveform
are uncorrelated. These terms make a total contribution closely equal to �2

2. Those
terms for which samples i and k are correlated make an additional contribution
closely equal to

2N�1

1X

qD1

R2
2.q�s/ ; (8.29)

where R2.�/ is the autocorrelation coefficient for a signal after two-level quantiza-
tion. Thus,

�2
2 D N�1 C .1 � N�1/�2

2 C 2N�1

1X

qD1

R2
2.q�s/ � �2

2 (8.30a)

' N�1

2

41C 2

1X

qD1

R2
2.q�s/

3

5 ; (8.30b)

where we have assumed that �2 � 1 and also that the term �N�1�2
2 can be

neglected, since here we are mostly interested in signals near the threshold of
detectability. Then the signal-to-noise ratio is

Rsn2 D hr2i
�2

D 2�
p
N

�
q

1C 2
P1

qD1 R
2
2.q�s/

: (8.31)

This ratio, relative to that for unquantized sampling at the Nyquist rate given by
Eq. (8.14), defines an efficiency factor for the quantized correlation process:

	2 D Rsn2

Rsn1
D 2

p
ˇ

�
q

1C 2
P1

qD1 R
2
2.q�s/

: (8.32)

Here, we have used N D ˇNN , so we are considering the same observing time
as in the Nyquist-sampled case but sampling ˇ times as rapidly. Note that �s is
correspondingly reduced. 	2 is one case of the general quantization efficiency factor,
	Q (introduced in Sect. 6.2), where Q is the number of quantization levels.

Equation (8.25) gives the relationship between the correlation coefficients for a
pair of signals before and after two-level quantization. This result includes the case
of autocorrelation in which the two signals differ only because of a delay. Thus, we
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may write

R2.q�s/ D 2

�
sin�1 ŒR1.q�s/� : (8.33)

Equation (8.15) gives R1.q�s/ for a rectangular baseband signal spectrum sampled
at ˇ times the Nyquist rate, and Eq. (8.33) becomes

R2.q�s/ D 2

�
sin�1

�
ˇ sin.�q=ˇ/

�q

�
: (8.34)

R2.q�s/ thus has zeros at the same values of q�s that R1.q�s/ does (the principal
value is taken for the inverse sine function), and for ˇ D 1, 1

2
, 1

3
, and so on, we

obtain

1X

qD1

R2
2.q�s/ D 0 : (8.35)

In these cases, the signal-to-noise ratio is a factor of 2=� .D 0:637/ times that
for unquantized sampling at the same rate given in Eq. (8.15). For oversampling
with ˇ D 2 and ˇ D 3, the corresponding signal-to-noise factors from Eqs. (8.32)
and (8.34) are 0.744 and 0.773, respectively. Note, however, that the increased bit
rate used in oversampling could produce a bigger increase in the signal-to-noise
ratio if used to increase the number of quantization levels. Doubling the bit rate
could be used to increase the number of levels to four, for which the signal-to-noise
factor is 0.881 (as derived in Sect. 8.3.3). For a bit rate increase of three, the number
of levels could be increased to eight, for which the signal-to-noise factor is 0.963.
Note also that in the calculations given above, there is an implicit dependence on
the bandpass shape of the signal through the assumption that �2 � 1 for samples
for which i is not equal to k in Eq. (8.28). For ˇ � 2, a further dependence on the
bandpass shape enters through the autocorrelation function R2.q�s/.

It has been mentioned that quantization generates additional spectral compo-
nents. We can compare the power spectra of a signal before and after quantization
since these spectra are the Fourier transforms of autocorrelation functions that are
related by Eq. (8.25). Figure 8.4 shows the spectrum, after two-level quantization, of
noise with an originally rectangular spectrum. A fraction of the original bandlimited
spectrum is converted into a broad, low-level skirt that dies away very slowly with
frequency.

8.3.2 Four-Level Quantization

The use of two digital bits to represent the amplitude of each sample results in less
degradation of the signal-to-noise ratio than is obtained with one-bit quantization.
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Fig. 8.4 Spectra of rectangular bandpass noise before and after two-level quantization. The
unquantized spectrum is of lowpass form, as shown by the broken line. The spectrum after
quantization is shown by the solid curve. The power levels of the two waveforms (represented
by the areas under the curves) are equal, and the Fourier transforms of their spectra are related by
Eq. (8.25).

Consideration of two-bit sampling leads naturally to four-level quantization, the
performance of which has been investigated by several authors, notably Cooper
(1970) and Hagen and Farley (1973). The quantization characteristic is shown in
Fig. 8.5, where the quantization thresholds are �v0, 0, and v0. The four quantization
states have designated values�n,�1, +1, andCn, where n, which is not necessarily
an integer, can be chosen to optimize the performance. Products of two samples
can take the value ˙1, ˙n, or ˙n2. The four-level correlation coefficient �4 can be
specified by an expression similar to Eq. (8.20) for the two-level case, that is,

�4 D 2n2Nnn � 2n2NnNn C 4nN1n � 4nN1Nn C 2N11 � 2N1N1
.2n2Nnn C 2N11/�D1

; (8.36)

where a bar on the subscript indicates a negative sign. The numerator is proportional
to the correlator output and reduces to the form in the denominator for � D 1, that
is, when the two input waveforms are identical. The numbers of the various level
combinations can be derived from the corresponding joint probabilities. Thus, for
example,

Nnn DNPnn

D N

2��2
p

1 � �2

Z 1

v0

Z 1

v0

exp

��.x2 C y2 � 2�xy/

2�2.1 � �2/

�
dx dy ; (8.37)

and, as in the two-level case, the other probabilities are obtained by using the
appropriate limits for the integrals. For the case of � � 1, the approximate form
of the probability distribution in Eq. (8.2) simplifies the calculation.
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Fig. 8.5 Characteristic curve for four-level quantization, with weighting factor n for outer levels.
The abscissa is the unquantized voltage x, and the ordinate is the quantized output Ox. v0 is the
threshold voltage.

Although �4 can be evaluated from Eq. (8.36) in the above manner, an alternative
derivation that provides a more rapid approach to the desired result is used here.
This approach follows the treatment of Hagen and Farley (1973) and is based on a
theorem by Price (1958). The form of the theorem that we require is

dhr4i
d�
D �2

�
@Ox
@x

@Oy
@y



; (8.38)

where r4 is the unnormalized correlator output, and Ox and Oy are again the quantized
versions of the input signals. For four-level sampling,

@Ox
@x
D .n � 1/ı.xC v0/C 2ı.x/C .n � 1/ı.x� v0/ ; (8.39)

where ı is the delta function, and a similar expression can be written for @Oy=@y.
Equation (8.39) is the derivative of the function in Fig. 8.5. To determine the
expectation of the product of the two derivatives on the right side of Eq. (8.38),
the magnitudes of each of the nine terms in the product of the derivatives must
be multiplied by the probability of occurrence. Thus, for example, the term
.n � 1/2ı.xC v0/ı.yC v0/ has a magnitude of .n � 1/2 and probability

1

2��2
p

1 � �2
exp

� �2v2
0

2�2.1C �/

�
: (8.40)
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By consolidating terms with equal probabilities, we obtain

dhr4i
d�
D 1

�
p

1 � �2

(

.n � 1/2

�
exp

� �v2
0

�2.1C �/

�
C exp

� �v2
0

�2.1� �/

��

C 4.n� 1/ exp

� �v2
0

2�2.1 � �2/

�
C 2

�
; (8.41)

and

hr4i D 1

�

Z �

0

1
p

1 � 
2

(

.n � 1/2

�
exp

� �v2
0

�2.1C 
/

�
C exp

� �v2
0

�2.1 � 
/

��

C 4.n � 1/ exp

� �v2
0

2�2.1 � 
2/

�
C 2

�
d
 ;

(8.42)

where 
 is a dummy variable of integration. To obtain the correlation coefficient �4,
hr4i must be divided by the expectation of the correlator output when the inputs are
identical four-level waveforms, as in Eq. (8.36):

�4 D hr4i
˚ C n2.1 �˚/

; (8.43)

where ˚ is the probability that the unquantized level lies between˙v0, that is,

˚ D 1

�
p

2�

Z v0

�v0

exp

��x2

2�2

�
dx D erf

�
v0

�
p

2

�
: (8.44)

Equations (8.42)–(8.44) provide a relationship between �4 and � that is equivalent
to the Van Vleck relationship for two-level quantization.

The choice of values for n and v0 is usually made to maximize the signal-to-noise
ratio for weak signals, which we now derive. For � � 1, Eqs. (8.42) and (8.43)
reduce to

.�4/��1 D �
2Œ.n � 1/EC 1�2

�Œ˚ C n2.1 �˚/�
; (8.45)

where E D exp.�v2
0=2�2/. The variance in the measurement of r4 is

�2
4 D hr2

4i � hr4i2 D hr2
4i � �2

4

�
˚ C n2.1 �˚/

�2
: (8.46)

The factor Œ˚Cn2.1�˚/� is the variance of the quantized waveform and here takes
the place of �2 in the corresponding equations for unquantized sampling. Again, we
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follow the procedure explained for the unquantized case and write

hr2
4i D N�2

NX

iD1

hOx2
i Oy2

i i C N�2

NX

iD1

X

i¤k

hOxiOyi Oxk Oyki : (8.47)

To evaluate the first summation, note that .Oxi Oyi/2 can take values of 1, n2, or n4, and
the sum of these values multiplied by their probabilities is equal to Œ˚Cn2.1�˚/�2.
The contribution of the second summation is

.1� N�1/�2
4

�
˚ C n2.1 �˚/

�2 C 2N�1Œ˚ C n2.1 � ˚/�2
1X

qD1

R2
4.q�s/ ; (8.48)

where the second term represents the effect of oversampling and is similar to
Eq. (8.17), and R4 is the autocorrelation function after four-level quantization. Thus,
from Eq. (8.46), we have

�2
4 D N�1

�
˚ C n2.1 � ˚/

�2
2

41C 2

1X

qD1

R2
4.q�s/� �2

4

3

5 : (8.49)

Since we have assumed �� 1, the �2
4 term can be neglected, and the signal-to-noise

ratio for the four-level correlation measurement is

Rsn4 D hr4i
�4

D 2�Œ.n � 1/EC 1�2
p
N

� Œ˚ C n2.1 �˚/�
q

1C 2
P1

qD1 R
2
4.q�s/

: (8.50)

The signal-to-noise ratio relative to that for unquantized Nyquist sampling is
obtained from Eq. (8.14) for N D ˇNN and is

	4 D Rsn4

Rsn1
D 2Œ.n � 1/EC 1�2

p
ˇ

�Œ˚ C n2.1 �˚/�
q

1C 2
P1

qD1 R
2
4.q�s/

: (8.51)

For sampling at the Nyquist rate, ˇ D 1 and

	4 D Rsn4

Rsn1
D 2Œ.n � 1/EC 1�2

�Œ˚ C n2.1 �˚/�
: (8.52)

Values of 	4 very close to optimum sensitivity are obtained for n D 3 with v0 D
0:996� , and for n D 4, with v0 D 0:942� : see Table A8.1 in Appendix 8.3. Note
that the choice of an integer for the value of n simplifies the correlator. For these two
cases, 	4, the signal-to-noise ratio relative to that for unquantized sampling, is equal
to 0.881 and 0.880, respectively. Curves of the relative sensitivity as a function of
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Fig. 8.6 Signal-to-noise ratio relative to that for unquantized correlation for the four-level system
and several modifications of it. The abscissa is the quantization threshold v0 in units of the rms level
of the waveforms at the quantizer input. The ordinate is sensitivity (signal-to-noise ratio) relative to
an unquantized system. The curves are for: (1) full four-level system with n D 2; (2) full four-level
system with n D 3; (3) full four-level system with n D 4; (4) four-level system with n D 3 and
low-level products omitted; (5) three-level system. From Cooper (1970). © CSIRO 1970. Published
by CSIRO Publishing, Melbourne, Victoria, Australia. Reproduced with permission.

v0=� for n D 2, 3, and 4 are shown in Fig. 8.6. Similar conclusions are derived by
Hagen and Farley (1973) and Bowers and Klingler (1974).

Having chosen values for n and v0, we can now return to Eqs. (8.42) and (8.43)
to examine the relationship of � and �4. Curve 1 of Fig. 8.7 shows a plot of � and �4.
Extrapolation of a linear relationship with slope chosen to fit low values of � results
in errors of 1% at � D 0:5, 2% at � D 0:7, and 2.8% at � D 0:8, where the error is a
percentage of the true value of �. Thus, for many purposes, a linear approximation
is satisfactory for values of � up to � 0:6. This linearity assumption simplifies the
final step that we require in discussing four-level sampling, namely, calculation of
the improvement in sensitivity resulting from oversampling.

The relationship between the autocorrelation function for unquantized noise R1
and that for the same waveform after four-level quantization is the same as for the
corresponding cross-correlation functions in Eq. (8.45), so we can write

R4 D 2Œ.n � 1/EC 1�2R1
�Œ˚ C n2.1 �˚/�

; (8.53)

provided that R1 . 0:6. Now R1 as given by Eq. (8.15) fulfills this condition
for q D 1 with an oversampling factor ˇ D 2. For n D 3 and the corresponding
optimum value of v0, E D 0:6091, ˚ D 0:6806, and R4 D 0:881R1. For ˇ D 2, we
use Eqs. (8.15) and (8.53) and Eq. (A8.5) of Appendix 8.1 to evaluate the summation
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Fig. 8.7 Correlation
coefficient � for unquantized
signals plotted as a function
of the correlation that would
be measured after
quantization. The curves are
for: (1) full four-level system
with n D 3 and v0 D � , or
n D 4 and v0 D 0:95� ; (2)
four-level system with
low-level products omitted,
n D 4 and v0 D 0:9� ; (3)
three-level system with
v0 D 0:6� . From Cooper
(1970). © CSIRO 1970.
Published by CSIRO
Publishing, Melbourne,
Victoria, Australia.
Reproduced with permission.

in the denominator of Eq. (8.51), and obtain 	4 D 0:935, which is a factor of 1.06
greater than for ˇ D 1. Bowers and Klingler (1974) have pointed out that the
optimum value of the quantization level v0 changes slightly with the oversampling
factor. However, the optimum values are rather broad (see Fig. 8.6), and the effect
on the sensitivity is very small.

In a discussion of two-bit quantization, Cooper (1970) considered the effect of
omitting certain products in the multiplication process. For example, if all products
of the two low-level bits are counted as zero instead of ˙1, the loss in signal-to-
noise ratio is approximately 1%, as shown in curve 4 of Fig. 8.6. The products to
be accumulated are then only those counted as ˙n and ˙n2 in the full four-level
system described above, and in the modified system, they can be assigned values of
˙1 and˙n, respectively, thereby simplifying the counter circuitry of the integrator.
An even greater simplification can be accomplished by omitting the intermediate-
level products also and assigning values ˙1 to the high-level products. This last
type of modification yields 92% of the sensitivity of a full four-level correlator. We
shall not analyze the case where only the low-level products are omitted, but we
note that to derive the correlation coefficient as a function of �, one can express
the action of the correlator in terms of two different quantization characteristics
(Hagen and Farley 1973) or else return to Eq. (8.36) and omit the appropriate terms.
If both the low- and intermediate-level products are omitted, however, the action can
be described more simply in terms of a new quantization characteristic, known as
three-level quantization, without arbitrary omission of product terms.
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8.3.3 Three-Level Quantization

Three-level quantization has proved to be an important practical technique, and the
quantization characteristic is shown in Fig. 8.8. In this case, the approach using
Price’s theorem will again be followed.

The expressions for the operating characteristics of a three-level correlator can be
obtained from those in the preceding section by omitting the terms that refer to low-
and intermediate-level products and adjusting the weighting factors as appropriate.
Thus, the equivalent derivative needed in Price’s theorem is,

@Ox
@x
D ı.x � v0/C ı.xC v0/ ; (8.54)

and the expectation of the correlator output hr3i is, from Price’s theorem,

hr3i D 1

�

Z �

0

1
p

1� 
2

�
exp

� �v2
0

�2.1C 
/

�
C exp

� �v2
0

�2.1 � 
/

��
d
 ; (8.55)

where 
 is a dummy variable of integration. The normalized correlation coefficient is

�3 D hr3i
1 � ˚

; (8.56)

Fig. 8.8 Characteristic curve
for three-level quantization.
The abscissa is the unquan-
tized voltage x, and the
ordinate is the quantized
output Ox. v0 is the threshold
voltage. Since the magnitude
of Ox takes only one nonzero
value, it is perfectly general
to set this value to unity.
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where ˚ is given by Eq. (8.44). For �� 1, Eqs. (8.55) and (8.56) yield

.�3/��1 D �
2E2

�.1 �˚/
; (8.57)

where E is defined following Eq. (8.45). The variance of r3 is

�2
3 D hr2

3i � hr3i2 D N�1.1 �˚/2

2

41C 2

1X

qD1

R2
3.q�s/� �2

3

3

5 ; (8.58)

where R3 is the autocorrelation coefficient after three-level quantization. If �2
3 in

Eq. (8.58) can be neglected, the signal-to-noise ratio relative to a nonquantizing
correlator is

	3 D Rsn3

Rsn1
D hr3i

�3Rsn1
D 2

p
ˇE2

�.1 � ˚/
q

1C 2
P1

qD1 R
2
3.q�s/

: (8.59)

For Nyquist sampling, the maximum sensitivity relative to the nonquantizing case
is obtained with v0 D 0:6120� , for which 	3 is equal to 0.810 (see curve 5 of
Fig. 8.6). With this optimized threshold value, ˚ D 0:4595, E D 0:8292, and we
can write R3.q�s/ D 0:810R1.q�s/, assuming that � is an approximately linear
function of r3. Then from Eqs. (8.15), (8.59), and Eq. (A8.5), we find that for a
rectangular baseband spectrum with the oversampling factor ˇ D 2, 	3 becomes
0.890, which is a factor of 1.10 greater than for ˇ D 1.

8.3.4 Quantization Efficiency: Simplified Analysis for Four or
More Levels

For quantization into two, three, or four levels, the quantization efficiency, 	Q, is
0.636, 0.810, and 0.881. For more quantization levels, the loss in efficiency resulting
from the quantization decreases further, and an approximate method of calculating
the loss (Thompson 1998) can be used, as follows. This is simpler than the more
accurate method given in Sect. 8.3.3. In either case, the principle is to calculate
the fractional increase in the variance of a signal that results from the quantization.
The signal-to-noise ratio at the correlator output is inversely proportional to this
variance.

Figure 8.9 shows a piecewise linear approximation of the Gaussian probability
distribution of a signal from one antenna. This approximation simplifies the analy-
sis. The intersections with the vertical lines indicate exact values of the Gaussian.
For eight-level sampling, the quantization thresholds are indicated by the positions
of the vertical lines between the numbers ˙3:5 on the abscissa. The horizontal
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Fig. 8.9 Piecewise linear representation of the Gaussian probability distribution of the amplitude
of a signal within the receiver. The intersections of the curve with the vertical lines denote exact
values of the Gaussian. The abscissa is the signal amplitude (voltage) in units of �� , and the
numbers indicate the values assigned to the levels after quantization. For eight-level sampling
the quantization thresholds are indicated by the seven vertical lines that lie between �3:5�� and
3:5�� on the abscissa. For signal levels outside the range ˙4�� , indicated by the shaded areas, the
assigned values are ˙3:5�� .

spacing between adjacent levels is represented by �, in units of the (unquantized)
rms voltage, � , i.e., �� is the spacing between the levels in volts. We consider first
the case in which the number of levels is even, as in Fig. 8.9. Any one sample
that falls between the two consecutive thresholds at m�� and .m C 1/�� will be
assigned a value .mC 1

2
/�� . The normalized trapezoidal probability distribution for

the voltage in this segment of the overall probability distribution in Fig. 8.9 can be
written as

p.v/ D 1

��
C
�
v �

�
mC 1

2

�
��

�
�m m�� < v < .mC1/�� ; (8.60)

where �m is the change in probability, over the voltage range m�� to .m C 1/�� .
The extra variance that is incurred by quantizing the voltage is

*�
v � .mC 1

2
/��

�2
+

D
Z .mC1/��

m��

�
v �

�
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2

�
��

�2

p.v/ dv : (8.61)

If we make the substitution x D v � .mC 1
2
/�� , the excess variance becomes

Z ��=2

���=2

x2

�
1

��
C x�m

�
dx ; (8.62)

or

2

��
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0

x2dx D 1
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���

2

�2

: (8.63)
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Note that the �m factor does not appear in Eq. (8.63). Hence, the excess variance is
the same for all voltage bins from �4�� to 4�� . The fraction of the area under the
Gaussian probability curve that lies between these levels is

1p
2��

Z 4��

�4��

e�x2=2�2

dx D erf

�
4�p

2

�
: (8.64)

Thus, the variance resulting from quantization of the signal samples with amplitudes
in the range˙4�� is

1

3

���

2

�2

erf

�
4�p

2

�
: (8.65)

We shall assume that the quantization error is essentially uncorrelated with the
unquantized signal. In the extreme case of two-level sampling, the quantization error
is highly correlated with the unquantized signal, so the treatment used here would
not apply. Consider, however, the case of multilevel quantization, as in Fig. 8.10.
If the signal voltage is increased steadily, the quantization error decreases from a
maximum at each quantization threshold to zero when the voltage is equal to the
midpoint of two thresholds. At each threshold, the quantization error changes sign,
and the cycle repeats. This behavior greatly reduces any correlation between the
quantization error and the signal waveform.

It is also necessary to take account of the effect of counting all signals below
�4�� as level �3:5�� , and those aboveC4�� asC3:5�� . To make an approximate

Fig. 8.10 Examples of quantization characteristics for (left diagram) an even number of levels
(eight), and (right diagram) an odd number of levels (nine). Units on both axes are equal to �. The
abscissa is the analog (unquantized) voltage, and the ordinate is the quantized output. The dotted
curves show the analog level minus the quantized level. Note that for even numbers of levels, the
thresholds occur at integral values on the abscissa, whereas for odd numbers of levels, they occur
at values that are an integer plus one-half.
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estimate of this effect, we divide the range of signal level outside of ˙4�� into
intervals of width �� . Consider, for example, the interval centered on 6:5�� . The
probability of the signal falling within this level is equal to the corresponding area
under the curve, which for the piecewise linear approximation is

1

2

�p
2�

h
e�.6�/2=2 C e�.7�/2=2

i
: (8.66)

The variance resulting from quantization of the signal within this range is closely
approximated by Œ.6:5 � 3:5/���2, so the total variance of the quantization error for
signals outside the range˙4�� is

�3�2

p
2�

1X

mD4

.m � 3/2
h
e�m2�2=2 C e�.mC1/2�2=2

i
: (8.67)

In practice, the summation in (8.67) converges rapidly, and only a few terms are
needed (i.e., those for m� . 3). The quantization error resulting from the truncation
of the signal values outside the range ˙4�� clearly has some degree of correlation
with the unquantized signal level. However, this is a small effect because the fraction
of samples for which the signal lies outside ˙4�� is less than 1:6% for eight-
level quantization, with � optimized for sensitivity. The percentage decreases as the
number of quantization levels increases. We shall therefore treat the quantization
error resulting from the truncation of the signal peaks as uncorrelated with the
signal, but bear in mind that this assumption may introduce a small uncertainty
into the calculation.

The variance of the quantized signal is equal to the variance of the unquantized
signal .�2/ plus the variance of the quantization errors in (8.65) and (8.67), that is,

�2 C 1
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���
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�2
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C �3�2
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.m � 3/2
h
e�m2�2=2 C e�.mC1/2�2=2

i
:

(8.68)

If the variance is the same for both signals at the correlator input, and if the
correlation of the signals is small (i.e., � � 1), then the signal-to-noise ratio at the
correlator output is inversely proportional to the variance. Thus, the quantization
efficiency is

	.2N/ D
(

1C 1

3

� �

2

�2

erf

�N�p
2

�

C �3

p
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e�m2�2=2 C e�.mC1/2�2=2

i
)�1

: (8.69)
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Table 8.1 Quantization efficiency and other factors
for four or more levels

Number of levels (Q) N � P 	Q

4 2 1:08 0:03 0:86

8 4 0:60 0:016 0:960

9 4 0:55 0:013 0:968

16 8 0:34 0:006 0:988

32 16 0:19 0:002 0:996

256 16 0:03 <0:001 1:000

Here, the equation has been generalized for 2N levels. For an odd number of levels,
2N C 1, one of which is centered on zero signal level, the equivalent equation for
the quantization efficiency is

	.2NC1/ D
(

1C 1
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2
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i
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: (8.70)

Results from Eqs. (8.69) and (8.70) are given in Table 8.1. The values of � are those
that maximize 	Q. The fourth column of the table gives P, which is the fraction of
samples for which the signal amplitude is greater than˙N�� for an even number of
levels or greater than˙ 	N C 1

2



�� for an odd number of levels. For eight levels, P

is the fraction of signal samples that contribute to the variance in (8.67). The values
of 	Q calculated here are accurate to about 2% for Q D 4 and to 0.1% for Q D 8

and higher.

8.3.5 Quantization Efficiency: Full Analysis, Three or More
Levels

This section presents a general analysis of quantized systems for three or more
levels, [e.g., Thompson et al. (2007)]. Let x represent the voltage of the unquantized
signal samples, which have a Gaussian probability distribution with variance �2.
Let Ox represent the quantized values of x. The difference x � Ox represents an
inequality introduced by the quantization. The inequality contains a component that
is correlated with x, and an uncorrelated component that behaves much like random
noise. Consider the correlation coefficient between x and x0 D x � ˛Ox, where ˛ is a
scaling factor. The correlation coefficient is

hxx0i
xrmsx0

rms
D hx

2i � ˛hxOxi
xrmsx0

rms
: (8.71)
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Here, the angle brackets h i indicate the mean value. If ˛ D hx2i=hxOxi, then the
correlation coefficient is zero, and x0 represents purely random noise. We refer to
this random component as the quantization noise, equal to x � ˛1 Ox, where ˛1 D
hx2i=hxOxi. Without loss of generality, we take �2 D hx2i D 1 in this analysis and
use ˛1 D 1=hxOxi. The variance of the quantization noise is

hq2i D h.x � ˛1 Ox/2i D hx2i � 2˛1hxOxi C ˛2
1hOx2i D ˛2

1hOx2i � 1 : (8.72)

The total variance of the digitized signal is 1Chq2i, and the quantization efficiency
	Q is equal to the variance of the unquantized signal expressed as a fraction of the
total variance. Thus,

	Q D 1

.1C hq2i/ D
1

˛2
1hOx2i D

hxOxi2
hOx2i : (8.73)

Consider the case for an even number of equally spaced levels, as in the eight-level
case in Fig. 8.10. When the number of levels is even, it is convenient to define N
as half the number of levels. We first determine hxOxi. Note that for each sample
value, x and Ox have the same sign, so xOx is always positive. Let � represent the
spacing between adjacent quantization levels. The values of x that fall within the
quantization level between m� and .mC 1/� are assigned values Ox D .mC 1

2
/�, and

their contribution to hxOxi is

1p
2�
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2
/� x e�x2=2 dx : (8.74)

The contribution from the level between �m� and �.m C 1/� is the same as the
expression above, so to obtain hxOxi, we sum the integrals for the positive levels and
include a factor of two:
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: (8.75)

The summation term contains one integral for each positive quantization level
except the highest one. The integral on the lower line covers the highest level and
the range of x above it, for both of which the assigned value is Ox D .N � 1

2
/�. Then,

performing the integration, Eq. (8.75) reduces to
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To evaluate the variance of Ox, again consider first the contribution from values of x
that fall between m� and .m C 1/�. For this level, the quantized data Ox all have the
value .mC 1

2
/�. The variance of Ox for all values of x within this level is

�
mC 1

2

�2

�2 1p
2�

Z .mC1/�

m�

e�x2=2 dx : (8.77)

For negative x, we again include a factor of 2, sum over all positive quantization
levels except the highest, and add a term for the highest level and the range of x
above it. Thus, the total variance of Ox is:
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: (8.78)

The integrals in Eq. (8.78) can be represented by error functions. Then, using
Eqs. (8.73), (8.76), and (8.78), we obtain
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For the cases in which the number of levels is odd, the thresholds of the levels
occur at values that are an integer plus 1

2
, as in the nine-level case in Fig. 8.10. We

represent the odd level number by 2N C 1. Consider the values of x that fall within
the quantization level between .m� 1

2
/� and .mC 1

2
/�. These are assigned the value

m�, i.e., zero for the level centered on x D 0. For this level, the contribution to
hxOxi is

1p
2�

Z .mC 1
2 /�

.m� 1
2 /�

m� x e�x2=2 dx : (8.80)

Summing over all levels, as in Eq. (8.75), we obtain
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Then, as in Eq. (8.78), we determine hOx2i:
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Performing the integration in Eqs. (8.81) and (8.82), from (8.73), we obtain
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Equations (8.79) and (8.83) can easily be evaluated numerically and provide values
of quantization efficiency for any number of equally spaced levels.

Since no significant approximations were made, the same method can be used
for cases in which the number of quantization levels is small and consequently the
quantization noise is relatively large. Values of 	Q for two, three, and four levels
can be obtained by considering the effect of the quantization noise at a correlator
input, following the method used above. In cases such as that in Appendix 8.3, for
which the assigned values for the levels are chosen to optimize 	Q, or for which
the spacing between the level thresholds is not uniform, the formulas derived here
cannot be applied directly. However, the same general approach of considering the
spacings between levels can be used. For three-level quantization, the levels for
maximum quantization efficiency are˙0:612� .� D 1:224/. Then we have
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and

	3 D hxOxi
2

hOx2i D
q
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e�0:6122=2

1 � erf
�

0:612p
2

� : (8.86)

Examples of results derived using Eqs. (8.79), (8.83), and (8.86) are shown in
Table 8.2. In each case, the value of � is chosen to maximize 	Q. The values of
	Q are given to five decimal places to show how they approach 1.0 as the number



336 8 Digital Signal Processing

Table 8.2 Examples of quantization efficiency,
	Q, for sampling at the Nyquist rate

Number of levels .Q/ N � 	Q

3 1 1:224 0:80983

4 2 0:995 0:88115

8 4 0:586 0:96256

9 4 0:534 0:96930

16 8 0:335 0:98846

32 16 0:188 0:99651

256 128 0:0312 0:99991

of levels increases. However, this is for the case of an ideal rectangular passband,
which in a practical receiving system may be closely approximated. Figure 8.11
shows the quantization efficiency 	Q as a function of the threshold spacing �.

If the constant voltage spacing between adjacent thresholds for both input and
output values is not maintained, the individual levels can sometimes be adjusted to
obtain an improvement in 	Q of a few tenths of a percent, decreasing with increasing
number of levels. The values of 	Q in Table 8.2 are in agreement with results by
Jenet and Anderson (1998), who give detailed calculations of performance for two-
to eight-bit quantization, for both uniform and nonuniform threshold spacing. See
also Appendix 8.3 for optimization in the case of four-level quantization.

In recent designs of radio telescopes, the level increment � is frequently chosen so
that signals at levels much higher than the rms system noise can be accommodated
within the range of levels of the quantizer. This preserves an essentially linear
response to interfering signals so that they can be eliminated or mitigated by further
processing. For example, with 256 levels (8-bit representation) and � D 0:5, we
find that 	Q D 0:9796. The range of ˙128 levels then corresponds to ˙64� , i.e.,
˙36 dB above the system noise, for a � 2% sacrifice in signal-to-noise ratio.

8.3.6 Correlation Estimates for Strong Sources

The efficiency calculations of the previous sections are based on estimates of
the correlation from the averaged signal products before or after quantization,
hxiyii or hOxiOyii, in the limit of small correlation, j�j � 1. Johnson et al. (2013)
show that when the correlation is small (j�j � 1) and the signal variances are
known (as is assumed when setting sampler thresholds), averaged products hOxiOyii
do provide optimal estimates of the correlation. That is, when the correlation is
small, no combination of the quantized signals will produce an unbiased estimate of
correlation that has smaller variance than that of the correlator output, if suitable
weights are chosen. This result arises from the form of the bivariate Gaussian
distribution in this limit, which can be written such that the factor including the
correlation coefficient � includes only terms of the form xy [see, e.g., Eq. (8.2)].
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Fig. 8.11 Quantization efficiency as a function of the threshold spacing, �, in units equal to the rms
amplitude, � . The curves are for 64-level (solid line), 16-level (long-dashed line), 9-level (short-
dashed line), and 4-level (long-and-short-dashed line). As � becomes very small, the output of the
quantizer depends mainly on the sign of the input, so the curves meet the ordinate axis at the two-
level value of 	Q D 2=� . As � increases, more of the higher (positive and negative) levels contain
only values in the extended tails of the Gaussian distribution, so the number of levels that make
a significant contribution to the output decreases, and the curves merge together. The curves for
even-level numbers move asymptotically to the two-level value, and curves for odd-level numbers
move toward zero. The working point in each case is chosen to be near the maximum of the curve.

However, when the correlation is large, alternative estimates of the correlation
will have lower noise. Thus, in the high correlation regime, it is necessary to revise
our expression for quantization efficiency. For instance, when the signals are not
quantized, the optimal estimate of correlation for two zero-mean signals is Pearson’s
correlation coefficient [e.g., Wall and Jenkins (2012)],

rp D

NNX

iD1

.xi � Nx/.yi � Ny/
vuu
t

NNX

iD1

.xi � Nx/2

vuu
t

NNX

iD1

.yi � Ny/2

; (8.87)

where, Nx D 1
NN

PNN
iD1 xi is the sample mean, and the sums in the denominator are

proportional to the sample variances. The standard error in the estimate of rp, i.e.,
�p, is

�p D N�1=2
N .1 � �2/ : (8.88)

As � approaches unity, �p goes to zero. In this limit, the probability function
p.x; y/ given in Eq. (8.1) collapses to a one-dimensional Gaussian distribution along
the line x D y (see Fig. 8.2). When � D 1, that line is perfectly defined by a
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set of measurements of xi and yi, i.e., there are no deviations from the line, and
the uncertainty in the estimate of � is zero. Perhaps, surprisingly, the estimate of
correlation made without the sample means and variances, as in Eq. (8.8), i.e.,

r1 D 1

NN

NNX

iD1

xiyi ; (8.89)

has an error when normalized by �2 of

�1 D N�1=2
N .1C �2/1=2 (8.90)

[see Eq. (8.13)], which equals �p only for � D 0. For two-level quantization, for
a rectangular passband and ˇ D 1, the error on the correlation estimate is [see
Eq. (8.30a) and Eq. (8.35)]

�2 D N�1=2
N .1� �2/1=2 : (8.91)

In the case of large correlation, the Van Vleck relation [Eq. (8.25)]

� D sin
�

2
�2; (8.92)

will require a nonlinear scaling of the error in �2, denoted �2V , which can be written

�2V D N�1=2
N

���

2

�2 � .sin�1 �/2

�
.1 � �2/1=2 : (8.93)

These errors in correlation for the various cases described above [�p, �1, and �2V

as well as the error for the case of four-level sampling, derived from formulas by
Gwinn (2004)] are shown in Fig. 8.12. The interesting result is that the performance
of the two-level correlator is better than that of the unquantized correlator for
� > 0:6 and approaches that of the Pearson estimator as � approaches unity. The
peculiarity in the two-level scenario was noted by Cole (1968) and is related to the
fact that the sample variance is irrelevant in the two-level quantization estimate.

Johnson et al. (2013) derive maximum likelihood estimators (MLEs) for the
unsampled case in which the signal variance is known. Its standard deviation, �q,
falls slightly below �p. The authors also deriveMLEs for various quantization levels
and show that their performance �q.Q/ approaches �q for large values of Q.

8.4 Further Effects of Quantization

Various forms of analysis in radio astronomy involve cross-correlation of signals
from different antennas or autocorrelation of a signal as a function of time. The
values of the correlation of quantized signals deviate from the true correlation of
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Fig. 8.12 The correlation noise factor, N1=2
N times the standard deviation, vs. correlation �. The

correlation factors for � D 0 are equal to n�1
Q . The curves labeled unquantized and two-level

quantization give correlation factors based on the standard signal-product estimate of � [see
Eqs. (8.90) and (8.93) for unquantized and two-level quantization, respectively]. The factor for
the Pearson’s r curve, given in Eq. (8.88), is based on the estimator rp, which involves the sample
mean and variance. Adapted from Johnson et al. (2013).

the unquantized signals to an extent that is most serious for two-level sampling,
and the deviation decreases as the number of levels is increased. Correction for
this effect requires determination of how the cross-correlation of the quantized
data, here designated R, is related to the true cross-correlation, �. To examine the
effect of quantization, we consider the effect of a time offset � on two Gaussian
waveforms that are otherwise identical. In the case of two-level sampling, the
required relationship is given by the Van Vleck equation [Eq. (8.25)] and is

R2.�/ D 2

�
sin�1 �.�/ : (8.94)

For more than two quantization levels, the relationship is more complicated, and
although the nonlinearity of the quantized correlation becomes less serious with
an increasing number of levels, correction may still be necessary. As very large
instruments come into operation, it becomes increasingly important to remove the
responses to strong radio sources in order to study the fainter emission from the
most distant regions of the Universe. This requires very accurate calibration of the
received signal strengths.

8.4.1 Correlation Coefficient for Quantized Data

Let x and y represent two Gaussianly distributed data streams that differ only by a
time offset, � . The correlation coefficient, �.�/; is equal to hxyi=hx2i. The quantized
values of x and y are identified by circumflex accents, i.e., Ox and Oy. The correlation
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coefficient of the quantized variables is

R.�/ D hOxOyi=hOx2i : (8.95)

To determine �.�/ as a function of the correlation coefficient �, we need to consider
the probabilities of occurrence of the unquantized variables x and y within each
quantization interval. First, consider the case in which the number of quantization
intervals is even and equal to 2N . Thus, there are N positive intervals plus N
negative ones. The mean value of the products of pairs of the quantized values, hOxOyi,
is obtained by considering each of the 2N � 2N D 4N2 possible pairings of the
levels of Ox and Oy. Only half of these need be calculated, since if the x and y values are
interchanged, the probability remains the same. The probability of the unquantized
variables x and y falling within any pair of intervals is given by integration of the
Gaussian bivariate probability distribution, Eq. (8.1), over the corresponding range
of x and y. In Eq. (8.1), x and y have variance � and cross-correlation coefficient �.
Here, we are concerned with samples of x and y taken at the Nyquist interval �s, and
n is the number of Nyquist intervals between the pairs of samples considered. For a
rectangular passband of width ��, the correlation coefficient is given by

�.n�s/ D sin.�n�s/

�n�s
: (8.96)

To calculate hOxOyi for each combination of two quantization intervals, the joint
probability of the required unquantized variables falling within these intervals is
multiplied by the product of the corresponding values assigned in the quantization
process. These results are then summed for all the pairs of intervals. Since the
probability distributions of Ox and Oy are both symmetrical about zero, first consider
the case in which both of these variables are positive and run from zero to N . As
noted above, we take the step size to be unity. Let L.i/ be the series ofNC 1 values
that define the positive quantization steps, i.e., 0; 1; 2; : : : ; .N � 1/; : : : ;1. Thus,
for i D 1 toN , L.i/ D i�1, and L.NC1/ D1. For y, there is an identical series of
levels represented as L. j/. Then the component of hOxOyi that results from the positive
ranges of x and y is
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where .i � 1=2/ and . j � 1=2/ are the values of the digital data assigned to
the corresponding quantization intervals, and p.x; y/ is the Gaussian bivariate
probability distribution, Eq. (8.1). The case in which both x and y are negative
provides an equal component of hOxOyi. Thus, the component of hOxOyi for cases in
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which x and y have the same sign is
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For the cases in which x and y have opposite signs, one of either .i�1=2/ or . j�1=2/

is negative, and the sign of either x or y within the exponential function in Eq. (8.98)
is negative.When the corresponding expression is included (with negative sign since
the component of hOxOyi is negative), we obtain
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Equation (8.99) shows how hOxOyi is derived using the usual form of the bivariate
distribution in Eq. (8.1). An equivalent form of the probability distribution of x and
y in Eq. (8.1) is given by Abramowitz and Stegun (1968, see Eqs. 26.2.1 and 26.3.2),
which avoids the explicit use of the double integrals. Equation (8.99) can then be
written as follows:
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(8.100)

where erfc is the complementary error function .1 � erf/.
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Fig. 8.13 Curves of the
correlation coefficient of
quantized data as a function
of the true correlation (i.e.,
the correlation of the
unquantized data). The lowest
(solid) curve is for 2-level
quantization, and moving
upward, the curves are for 3
levels (long dashes), 4 levels
(long and short dashes), 8
levels (small dashes) and 16
levels (solid line). Similar
curves for three and four
quantization levels are given
in Fig. 8.7.

To calculate Ox2, the Gaussian probability function for a single variable is used,
taking double the expression for the positive range of x:
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Thus, for a given value of the time interval between samples, the correlation
coefficient for the quantized data is as given in Eqs. (8.95), (8.99) or (8.100),
and (8.101). Note that the ratio hxyi=hx2i is independent of the frequency response
of the system considered and is based on a Gaussian distribution of the amplitude.

Figures 8.13 and 8.14 show examples of the relationship between the correlation
of the quantized signals and the true signal correlation. Both of the figures result
from the same analysis, but the presentation in Fig. 8.14, in which the correlation of
the quantized data is shown as a fraction of the true correlation, helps to emphasize
the nonlinearity in the response. A linear response would appear as a horizontal line
in Fig. 8.14, and the curves approach this condition as the number of quantization
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Fig. 8.14 Curves of the correlation coefficient of quantized data, expressed as a fraction of the
true correlation. These are from the same data as used in Fig. 8.13, but here they are plotted as
fractions of the true (unquantized) correlation, in which the nonlinearity appears as a deviation
from a horizontal line. The lowest curve is for 2-level quantization, and moving upward, the curves
are for 3, 4, 8, and 16 levels. The points at which the curves meet the left vertical axis indicate
the reduction in correlation resulting from quantization when the signal-to-noise ratio is low, as
given in Table 8.2. The signal-to-noise ratio increases as the curves move from left to right, and
the correlation coefficients of both the quantized and unquantized data move toward 1.0 for the
theoretical case of complete correlation between the two signals.

levels increases. Except for observations of the strongest sources, the signal-to-
noise ratio from an individual element of a synthesis array is small. Thus, the
working point on the curves in Figs. 8.13 and 8.14 is generally near the left side,
where the linearity for signals from cross-correlated pairs is best. As the number
of quantization levels increases, the accuracy of the correlation increases. The
curves provide an indication of the extent to which the quantization affects the
measurement of cross-correlation of signals with Gaussian amplitude distribution. A
detailed discussion of the effects of quantization of the signal amplitude is given by
Benkevitch et al. (2016). This includes the case in which the cross-correlated signals
have different amplitudes, and the effects of quantization as the cross-correlation of
the analog waveforms approach unity.

For ease of computation, the correlation can be expressed as a rational function,
or similar approximation, of the correlator output: See Appendix 8.3 for four-level
quantization. For three-level quantization, procedures for determination of the cross-
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correlation, �, from the correlator output are given by Kulkarni and Heiles (1980)
and D’Addario et al. (1984). However, with the continuing increase in computer
power, larger numbers of levels are generally used.

8.4.2 Oversampling

Sampling of signals at the Nyquist rate results in no loss of information, but
quantization causes a reduction in sensitivity as represented by the quantization
efficiency. Some of the loss due to quantization can be recovered by oversampling,
that is, sampling faster than the Nyquist rate. For sampling of random noise with
an ideal rectangular spectrum of width ��, the time interval between adjacent
Nyquist samples is 1=.2��/. With Nyquist sampling, the noise within each sample
is uncorrelated with respect to the noise in any other sample, and when such
data are combined, the noise combines additively in power. Consider the case of
oversampling in which the number of samples per second is ˇ times the Nyquist
rate. When the sample rate exceeds the Nyquist rate, the samples are no longer
independent, and for any particular sample, there are components of the noise within
other samples that are correlated with the noise in the sample considered. [Note,
however, that for any two samples spaced by ˇ times the sample interval (i.e.,
spaced at the Nyquist interval), or by an integral multiple of the Nyquist interval, the
noise is uncorrelated.5] The correlated components of the noise in different samples
combine additively in voltage, rather than additively in power, as is the case for
uncorrelated noise.

To illustrate how the components of noise combine, consider one pair of antennas
and, for example, just four consecutive samples at the correlator output. Let a1, a2,
a3, and a4 be these voltages, which are proportional to the product of the voltages
at the correlator inputs. Then we have for the squared sum of these correlated noise
voltages, i.e., the total noise power,

Œa1 C a2 C a3 C a4�
2 D

a2
1 C a2

2 C a2
3 C a2

4 C 2.a1a2 C a1a3 C a1a4 C a2a3 C a2a4 C a3a4/ : (8.102)

The autocorrelation coefficient of the quantized signals at the correlator input is
R.n�s/, where n is an integer and �s is the spacing in time between adjacent samples.
The output of the correlator consists of values that are the product of two input
samples, so the autocorrelation coefficient of the samples at the correlator output is

5It can be assumed that the noise components of the signals from any two antennas are
uncorrelated, because noise from the sky background that is received in separate antennas is
resolved, and generally the antennas are sufficiently far apart that cross talk of instrumental noise
can be ignored.
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R2.n�s/. The mean noise power is given by the mean of the terms in the right side
of Eq. (8.102), in which each of the a2

n terms can be replaced by the mean squared
noise amplitude ha2i, and each of the aman terms by ha2iR2.jn � mj�s/. Thus, the
squared sum of the four noise voltages becomes

4ha2i C 2ha2iŒ3R2.�s/C 2R2.2�s/C R2.3�s/� : (8.103)

If the four noise terms were uncorrelated, i.e., if the R2 terms were zero, the noise
power would be the sum of the individual noise powers, 4ha2i. The effect of the
correlation of the noise is to increase the averaged noise power by a factor equal
to (8.103) divided by h4a2i:

1C 2Œ.3=4/R2.�s/C .1=2/R2.2�s/C .1=4/R2.3�s/� : (8.104)

In the general case, averaging a total ofN samples at the correlator output, this factor
becomes
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In practice, in radio astronomy, the rate at which the data are sampled is in the range
of MHz to GHz. The averaging times are in the range milliseconds to seconds, so N
is likely to be within the range 103 to 109. The autocorrelation coefficient decreases
as the time interval between samples increases, and in practice, R2.n�s/ becomes
very small for n�s & 200 times the Nyquist sample interval. Thus, for the terms
within the square brackets in Eq. (8.105), those after about the first � 200ˇ can be
neglected. Since, in most cases, N � 200ˇ, the squared sum of the noise voltages
simplifies to

1C 2ŒR2.�s/C R2.2�s/C R2.3�s/C : : :� D 1C 2

1X

nD1

R2.n�s/ : (8.106)

Equation (8.106) is the fractional increase in the squared noise voltage (i.e., the
noise power) that results from the fact that the noise in the samples is no longer
independent when the data are oversampled. The quantization efficiency 	Q is equal
to the quantization efficiency for Nyquist sampling, 	QN , multiplied by

p
ˇ to take

account of the increase in the number of samples, but divided by the square root of
Eq. (8.106) because the noise in different samples is no longer independent. Thus,
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Table 8.3 Variation of quantization efficiency, 	Q, with oversampling factor ˇ

No. of levels � ˇ D 1 ˇ D 2 ˇ D 4 ˇ D 8 ˇ D 16 ˇ D 32

2 0:6366 0:744 0:784 0:795 0:798 0:799

3 1:224 0:8098 0:882 0:912 0:920 0:922 0:923

4 0:995 0:8812 0:930 0:951 0:958 0:960 0:960

8 0:586 0:9626 0:980 0:987 0:991 0:991 0:992

16 0:335 0:9885 0:994 0:996 0:998 0:998 0:998

noting that �s D 1=.2ˇ��/, we obtain

	Q D 	QN

p
ˇ

vuu
t1C 2

1X

nD1

R2

�
n

2ˇ��

�
: (8.107)

To illustrate the effect of oversampling, examples of the quantization efficiency 	Q,
derived using Eqs. (8.95), (8.100), (8.101), and (8.107), are shown in Table 8.3.
These are for 2-, 3-, 4-, 8-, and 16-level sampling and values of ˇ equal to 1, 2, 4,
8, 16, and 32. In each case, the value of � used is the one that maximizes 	Q for
Nyquist sampling, as given in Thompson et al. (2007).6 Note that as ˇ is increased,
the improvement gained by each further increase declines, because the correlation
between adjacent samples increases, and thus, the new information provided by finer
sampling becomes progressively smaller.

8.4.3 Quantization Levels and Data Processing

At this point, it is useful to put into perspective the characteristics of quantization
schemes, which are summarized in Tables 8.2 and 8.3. It should be remembered
that the assumption � � 1 was used in determining these values. In considering
the relative advantages of different quantization schemes, we note first that both
the quantization efficiency 	Q and the receiving bandwidth �� may be limited by
the size and speed of the correlator system. The overall sensitivity is proportional to
	Q

p
��. Consider two conditions. In the first, the observing bandwidth is limited by

factors other than the capacity of the digital system. This can occur in spectral line
observing or when the interference-free band is of limited width. The sensitivity
limitation imposed by the correlator system then involves only the quantization
efficiency 	Q in Table 8.2, and the choice of quantization scheme is one between

6In this reference, � is taken to be unity and �, the size of the quantization steps, is chosen to
maximize the quantization efficiency.
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Table 8.4 Sensitivity factor
	Q

p

ˇNb
for a correlator-limited system

Number of

quantization levels (Q) ˇ D 1 ˇ D 2

2 (1 bit) 0:64 0:53

3 (2 bits) 0:57 0:44

4 (2 bits) 0:62 0:47

8 (3 bits) 0:56 0:40

16 (4 bits) 0:49 0:35

simplicity and sensitivity. In the second case, the observing bandwidth is set by the
maximum bit rate that the digital system can handle, as may occur in continuum
observation in the higher-frequency bands. For a fixed bit rate �b; the sample
rate is �b=Nb, where Nb is the number of bits per sample, and the maximum
signal bandwidth �� is �b=.2ˇNb/, where ˇ is the oversampling factor. Thus, the
sensitivity is proportional to 	Q=

p
ˇNb, and this factor is listed for various systems

in Table 8.4, in which Nb D 1 for Q D 2 and Nb D 2 for Q D 3 or 4. Note that
oversampling always reduces the performance under these conditions. For those
situations in which the capacity of the correlator is limited by the maximum bit
rate, the value of 0.64 for Nyquist sampling with two-level quantization results in
the highest overall performance. Four-level sampling is almost as good, and four
or more levels would be preferred if the bandwidth is limited, as in spectral line
observations.

A three-level � five-level correlator, for which the quantization efficiency 	Q is
0.86, was constructed by Bowers et al. (1973) for spectral line imaging with a two-
element interferometer.

A further point to be noted is that with an analog correlator, the sin� sin and
cos� cos products for signals from two antennas provide, in principle, exactly
the same information. However, with a digital correlator, the quantization noise is
largely uncorrelated between the sine and cosine components of the signal, so the
quantization loss can be reduced by generating both products and averaging them.

8.5 Accuracy in Digital Sampling

Deviations from ideal performance in practical samplers result in errors that, if not
corrected for, can limit the accuracy of images synthesized from the data. Once the
signal is in digital form, however, the rate at which errors are introduced is usually
negligibly small.

Two-level samplers, which sense only the sign of the signal voltages, are the
simplest to construct. The most serious error that is likely to occur is in the
definition of the zero level, in which a small voltage offset may occur. The effect
of offsets in the samplers is to produce small offsets of positive or negative polarity
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in the correlator outputs, which can be largely eliminated by phase switching, as
described in Sect. 7.5. Alternately, the offsets in the samplers can be measured by
incorporating counters to compare the numbers of positive and negative samples
produced. Correction for the offsets can then be applied to the correlator output data
[see, e.g., Davis (1974)].

In samplers with three or more quantization levels, the performance depends on
the specification of the levels with respect to the rms signal level, � . An automatic
level control (ALC) circuit is therefore sometimes used at the sampler input. Errors
resulting from incorrect signal amplitude become less important as the number of
quantization levels is increased; with many levels, the signal amplitude becomes
simply a linear factor in the correlator output. In systems using complex correlators,
two samplers are usually required for each signal, one at each output of a quadrature
network. The accuracy of the quadrature network and the relative timing of the two
sample pulses are also important considerations.

8.5.1 Tolerances in Digital Sampling Levels

This section provides an example of the accuracy required in sampling. It is based on
a study of errors in three-level sampling thresholds by D’Addario et al. (1984). We
start by considering the diagram in Fig. 8.15, which shows the sampling thresholds
for a pair of signals to be correlated. Thresholds v1 and �v2 apply to the signal
waveform x.t/ and v3 and�v4 to y.t/. The Gaussian probability distribution of x and
y is given by Eq. (8.1), and the correlator output is proportional to this probability
integrated over the .x; y/ plane with the weighting factors˙1 and zero indicated in
the figure. This approach enables one to investigate the effect of deviations of the
sampler thresholds from the optimum, v0 D 0:612� . For three-level sampling, the

Fig. 8.15 Threshold diagram
for a correlator, the inputs of
which are three-level
quantized signals. x and y
represent the unquantized
signals, and the shaded areas
show the combinations of
input levels for which the
output is nonzero.
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correlator output can be written

hr3.˛; �/i D ŒL.˛1; ˛3; �/C L.˛2; ˛4; �/� L.˛1; ˛4;��/ � L.˛2; ˛3;��/� ;

(8.108)

where ˛i D vi=� , and

L.˛i; ˛k; �/ D
Z 1

˛i

Z 1

˛k

1

2�
p

1� �2
exp

��.X2 C Y2 � 2�XY/

2.1� �2/

�
dX dY :

(8.109)

Here, X D x=� , Y D y=� , and the integrand in Eq. (8.109) is equivalent to the
expression in Eq. (8.1) but with the variables measured in units of � .

D’Addario et al. (1984) point out that since less than 5% loss in signal-to-noise
ratio occurs for threshold departures of˙40% from optimum, the required accuracy
of the threshold settings, in practice, depends mainly on the algorithm used to
correct the result. Suppose that the thresholds are kept close to, but not exactly equal
to, the optimum value. For the x sampler in Fig. 8.15, the deviations from the ideal
threshold value ˛0 can be expressed in terms of an even part

�gx D 1

2
.˛1 C ˛2/ � ˛0 ; (8.110)

and an odd part

�ox D 1

2
.˛1 � ˛2/ : (8.111)

For the y sampler, �gy and �oy are similarly defined. The �g terms produce gain
errors. They are equivalent to an error in the level of the signal at the sampler, and
they have the effect of introducing a multiplicative error in the measured cross-
correlation. The �o terms produce offset errors in the correlator output and are
potentially more damaging since such errors can be large compared with the low
levels of cross-correlation resulting from weak sources. The offset errors, however,
can be removed with high precision by phase switching. The cancellation of the
offset results from the sign reversal of the digital samples, or of the correlator output,
as described in Sect. 7.5. The correlator output of a phase-switched system is of the
form

r3s.˛; �/ D 1

2
Œr3.˛; �/ � r3.˛;��/� : (8.112)

If all ˛ values are within ˙10% of ˛0, the output is always within 10�3 (relative
error) of the output of a correlator with the same gain errors, but no offset errors, in
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the samplers. Thus, with phase switching, errors of up to � 10% in the thresholds
may be tolerable. Also, corrections can be made for gain errors if the actual
threshold levels are known. Since the probability density distribution of the signal
amplitudes can be assumed to be Gaussian, the threshold levels can be determined
by counting the relative numbers of +1, 0, and �1 outputs from each sampler. When
� is small (a few percent), a simple correction for the gain error can be obtained by
dividing the correlator output by the arithmetic mean of the numbers of high-level
(˙1) samples for the two signals. Then 10% errors in the threshold settings result
in errors of less than 1% in �.

Another nonideal aspect of the behavior of the sampler and quantizer is that
the threshold level may not be precisely defined but may be influenced by effects
such as the direction and rate of change of the signal voltage, the previous sample
value (hysteresis), and noise in the sampling circuitry. The result can be modeled
by including an indecision region in the sampler response extending from ˛k �� to
˛kC�. It is assumed that a signal that falls within this region results in an output that
takes either of the two values associated with the threshold randomly and with equal
probability. The three-level threshold diagram with indecision regions included is
shown in Fig. 8.16.

Fig. 8.16 Threshold diagram for a three-level correlator showing indecision regions and the
shaded areas within them for which the response is nonzero. The figures ˙1, ˙ 1

2
, and ˙ 1

4
indicate

the correlator response. The diagram shows the .X; Y/ plane in which the signals are normalized
to the rms value � .
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Fig. 8.17 Effect
of indecision regions on the
output of a three-level
correlator. The thresholds are
assumed to be set to the
optimum value 0.612� , and
the widths of the indecision
regions are 2��. The output
is given as a fraction of the
output for � D 0.

The weighting in the indecision regions depends on the probability of the random
sample values and is 1/4 when both signals fall within indecision regions, and 1/2
when one signal is within an indecision region and the other produces a nonzero
output. As before, the correlator output can be obtained by integrating the weighted
probability of the signal values over the .X;Y/ plane. Figure 8.17 shows the decrease
in the correlator output as a function of � for several values of �, computed
by expressing the output decrease as a Maclaurin series in � (D’Addario et al.
1984). For all cases except those in which � approaches unity, the relatively small
decrease in output results from the fact that when one input waveform falls within
an indecision region, the other generally does not. For the particular case of � D 1,
the input waveforms are identical and fall within these regions simultaneously. The
output decrease is then proportional to �, as shown by the broken line in Fig. 8.17:
However, this case is only of limited practical importance. For a 1%maximum error,
� must not exceed 0:11� , so the indecision region can be as large as ˙18% of the
threshold value. For a maximum error of 0:1%; the above limits must be divided
by
p

10. Thus, the indecision regions have large enough tolerances that their effect
may be negligible.

8.6 Digital Delay Circuits

Time delays that are multiples of the sample interval can be applied to streams of
digital bits by passing them through shift registers that are clocked at the sampling
frequency. Shift registers with different numbers of stages thus provide different
fixed delays. Amethod of using two shift registers to obtain a delay that is variable in
increments of the clock pulse interval is described by Napier et al. (1983). However,
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integrated circuits for random access memory (RAM), developed for computer
applications, provide an economical solution for large digital delays.

Another useful technique is serial-to-parallel conversion, that is, the division of
a bit stream at frequency � into n parallel streams at frequency �=n, where n is a
power-of-two integer. This allows the use of slower and more economical types of
digital circuits for delay, correlation, and other processes.

The precision required in setting a delay has been discussed in Sect. 7.3.5 and is
usually some fraction of the reciprocal of the signal bandwidth. In any form of delay
that operates at the frequency of the sampler clock, the basic delay increment is the
reciprocal of the sampling frequency. A finer delay step can be obtained digitally
by varying the timing of the sample pulse in a number of steps, for example, 16,
between the basic timing pulses. Thus, if an extra delay of, say, 5/16 of a clock
interval is required, the sampler is activated 11/16 of a clock interval after the
previous clock pulse, and the data are held for 5/16 of an interval to bring them into
phase with the clock-pulse timing. Correction for delay steps equal to the sampling
interval can also be made after the signals have been cross-correlated, by applying
a phase correction to the cross power spectrum.

8.7 Quadrature Phase Shift of a Digital Signal

We have mentioned that complex correlators for digital signals can be implemented
by introducing the quadrature phase shift in the analog signal, as in Fig. 6.3,
and then using separate samplers for the signal and its phase-shifted version. The
Hilbert transformation that the phase shift represents can also be performed on the
digital signal, thus eliminating the quadrature network and saving samplers and
delay lines, but the accuracy is limited. Hilbert transformation is mathematically
equivalent to convolution with the function .���/�1, which extends to infinity in
both directions [see, e.g., Bracewell (2000), p. 364]. A truncated sequence of the
same form, for example, 1

3
, 0, 1, 0,�1, 0,� 1

3
, provides a convolving function for the

digital data that introduces the required phase shift. However, the truncation results
in convolution of the resulting signal spectrum with the Fourier transform of the
truncation function, that is, a sinc function. This introduces ripples and degrades the
signal-to-noise ratio by a few percent. Also, the summation process in the digital
convolution increases the number of bits in the data samples, but the low-order
bits can be discarded to avoid a major increase in the complexity of the correlator.
This results in a further quantization loss. The overall result is that the imaginary
output of the correlator suffers spectral distortion and some loss in signal-to-noise
ratio relative to the real output. These effects are most serious in broad-bandwidth
systems, in which the high data rate permits only simple processing. Lo et al. (1984)
have described a system in which the real part of the correlation is measured as
a function of time offset, as described below for the spectral correlator, and the
imaginary part is then computed by Hilbert transformation.
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8.8 Digital Correlators

8.8.1 Correlators for Continuum Observations

In continuum observations, the average correlation over the signal bandwidth is
measured, and data on a finer frequency scale may not be required. In such cases,
the correlation of the signals is measured usually for zero time-delay offset. Digital
correlators can be designed to run at the sampling frequency of the signals or at a
submultiple resulting from dividing the bit stream from the sampler into a number
of parallel streams. In the latter case, the number of correlator units must be pro-
portionally increased, and their outputs can subsequently be additively combined.
Two-level and three-level correlators, for which the products are represented by
values of �1, 0, and +1, are the simplest. Correlators in which one of the inputs is
a two-level or three-level signal and the other input is more highly quantized also
have a degree of simplicity. In this case, the correlator is essentially an accumulating
register into which the higher-quantization value is entered. The two-level or three-
level value is used to specify whether the other number is to be added, subtracted,
or ignored. In correlators in which both inputs have more than three levels of
quantization, the multiplier output for any single product can be one of a range
of numbers. One method of implementing such a multiplier is to use a read-only
memory unit as a lookup table in which the possible product values are stored. The
input bits to be multiplied are used to specify the address of the required product in
the memory.

The output of a multiplier can take both positive and negative values, and,
ideally, an up–down counter is required as an integrator. Since such counters are
usually slower than simple adding counters, two of the latter are sometimes used to
accumulate the positive and negative counts independently. Another technique is to
count, for example,�1, 0, and +1 as 0, 1, and 2, and then subtract the excess values,
in this case equal to the number of products, in the subsequent processing.

Spectral line (multichannel) correlators are used with most large general-purpose
arrays. For continuum observations, they offer advantages such as the ability to
reject narrowband interfering signals or to divide a band into narrower sub-bands to
reduce the smearing of spectral details.

8.8.2 Digital Spectral Line Measurements

In spectral line observations, measurements at different frequencies across the signal
band are required. These measurements can be obtained by digital techniques using
a spectral correlator system, which is commonly implemented by measuring the
correlation of the signals as a function of time offset. The Fourier transform of
this quantity is the cross power spectrum, which can be regarded as the complex
visibility as a function of frequency. (This Fourier transform relationship is a form of
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theWiener–Khinchin relation discussed in Sect. 3.2.) In the case of an autocorrelator
(for use with a single antenna), the two input signals are the same waveform with a
time offset. Thus, the autocorrelation function is symmetric, and the power spectrum
is entirely real and even. However, the cross power spectrum of the signals from two
different antennas is complex, and the cross-correlation function has odd as well as
even parts.

The output of a spectral correlator system provides values of the visibility at N
frequency intervals across the signal band. These intervals are sometimes spoken of
as frequency channels and their spacing as the channel bandwidth. To explain the
action of a digital spectral correlator, we consider the cross power spectrum S.�/

of the signals from two antennas, as shown in idealized form in Fig. 8.18. Here it is
assumed that the source under observation has a flat spectrum with no line features,
and the final IF amplifier before the sampler has a rectangular baseband response.
In Fig. 8.18, we have included the negative frequencies since they are necessary in
the Fourier transform relationships. For ��� � � � ��, the real and imaginary
parts ofS.�/ have magnitudes a and b, respectively, and the corresponding visibility
phase is tan�1.b=a/. The cross-correlation function �.�/ is the Fourier transform of
S.�/, where � is the time offset:

�.�/ D .a � jb/

Z 0

���

e j2���d� C .aC jb/

Z ��

0

e j2���d�

D 2��

�
a
sin.2��� �/

2��� �
� b

1 � cos.2��� �/

2��� �

�
: (8.113)

Thus, �.�/ has an even component of the form .sin x/=x, which is related to the real
part of S.�/, and an odd component of the form .1 � cos x/=x, which is related
to the imaginary part. The spectral correlator measures �.�/ for integral values

Fig. 8.18 Cross power
spectrum S.�/ of two signals
for which the power spectra
are rectangular bands
extending in frequency from
zero to ��. Negative
frequencies are included. The
solid line represents the real
part of S.�/ and the dashed
line the imaginary part. The
corresponding correlation
function is derived in
Eq. (8.113).
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of the sampling interval �s. We consider the case of Nyquist sampling, for which
�s D 1=.2��/. The measured cross-correlation refers to the quantized waveforms,
and the analysis in Sect. 8.4.1 shows how this is related to the cross-correlation of
the unquantized waveforms. For correlation levels that are not too large, the two
quantities are closely proportional, so for simplicity, we assume that Eq. (8.113)
represents the behavior of the measured cross-correlation. The measurements are
made with 2N time offsets from �N�s to .N � 1/�s between the signals, and Fourier
transformation of these discrete values yields the cross power spectrum at frequency
intervals of .2N�s/

�1 D ��=N for Nyquist sampling. The N complex values of
the positive frequency spectrum are the data required. Of these, the imaginary
part comes from the odd component of the correlator output r.�/. Thus, in the
correlation measurement, it suffices to use single-multiplier correlators to measure
2N real values of r.�/ over both positive and negative values of � for one antenna
with respect to the other. As an alternative to measuring only the real part of
the correlation, complex correlators could be used to measure both the real and
imaginary parts for a range of time offsets from zero to .N�1/�s. However, complex
correlators require broadband quadrature networks.

Measurement of the cross-correlation over the limited time offset range is
equivalent to measuring r.�/ multiplied by a rectangular function of width 2N�s.
The cross power spectrum derived from the limited measurements is therefore
equal to the true cross power spectrum convolved with the Fourier transform of
the rectangular function, that is, with the sinc function

sin.��N=��/

��
; (8.114)

which is normalized to unit area with respect to �. Any line feature within the
spectrum is broadened by the sinc function (8.114) and, depending on its frequency
profile, may show the characteristic oscillating skirts. The width of the sinc function
at the half-maximum level is 1:2��=N, that is, 1.2 times the channel separation, and
this width defines the effective frequency resolution.

The oscillations of the sinc function introduce structure in the frequency
spectrum similar to the sidelobe responses of an antenna beam. They result from the
sharp edges of the rectangular function that multiplies the correlation function. Such
sidelobes are undesirable and can be reduced by choosing weighting functions, other
than rectangular truncation, that are constrained to be zero outside the measurement
range. It is desirable that weighting functions should taper smoothly to zero at
j� j D N�s, thereby reducing unwanted ripples in the smoothing (convolving)
function, but also to be as wide as possible in order to keep the width of the
smoothing function as narrow as possible. These requirements are not generally
compatible, so weighting functions that produce smoothing functions with very
low sidelobes have poor frequency resolution. Some commonly used weighting
functions are listed in Table 8.5.

Hann weighting, also known as raised cosine weighting, reduces the first sidelobe
by a factor of 9 but degrades the resolution by 1.67, compared with uniform
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Table 8.5 Commonly used weighting functions

Half-amplitude

Weighting width Peak

function w.�/ [w.�/ D 0, j� j > �1 D N�s] (Unit=��=N) sidelobe

Uniform w.�/ D 1 1:21 0:22

Bartlett w.�/ D 1 � .j� j=�1/ 1:77 0:047

Hanna w.�/ D 0:5 C 0:5 cos.��=�1/ 2:00 0:027

Hamming w.�/ D 0:54 C 0:46 cos.��=�1/ 1:82 0:0073

Blackman w.�/ D 0:42 C 0:50 cos.��=�1/ 2:30 0:0011

C 0:08 cos.2��=�1/

Blackman-Harris w.�/ D 0:35875 C 0:48829 cos.��=�1/ 2:67 0:000025

C 0:14128 cos.2��=�1/

C 0:0106411 cos.3��=�1/

aHann weighting is named after the nineteenth-century meteorologist Julius von Hann and is
sometimes colloquially referred to as “Hanning weighting.” Hamming weighting is named after
R. W. Hamming, an engineer at Bell Telephone Laboratories.

weighting. The Fourier transform of the Hann weighting function is the sum of
three sinc functions of relative amplitudes 0.25, 0.5, and 0.25. This is the smoothing
function in the spectral domain shown in Fig. 8.19b, which corresponds to Hann
weighting. For the usual case in which the number of points in the discretely
sampled spectrum equals the number of points in the correlation function (i.e., no
zero padding, as in the FX correlator, Sect. 8.8.4), the smoothing or convolution
can be implemented as a three-point running mean with relative weights of 0.25,
0.5, and 0.25. Thus, the smoothed value of the cross power spectrum at frequency
channel n is given by

S0
�
n��

N

�
D 1

4
S
�

.n � 1/��

N

�
C1

2
S
�
n��

N

�
C1

4
S
�

.nC 1/��

N

�
: (8.115)

The Hamming weighting function is very similar to the Hann function and would
appear to be superior because it produces a better resolution and a lower peak
sidelobe level. However, the sidelobes of the Hamming smoothing function do not
decrease in amplitude as rapidly as those of the Hann smoothing function.Weighting
functions are discussed in detail by Blackman and Tukey (1959) and Harris (1978).

A further effect of the finite time-offset range complicates the calibration of the
instrumental frequency response in the following way (Willis and Bregman 1981).
The frequency responses of the amplifiers associated with the different antennas
may not be exactly identical, as discussed in Sect. 7.3. To calibrate the response
of each antenna pair over the spectral channels, it is usual to measure the cross
power spectrum of an unresolved source for which the actual radiated spectrum
is known to be flat across the receiving passband. We can consider the result in
terms of the idealized power spectra in Fig. 8.18. If no special weighting function is
used, the real and imaginary parts are both convolved with the sinc function (8.114).
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Fig. 8.19 (a) The ordinate is the sinc function sin.��N=��/=.��N=��/, which represents the
frequency response of a spectral correlator with channels of width ��=N to a narrow line at � D 0.
The abscissa is frequency � measured with respect to the center of the received signal band. (b) The
same curve after the application of Hann smoothing, as in Eq. (8.115).

When a function with a sharp edge is convolved with a sinc function, the result is
the appearance of oscillations (the Gibbs phenomenon) near the edge, as shown in
Fig. 8.20. The point here is that the real component ofS.�/ in Fig. 8.18 is continuous
through zero frequency, but the imaginary part shows a sharp sign reversal. Thus,
near zero frequency, the observed imaginary part of S.�/ will show oscillations
that may be as high as 18% in peak amplitude, whereas the real component will
show relatively small oscillations at that point (see also Fig. 10.14b and associated
text). As a result, the magnitude and phase measured for S.�/ will show oscillations
or ripples, the amplitude of which will depend on the relative amplitudes of the
real and imaginary parts, that is, on the phase of the uncalibrated visibility. The
uncalibrated phase measured for any source depends on instrumental factors such
as the lengths of cables as well as the source position, which may not be known. In
general, the phase will not be the same for the source under investigation and the
calibrator. Hence, near zero frequency, some precautions must be taken in applying
the calibration. Possible solutions to the problem include (1) calibrating the real
and imaginary parts separately, (2) observing over a wide enough band that the
end channels in which the ripples are strongest can be discarded, or (3) applying
smoothing in frequency to reduce the ripples.

Another problem encountered when observing a spectral line in the presence
of a continuum background is caused by reflections in the antenna structure. These
reflections cause a sinusoidal gain variation across the passband, the period of which
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Fig. 8.20 Convolution of a step function at the origin (broken line) with the sinc function
.sin�x/=�x. Here, x D �N=��, and the half-cycle period of the ripple is approximately equal
to the width of a spectral channel.

is equal to the reciprocal of the delay of the signal caused by the reflection. In a
correlation interferometer, the magnitude of the ripple is a nearly constant fraction of
the correlated continuum flux density, and the ripple is removed when the spectrum
of the source under investigation is divided by the spectrum of the calibration source.

8.8.3 Lag (XF) Correlator

Correlators can be classified as two general types. In a lag (or XF) correlator,
cross-correlation is followed by Fourier transformation, and in an FX correlator,
Fourier transformation is followed by cross-correlation. A simplified schematic
diagram of a lag correlator is shown in Fig. 8.21. Practical systems are often more
complicated and are designed to take full advantage of the flexibility of digital
processing techniques. The bandwidths of channels required for spectral line studies
vary greatly, from a few tens of hertz to hundreds of megahertz. This versatility is
necessary because the widths of spectral features are influenced by Doppler shifts,
which are proportional to the rest frequencies of the lines and the velocities of the
emitting atoms and molecules. The correlator of the upgraded VLA system (Perley
et al. 2009) is fundamentally an XF design, as is the ALMA system, following its
digital filter (Escoffier et al. 2000).

A recirculating correlator is one that can store blocks of data and process them
multiple times through the correlator. This can be done only when the correlator is
capable of running faster than the incoming data rate. These multiple passes allow
the number of correlator channels to be increased. For example, if data samples are
processed by the correlator twice, the range of delays can be doubled, so the spectral
resolution is improved by a factor of two.

To implement the above scheme, recirculator units are required, which are
basically memories that store blocks of input samples and allow them to be read out
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Fig. 8.21 Simplified schematic diagram of a lag (XF) spectral correlator for two sampled signals.
�s indicates a time delay equal to the sampling interval and C indicates a correlator. The correlation
is measured for zero delay, for the Ox input delayed with respect to the Oy input (left correlator bank),
and for Oy delayed with respect to Ox (right correlator bank). The delays are integral multiples of �s.

at the correlator input rate. These memory units are required in pairs, so that one
is filled with data at the Nyquist rate appropriate to the chosen signal bandwidth,
while the other is being read at the maximum data rate. One memory becomes filled
in the time that the other is read for the required number of times, and the two
are then interchanged. Examples of recirculating lag correlators are described by
Ball (1973) and Okumura et al. (2000). The WIDAR correlator on the VLA uses
recirculation (Perley et al. 2009).
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8.8.4 FX Correlator

The designation FX indicates a correlator in which Fourier transformation to the
frequency domain is performed before cross multiplication of data from different
antennas. In such a correlator, the input bit stream from each antenna is converted
to a frequency spectrum by a real-time FFT, and then for each antenna pair, the
complex amplitudes for each frequency are multiplied to produce the cross power
spectrum. A major part of the computation occurs in the Fourier transformation,
for which the total number of operations is proportional to the number of antennas.
In comparison, in a lag correlator, the total computation is largely proportional to
the number of antenna pairs. Thus, the FX scheme offers economy in hardware,
especially if the number of antennas is large (see Sect. 8.8.5). The principle of the
FX correlator, based on the use of the FFT algorithm, was discussed by Yen (1974)
and first used in a large practical system by Chikada et al. (1984, 1987). Description
of system designed for the VLBA are given by Benson (1995) and Romney (1999).

Two slightly different implementations of the FX correlator have been used. In
one, both in-phase and quadrature components of the signal are sampled to provide
a sequence of N complex samples, which is then Fourier-transformed to provide N
values of complex amplitude, distributed in frequency over positive and negative
frequencies. In the other, N real samples are transformed to provide N values of
complex amplitude. However, the negative frequencies are redundant, and only N=2

spectral points need be retained. We follow the second scheme in the discussion
below.

Figure 8.22 is a schematic diagram of the basic operations of an FX correlator.
The input sample stream from an antenna is Fourier transformed in contiguous
sequences of length-N samples, where N is usually a power-of-two integer for
efficiency in the FFT algorithm. The output of each transformation is a series of
N complex signal amplitudes as a function of frequency. The frequency spacing
of the data after transformation is 1=.Nts/, where ts is the time interval between
samples of the signals. In the cross-multiplication process that follows the FFT
stage, the complex amplitude from one antenna of each pair is multiplied by the
complex conjugate of the amplitude of the other. These multiplications occur in
the correlator elements in Fig. 8.22. Note that the data in any one input sequence
are combined only with data from other antennas for the same time sequence. This
leads to some differences in the effective weighting of the data in the FX and XF
designs.

8.8.5 Comparison of XF and FX Correlators

Spectral Response. In the FX configuration, the F engine (DFT processor) operates
on short segmented blocks of data in order to control the spectral resolution. The
equivalent correlation function constructed from a block of data has N ways, or N
possible multiplications for the zero lag component. There are progressively fewer
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Fig. 8.22 Simplified schematic diagram of an FX correlator for two antennas. The digitized
signals are read into the shift registers and an FFT performed at intervals of N sample periods.
The correlator elements, indicated by C, form products of one signal with the complex conjugate
of the other. In an array with na antennas, the outputs of each FFT are split .na � 1/ ways for
combination with the complex amplitudes from all other antennas.

multiplications available for increasing lags because of the data block boundaries.
The correlator function at the maximum lags of ˙.N � 1/ts can be obtained in
only one way. Hence, the density of lag multiplications has a triangular shape as a
function of lag over the range ˙Nts, as shown in Fig. 8.23 (see also Moran 1976).
Hence, the spectral response, the Fourier transform of this triangular function, is
sinc2.Nts�/ D sinc2.n/, where � D n=Nts and n is the spectral channel number. An
alternate derivation of this result is given in Sect. A8.4.1, where it is shown that the
spectral response to a sine wave is a sinc2 function.

For the XF configuration, the spectral resolution depends on the length of the
correlation function, calculated as described in Sect. 8.8.2 Since the correlation
function is calculated on a segment of data that is much longer than the block length,
the density of lag multiplications is essentially uniform, except for a very small end
effect. Hence, the spectral response is sinc.Nts�/ or sinc.n/. The spectral responses
for the FX and XF correlators are shown in Fig. 8.23.

Note that the integral over frequency of both of these spectral responses is unity.
Therefore, the flux or the area under a spectral line profile, the convolution of
the source spectrum with the spectral response function, is conserved. The peak
amplitude of a spectral feature narrower than the resolution will depend on where
it falls with respect to the spectral channels. A line that falls midway between two
channels will have its peak amplitude reduced by sinc2.1=2/ D 0:41 for the FX
processor compared with sinc.1=2/ D 0:81 for the XF processor. This is the well-
known effect called scalloping. It can be mitigated by the technique of padding with
zeros to obtain an interpolated spectrum (see Sect. A8.4.2).
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Fig. 8.23 (left) The density of lag calculations, or intrinsic weighting function, for an FX
correlator (solid line) and an XF correlator (dotted line). N is the segment size for the FX correlator.
For comparison purposes, the width of the function for the XF correlator is chosen to make the
number of spectral channels the same. (right) The spectral response for the FX correlator (solid
line), a sinc2 function (see Appendix 8.4 for additional explanation) and the XF correlator (dotted
line), a sinc function given by Eq. (8.114). Adapted from Romney (1999) and Deller et al. (2016).

In some cases, it may be desirable to actually calculate the correlation functions
from the output of the F engine, such as for application of a full nonlinear
quantization correction. It is well known (Press et al. 1992) that it is necessary to pad
the spectrum with N zeros in order to obtain the correct result [see discussion after
Eq. (A8.40)]. The implementation of this calculation is discussed by O’Sullivan
(1982) and Granlund (1986).

Signal-to-Noise Ratio. The fundamental difference between the FX and XF pro-
cessors is the density weighting in the lag domain. Both systems have the same
number of equivalent multiplications, as can be seen in Fig. 8.23. The FX covers
twice the number of lags as the XF processor but has lower density as the lag
number increases. In particular, the FX provides half the lag density for k D N=2.
For a continuum source, the signal-to-noise ratio of the FX and XF systems is the
same. This can be appreciated by the fact that only the zero lag multiplications are
important, and they are equal in both systems. Similarly, the signal-to-noise ratio for
a very-narrow-bandwidth source, less than the resolution, is also the same because
the total number of equivalent multiplications is the same.

There is a small difference in response for signals that have line widths about
equal to the resolution. In particular, for this case, the amplitude of a spectral
line is reduced by a factor of about 0.82 (Okumura et al. 2001; Bunton 2005).
This is a problem only for slightly resolved spectral features. In any event, most
spectrometers are designed to produce several channels per resolution element in
order to properly analyze the lines. This perceived deficiency in the FX correlator
is due to the distribution of lags. The FX correlator has a larger range but fewer
multiplications at lag.k/ ˙ N=2 (see Fig. 8.23). There are several approaches to
recovering this loss of information. The classic method (Welch 1967; Percival and
Walden 1993) is to overlap the segments in the block processing in the F engine.
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A 50% overlap recovers most of the lost signal-to-noise ratio but at a cost of
doubling the processing time in the F engine. This overlap feature was available in
the original FX VLBA processors but rarely, if ever, used (Romney 1995). Another
approach is to simply channel-average the spectrum, but this wastes the resolution
capability of the F engine. Note that with polyphase filter banks, scalloping for
narrow spectral lines and signal-to-noise ratio loss are very small.

Number of Operations. We can make an approximate comparison of the workload
requirements of XF and FX signal processors by comparing the number of
multiplications needed in each system. For this rather simplistic analysis, we assume
that the data are streams of real numbers at the Nyquist interval appropriate for
bandwidth ��, i.e., ts D 1=.2��/. To make this comparison, we further assume
that the number of lags computed in the X engine (lag correlator), N, is equal to the
data segment length into the F engine. This makes the spectral resolution of both
systems approximately equal (see Fig. 8.23 for exact responses).

Consider the analysis of one second of data, i.e., 2�� samples. For the XF
system, a lag correlator is required for each baseline. Thus, 2N�� multiplications
are required for each baseline. Since Nts � 2��, the edge effects in calculating
the correlation function are negligible (i.e., all lags have almost the same number
of multiplications approachingN), and the workload of the single Fourier transform
at the end of the integration period is negligible compared with the workload of
calculating the correlation function. Thus, the rate of multiplications (multiplies per
second), rXF, is

rXF D 2��Nnb ; (8.116)

where nb is the number of baselines. For the FX processor, one DFT engine
is required for each antenna. We assume that the number of multiplications for
the FFT implementation of the N-point DFT is N log2 N. (Some variation exists,
depending on the FFT implementation, e.g., an FFT with N being a power of four
would run somewhat faster.) The cross power spectrum calculation requires the
pairwise cross multiplication of the outputs of DFT engines for all baselines. These
multiplications are complex, requiring four real multiplications each. In addition,
only the N=2 spectral points at positive frequencies need to be calculated and
retained. The number of multiplications is therefore ŒnaN log2 NC4Nnb=2�M, where
M is the number of segments processed, 2��=N. Since MN D 2��, the aggregate
multiplication rate is

rFX D 2��Œna log2 N C 2nb� : (8.117)

The workload ratio, R D rXF=rFX is therefore

R D nbN

na log2 N C nb
: (8.118)
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The na log2 N factor reflects the log2 N advantage and the antenna-based processing
of the DFT engine. The nbN factor reflects the baseline processing of the X engine.
Since nb D na.na � 1/=2, we can rewrite Eq. (8.118) as

R D N
2 log2 N
na�1

C 2
: (8.119)

Note that this relation holds for na � 2 because no single antenna spectra
are calculated. [Analysis for a spectrometer on a single antenna would yield
R D N=.log2 N C 1/.] The limiting forms of Eq. (8.119) are

R D N=2 ; na � 1C log2 N ;

R D N.na � 1/

2 log2 N
na � 1C log2 N :

(8.120)

In general, the larger the values of N or na, the more the FX design is favored.
For example, with na D 10 and N D 1024, R � 240. Perhaps the most
important limitation in Eq. (8.119) is that the X engine operates on one or a few-
bit representation of the signal and multiplication can be achieved by simple table
lookup, whereas the F engine needs more bits per sample and there is additional bit
growth in its internal operations. Furthermore, the detailed architecture of chips has
a major influence on calculation speed. Hence, Eq. (8.119) is a useful guide for the
general dependence of R on N and na but does not accurately specify a crossover
point favoring one design over the other. The advantage clearly shifts to the FX
design for very large na or N.

Digital Fringe Rotation. In early systems, fringe rotation was often applied to the
signal as an analog process, but generally it is advantageous to implement it after
digitization. For example, in VLBI observations in which the data are recorded as
digital samples, it is useful to be able to repeat the analysis with different fringe
rates if the position of the source on the sky is not known with sufficient accuracy
before the observation. Digital fringe rotation is usually applied to the digitized
IF waveform before it goes to the correlator and involves multiplication with a
digitized fringe rotation waveform. It is desirable to use a multibit representation
for the rotated data to maintain the required accuracy, and thus, the number of bits
in the input data to the correlator may be increased. Increasing the number of bits per
sample in a lag correlator results in a proportional increase in complexity. Thus, it
may be necessary to truncate the data before input to the correlator, which effectively
introduces the quantization loss a second time. In contrast, in the FX design, multibit
data representation is required in the FFT processing, so the bit increase that fringe
rotation presents is more easily accommodated. See Sect. 9.7.1 for more details.

Fractional Sample Delay Correction. In digital implementation of the compensat-
ing delays, one way of adjusting the delay in steps smaller than the sampling interval
is to adjust the timing of the sampler pulses, as described in Sect. 8.6. Another way
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of introducing a fractional sample period delay is done after transformation to the
frequency domain by incrementing the phase values by an amount that varies in
proportion to the frequency across the IF band. In the FX correlator, this is easily
done because the signals appear as an amplitude spectrum every FFT cycle, and the
correction can be applied as required for each antenna before the data are combined
in antenna pairs. With a lag correlator, there are two problems in this process. First,
the transformation to a spectrum occurs after the data are combined for antenna
pairs, so many more values require correction. Second, for long baselines, the
corrections required may occur more rapidly than the rate at which cross-correlation
values are transformed to cross power spectra. Thus, it may be possible to apply only
a statistical correction rather than an exact one. See Sect. 9.7.3 for a description of
the statistical corrections.

Quantization Correction. The nonlinearity of the amplitude of the cross-correlation
measured using coarsely quantized samples is seen in the Van Vleck relationship
[Eq. (8.25)]. Application of a correction for the nonlinearity in quantization in
the lag (XF) correlator is a relatively straightforward process because the cross-
correlation values are directly calculated. To obtain the cross-correlation values
in the FX correlator, the cross power spectrum at the correlator output must be
Fourier transformed from the frequency domain to the lag domain. After applying
the correction, the data must then be transformed back to a frequency spectrum.
The correction is necessary only if the correlation of the total waveform (signal
plus noise) is large for any pair of antennas. This condition implies observation
of a source that is largely unresolved and sufficiently strong that the signal power
in the receiver is comparable to the noise or greater. In the case of a spectral line
observation, it is the power averaged over the receiver bandwidth that is important.

Adaptability. The FX design is somewhat more easily expanded or adapted to
special requirements because more of the system is modularized per antenna rather
than per baseline, as in the lag correlator. Addition of an extra antenna to an FX
correlator requires less modification of the reduction procedure than is necessary
for a lag correlator. Thus, the FX design is convenient for projects in which the
number of antennas is planned to increase over time and is more efficient for larger
arrays (Parsons et al. 2008).

Pulsar Observations. For pulsar observations, a gating system at the correlator
output is required to separate data received during the pulsar-on period, so that
the sensitivity is not degraded by noise received when the pulsar is off. For many
pulsars, which have periods � 0:1 s, time resolution of order 1 ms is adequate
in the gating.7 With an FX correlator, it is necessary to collect data in complete
sequences of N samples, so the gating process has to accommodate data that arrive

7Many arrays can also be used in a phased-array mode (e.g., for VLBI, see Sect. 9.9), which
provides one signal output per polarization. A specially designed pulsar processor can then provide
measurements with high time resolution for study of the pulse profile and timing. In such cases,
the array is used only to provide a large collecting area for high sensitivity. See Sect. 9.9.
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at time intervals of � N times the sample interval ts. For example, with N D 1; 024

and a total bandwidth of 10 MHz, Nts ' 500 �s. Again, this might restrict
flexibility for the fastest pulsars. However, a nice feature of the FX correlator is that
complete spectra are obtained during each Nts interval in time. In the subsequent
time averaging, it is possible to process the frequency channels individually and to
vary the time of the gating pulse for each one so as to match the variation in pulse
timing that results from dispersion in the interstellar medium.

Choice of Correlator Design. Because the relative advantages of the lag and FX
schemes discussed above involve a number of different features, the best choice of
architecture for any particular applicationmay not be immediately obvious. Detailed
design studies for different approaches, taking account of the precise requirements
and the implementation of the very-large-scale integrated (VLSI) circuits, are
required. For discussions of lag and FX correlators, see D’Addario (1989), Romney
(1995, 1999), and Bunton (2003). The widespread use of polyphase filter banks for
precise channel definitions and radio frequency interference (RFI) excision favors
the FX approach (see Sect. 8.8.9).

8.8.6 Hybrid Correlator

In designing a broadband correlator, it may be advantageous or necessary to divide
the analog signal of total bandwidth, ��, from each antenna into nf contiguous
narrow sub-bands. A separate digital sampler is used for each such sub-band, and
the correlator is designed as nf sections operating in parallel to cover the full
signal band. A system of this type that incorporates both analog filtering and digital
frequency analysis is referred to as a hybrid correlator. If the digital part uses a lag
design, then the rate of digital operations is reduced by a factor nf relative to the rate
for a lag correlator that processes the whole bandwidthwithout subdivision. This can
be seen from Eq. (8.116), where for one sub-band, the bandwidth is ��s D ��=nf ,
the number of channels required is N=nf , but nf such sections of digital processing
are required. We can write a cost equation for a hybrid correlator (Weinreb 1984),
as

C D A1

��na.na � 1/N

nf
C A2nf na C A3 ; (8.121)

where A1 and A2 are coefficients for the digital and analog hardware, respectively,
and A3 is another constant.

In this equation, the cost can be minimized with respect to nf , with the result that

nf D
�
A1

A2

��.na � 1/N

�1=2

: (8.122)
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Table 8.6 Hybrid channelization

Year �� ��s n f

Instrument Commissioned (GHz) (MHz) Reference

SMA 2003 2:0b 104 24a Ho et al. (2004)

SMA 2015 8:0 2000 4 –

Plateau de Bure 1992 0:5 50 10 Guilloteau et al. (1992)

Plateau de Bure 2013 8:0 2000 4 Jan (2008)

ALMA 2013 4:0b 2000c 2 Escoffier et al. (2007)
anf is only approximately ��=��s because of sub-band overlap.
bTwo polarizations or two bands.
cThese sub-bands are subsequently reduced to 128 channels of 62.5 MHz each by digital filtering.
Each 2000-MHz band can be positioned independently.

Equation (8.122) is useful only if the digital electronics are fast enough to handle a
bandwidth of ��=nf . Over the last decades, the sampling rates have steadily risen
and the costs have dropped for digital hardware, while the cost of analog electronics
has remained relatively flat. The evolution of design in hybrid correlators can be
seen in Table 8.6. A general disadvantage of the hybrid correlator is that very
careful calibration of the frequency responses of the sub-bands is required to avoid
discontinuities in gain at the sub-band edges. In general, it is advantageous to use the
fastest samplers to minimize the analog filtering required. However, at millimeter
wavelengths, where very wide bandwidths are needed and can be accommodated by
receivers, the restriction on digital sampling speed requires some channelization. If
an FX implementation is used for the digital section, a similar cost equation can be
written, but there is less reduction in the number of operations since in Eq. (8.117),
N enters logarithmically.

8.8.7 Demultiplexing in Broadband Correlators

The bit rate for the VLSI circuits used in large correlator systems is generally slower
than that of the digital samplers that are used with broadband correlators. Serial-to-
parallel conversion at the sampler output, that is, demultiplexing in the time domain,
allows use of optimum bit rates for the correlator. Consider a system in which
each sampler output is demultiplexed into n streams, and assume for simplicity
that there is one bit per sample; parallel architecture accommodates multiple bits.
Any n contiguous samples all go to different streams. To obtain all the products
required in a lag correlator for a pair of IF signals with this configuration of the
data, it would be necessary to include cross-correlations between each stream of
one signal with every stream of the other signal. To simplify the system, Escoffier
(1997) developed a scheme in which the n demultiplexed bit streams from each
signal are fed into a large random access memory (RAM) and read out in reordered
form. Each demultiplexed stream then contains a series of discontinuous blocks of
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� 105 samples. Each block contains data contiguous in time, as sampled. Cross-
correlations are performed between data in corresponding blocks only. Thus, for
any pair of input signals, n cross-correlators running at the demultiplexed rate are
required for each value of lag. Also, each signal requires two RAM units so that
one is filled as the other is read out. In Escoffier’s system, the sample rate is 4 Gbit
s�1, n D 32, and the length of a block of the demultiplexed data is approximately
1 ms. Since cross-correlations do not extend across the boundaries of any given
block, there is a very small loss of efficiency, which in this case is about 0.2%.
Another possible approach is based on demultiplexing in the frequency domain,
as in the case of the hybrid correlator. It is then necessary only to cross-correlate
corresponding frequency channels between each antenna, so the number of cross-
correlators per signal pair is again equal to n for each lag. Carlson and Dewdney
(2000) have described an all-digital development of the frequency demultiplexing
principle used in the hybrid correlator. This is used with the expanded VLA (Perley
et al. 2009), and the system is described as a WIDAR correlator. Broadband signals
are digitized at full bandwidth, divided into frequency channels using digital filters,
and resampled at the appropriate lower rate before cross-correlation between all
antenna pairs. (The use of digital filters avoids the small differences in the responses
of analog filters, which in some systems provide the initial channelization.) As a
final step, the cross-correlated data are Fourier transformed to the frequency domain.
This scheme is sometimes referred to as an FXF system. Both Escoffier’s reordering
scheme and the WIDAR system of demultiplexing provide approaches to the design
of large broadband correlators. The latter requires fewer lags because the digital
filters provide part of the spectral resolution.

For filtering sampled signals, digital filters of the FIR (finite impulse response)
type can be used, in which the incoming sample stream is convolved with a series of
numbers, referred to as tap weights, the Fourier transform of which represents the
filter response (Escoffier et al. 2000). The tap weights can be stored in a RAM and
readily changed as required. An important advantage of digital filters is the freedom
from individual variations of the characteristics. However, it may be necessary to
truncate the output data samples to match the number of bits per sample that can be
handled by the correlator, and thus a further quantization loss may be incurred.

8.8.8 Examples of Bandwidths and Bit Data Quantization

The initial observing bandwidth of the 27-antenna VLA, when it came into
operation in the early 1980s, was 100 MHz per polarization with three-level (2-bit)
sampling. The expanded system that came into operation around 2010, covering
a frequency range of 1–50 GHz, has a maximum observing bandwidth of 8 GHz
per polarization with 3-bit sampling, or 8-bit sampling with a reduced bandwidth
(Perley et al. 2009). This large increase in data capacity is possible as a result of the
increase in computing speed and in signal transmission capacity using optical fiber.
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The Atacama Large Millimeter/submillimeter Array, which came into operation in
2012, covers bandwidths of 8 GHz per polarization with 3-bit (8-level) quantization
(Wootten and Thompson 2009). The number of antennas is 64 and the correlator is
FX with initial digital filtering, sometimes referred to as an FXF system.

In the meter-wavelength range, observing bandwidths are generally narrower
than at shorter wavelengths, but the spectrum is often more heavily used by
transmitting services, so the requirement for avoiding or removing interfering
signals is important. Larger numbers of bits allow for greater dynamic range in the
system response, which helps to reduce the probability that interfering signals will
cause overloading. The LWA (LongWavelength Array) covers 20–80 MHz using 8-
bit (256-level) sampling with the option of 12-bit (4096-level) sampling. The sample
frequency is 196 mega-samples/sec (Ellingson et al. 2009). The LOFAR system
covers 15–80MHz and 110–240MHz using 12-bit digitization (de Vos et al. 2009).

8.8.9 Polyphase Filter Banks

Polyphase filtering is a digital signal-processing technique that was developed
for applications such as the separation of signals in multichannel communication
systems with high interchannel rejection (Bellanger et al. 1976). The disadvantages
of the nonoverlapping-segment discrete Fourier transform (DFT) processing, which
we will call the single-block Fourier transform (SBFT) method, have been noted
in earlier sections of this chapter and are also described in Appendix 8.4. Namely,
this approach has high spectral leakage since the spectral response is a sinc-squared
function that has sidelobe levels as high as �13.5 db. In addition, the amplitude
of a monochromatic signal, or unresolved cosmic line, depends on its relative
location with respect to the channel boundaries, going from 1 at channel center to
.2=�/2 D 0:41 at the edge. This effect is called scalloping. There is a slight loss in
sensitivity for signals whose line widths are close to the spectral resolution, which
is related to the effective lag distribution of the DFT (see Sect. 8.8.5).

Polyphase filtering and polyphase filter banks (PFBs) correct these deficiencies
at a modest computational overhead. PFBs have become an important tool in radio
astronomy as a way of excising radio frequency interference since they make
possible the elimination of only the specific channels in which the interference
occurs. It is also helpful in spectroscopic observations of some cosmic sources
such as masers, where a very strong and narrow line in the passband makes it
difficult to study other nearby lines because of the effect of spectral leakage.
For detailed treatments of PFBs, see Crochiere and Rabiner (1981), Vaidyanathan
(1990), and Harris et al. (2003). Useful tutorials are available by Harris (1999)
and Chennamangalam (2014). For applications to radio interferometry, see Bunton
(2000, 2003).

Before describing the PFB, consider an elementary design of a digital filter bank
based on a conventional analog filter bank withM equally spaced filters spanning the
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frequency range 0 to ��. Suppose the input voltage is x.t/, which is a bandlimited
Gaussian process in the frequency range 0 to ��. x.t/ can be represented by a digital
sequence x.n/, sampled at the Nyquist interval 1=2��. A crude lowpass filter can
be constructed by taking a running mean of M samples in the time domain. The
spectral response to this “boxcar” averaging is a sinc function with its first null at
2��=M. Obtaining a perfect lowpass filter response in the frequency domain with a
cutoff at �c D ��=M would require the convolution in the time domain with a sinc
function [sinc.x/ D sin.�x/=.�x/],

h.t/ D sinc.2�ct/ D sinc.n=M/ : (8.123)

Note that for M D 1, h.t/ D 1 for n D 0 and otherwise is zero, so x.n/

remains unchanged. However, forM > 1, perfect lowpass filtering action requires a
convolution over infinite time. As an approximation, we can use N-point smoothing.
The filter shape will be

H.�/ D
N�1X

nD0

sinc.n=M/ e j.��n=��/ ; (8.124)

which has a fairly sharp cutoff at � D ��=M. y.n/, the smoothed version of x.n/,
will be oversampled by a factor of about M. The normal process at this point is
to resample y.n/, taking every Mth sample. This process is called decimation,8 or
downsampling. To make the rest of the filter bank, multiply x.n/ by e j2��t, where
� D m=�� and m D 1 to M � 1, filter each stream by h.n/, and downsample.
This process is inefficient since the downsampling discards most of the arithmetic
computations. The PFB provides a more efficient processing structure to obtain a
filter shape with a sharp cutoff.

We now describe the PFB, following the analysis of Bunton (2000, 2003).
Consider a sample sequence of data, x.n/, of length N, which is multiplied by a
window function h.n/. Its DFT is

X.k/ D
N�1X

nD0

h.n/x.n/ e�j .2�=N/nk ; (8.125)

where k ranges from 0 to N � 1. The frequency steps are 2��=N, i.e., covering
both positive and negative frequencies. If H.k/, the DFT of h.n/, has a width of
approximately 2��=M, then X.k/ will be oversampled, and only r D N=M samples
need be retained. N andM are chosen so that r is an integer. If H.k/ is desired to be

8“Decimation” formally means a reduction to 1/10; however, the broader definition is to “reduce
drastically, especially in number.”
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the discrete idealization of a perfect lowpass filter, i.e.,

H.k/ D 1 ; N �M < k � M ;

D 0 ; otherwise ; (8.126)

then

h.n/ ' sinc

" 
n � N

2

N

!

r

#

: (8.127)

The decimated spectrum, i.e., taking every rth point of X.k/ in Eq. (8.125), is

X.k0/ D
N�1X

nD0

h.n/x.n/ e�j .2�=N/nrk0

; (8.128)

where k0 goes from 0 to M � 1. We can rewrite Eq. (8.128) as a double summation
over r subsegments, each of lengthM, as

X.k0/ D
r�1X

mD0

M�1X

nD0

h.nC mM/ x.nC mM/ e�j .2�=N/.nCmM/rk0

: (8.129)

Notice that

e�j .2�=N/.nCmM/rk0 D e�j .2�nk0=M/e�j2�mk0

: (8.130)

The rightmost exponential factor is unity. Hence,

X.k0/ D
r�1X

mD0

M�1X

nD0

h.nC mM/ x.nC mM/ e�j .2�=M/nk0

: (8.131)

In Eq. (8.131), there are r DFTs of length M, and in Eq. (8.128), there is one DFT
of length N D rM, so there is only a slight reduction in the workload, approximated
by the number of multiplications required. Note that the FFT algorithm, which has
a workload proportional toM log2 M, is used for the DFT calculation.

The kernel of the exponential in Eq. (8.131) does not contain r, so we can
interchange the order of summation and rewrite it as

X.k0/ D
M�1X

nD0

"
r�1X

mD0

h.nC mM/ x.nC mM/

#

e�j .2�=M/nk0

: (8.132)

This step reduces the calculation from r DFTs of length M to one DFT of length
M. The workload for applying the window function h.n/ remains proportional
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to N. Hence, the workload for Eq. (8.128) is N C N log2 N, while the workload
for Eq. (8.131) is N C M log2 M. The workload is thus reduced by a factor of R,
given by

R D N C N log2 N

N CM log2 M
D 1C log2 N

1C 1
r .log2 N � log2 r/

' r ; (8.133)

where the approximation holds for N � 1.
After the calculation in Eq. (8.132) is performed, the N-point window is moved

byM steps, and the process is repeated. Each segment ofM points is thus processed
r times. Therefore, the input and output data rates are the same, except when spectral
values at negative frequencies are discarded.

The calculation in Eq. (8.132) is expressed diagramatically in Fig. 8.24. This
process may seem counterintuitive in the following sense. The data stream is
severely decimated by the action of the commutator, which distributes the time
samples among the branches, or “partitions,” with a cycling period M. That is, the
data samples into each of theM partitions are

x.0/; x.M/; x.2M/; 	 	 	 ; x.rM �M/

x.1/; x.M C 1/; x.M C 2/; 	 	 	 ; x.rM �M C 1/

x.2/; x.M C 2/; x.M C 3/; 	 	 	 ; x.rM �M C 2/
:::

x.M � 1/; x.M/; x.M C 1/; 	 	 	 ; x.rM � 1/ :

(8.134)

Fig. 8.24 A diagram of a polyphase filter bank, which converts a set of N data samples into anM-
point spectrum. The input data stream is distributed among theM filter partitions by a commutator.
Each partition receives a data stream that has been downsampled by a factor M. In each partition,
PM represents the action of the decimated version of h.n/, as described by the term in brackets in
Eq. (8.132). The nonaliased M-point spectrum is assembled by the action of the FFT. Note that if
the data samples are real numbers, then only M=2 values of the spectrum, corresponding to the
positive frequencies, need be retained.
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Each of these decimated data streams is undersampled by a factor of M, and its
corresponding spectrum is heavily aliased. The action of the PFB undoes this
aliasing.

Consider an example where N D 1024, M D 256, and r D 4 (a four-tap
polyphase filter), as shown in Fig. 8.25. The first polyphase partition, P0, calculates
only the four-term sum x.0/h.0/C x.256/h.256/C x.512/h.512/C x.768/h.768/,
and P1 calculates x.1/h.1/C x.257/h.257/C x.513/h.513/C x.769/h.769/.

We can now compare the performance and requirements of the SBFT and the
PFB. The SBFT produces an M-point spectrum for each M data samples. It moves
successively from block to block, so the data rate remains the same. The PFB takes
in N data samples and produces an M-point spectrum and then steps by M samples
for the next spectral calculation. Hence, its data rate also remains the same. The
overhead in the PFB is due to the windowing. Hence, the workload ratio R needed
for the PFB with respect to the SBFT is

R D N CM log2 M

M log2 M
D 1C r

log2 M
: (8.135)

ForM D 1024 and r D 4, there is a 40% overhead incurred with the PFB structure.
The flat response on low leakage from the PFB is made possible because there are
N samples available to provide the filter action rather thanM. Note that in hardware
implementation, the buffering requirement increases with r.

It is advantageous to apply additional weighting to h.n/ such as Hann, Hamming,
or Blackman weighting to further reduce spectral leakage. This does not reduce the
resolution significantly as long as the weighting function remains at a level of � 1

overM samples. Examples of PFB and SBFT filter shapes are shown in Fig. 8.26. If
the weighting is applied in the SBFT mode overM samples, the leakage is reduced,
but the resolution is also reduced.

Note that PFBs can be concatenated. The output of any subset or all of the
channels of a PFB can be fed into an additional PFB to obtain finer resolution.
The Murchison Widefield Array uses such a scheme. Another application is to use
a PFB only for course channelization. Its output can then be fed to an XF or FX
correlator.

8.8.10 Software Correlators

Since, in practice, the signals for which cross-correlations are formed are in digital
form, having also been subjected to a digital delay system, the cross multiplication
and averaging processes can be carried out in a computer system. This is useful in
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Fig. 8.25 A graphical representation of the action of a polyphase filter bank with r D 4, or four
taps. A random noise data stream represented by a set of N independent Gaussianly distributed
random noise (i.e., white noise) is shown in the top panel. It is multiplied by a window function
h.n/, the envelope of which is shown in the next panel. Here, h.n/ is chosen to be a sinc functions
with exactly four zero crossings, equal to the number of taps. The result is separated into four
segments, which are coadded to form the M-term time series shown in the lowest panel, which
is then Fourier transformed into an M-point spectrum, ��� to ��, as formulated by Eq. (8.132).
After this calculation, the window is moved byM samples, and the process repeated. Adapted from
Gary (2014).
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Fig. 8.26 The thick line shows the response of a filter element in a PFB having r D 8 and Hann
weighting applied. The thin line shows the response for a SBFT, a sinc2 function. Both filters have
a response of about .2=�/2 at the filter edge of ˙0:5 in normalized frequency units of 2��=M.

small systems for which the development of special correlator hardware is avoided.
Also, in the case of large systems in which antennas are brought into operation
over a period of years, changes in the correlation requirements are more easily
accommodated. An example of a software correlator and the advantages of the
design are described by Deller et al. (2007). Most VLBI processing is done in
software correlators.

Appendix 8.1 Evaluation of †1
qD1R

21.q�s/

The periodic function f .t/ can be expressed as a Fourier series as follows:

f .t/ D a0

2
C

1X

qD1

�
aq cos

�
2�qt

ˇ

�
C bq sin

�
2�qt

ˇ

��
; (A8.1)

where ˇ is the period and

aq D 2

ˇ

Z ˇ

0

f .t/ cos

�
2�qt

ˇ

�
dt; (A8.2a)

bq D 2

ˇ

Z ˇ

0

f .t/ sin

�
2�qt

ˇ

�
dt: (A8.2b)
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Parseval’s theorem for Eq. (A8.1) takes the form

2

ˇ

Z ˇ

0

f 2.t/ dt D a2
0

2
C

1X

qD1

.a2
q C b2

q/ : (A8.3)

Now let f .t/ be a series of rectangular functions of unit height and width, one
centered on t D 0 and the others centered on integral multiples of ˙ˇ. Then, one
obtains

a0 D 2

ˇ
; aq D 2

ˇ

sin.�q=ˇ/

�q=ˇ
; bq D 0 ;

Z ˇ

0

f 2.t/ dt D 1 :

(A8.4)
From Eqs. (A8.3) and (A8.4),

1X

qD1

�
sin.�q=ˇ/

�q=ˇ

�2

D ˇ � 1

2
; (A8.5)

which, from Eq. (8.15), is the summation needed to evaluate Eq. (8.19).

Appendix 8.2 Probability Integral for Two-Level
Quantization

The probability integration required in Eq. (8.21) can be performed as follows. The
integral is

P11 D 1

2��2
p

1 � �2

Z 1

0

Z 1

0

exp

��.x2 C y2 � 2�xy/

2�2.1 � �2/

�
dx dy : (A8.6)

Restore circular symmetry in the integral by the substitutions

z D y � �x
p

1 � �2
; dy D

p
1 � �2 dz : (A8.7)

Then

P11 D 1

2��2

Z 1

0

dx
Z 1

��xp
1��2

exp

��.x2 C z2/

2�2

�
dz : (A8.8)

Next, substitute x D r cos 
 and z D r sin 
 . The lower limit of the z integral in
Eq. (A8.8) represents the line z D ��x=

p
1 � �2, which makes an angle 
 with

the x axis given by 
 D � sin�1 �. The integral covers an area of the .x; z/ plane
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between this line and the z axis (
 D �=2). Thus,

P11 D 1

2��2

Z 1

0

dr
Z �=2

� sin�1 �

r exp

��r2

2�2

�
d
 : (A8.9)

Finally, substitute u D r2=2�2:

P11 D 1

2�

Z 1

0

du
Z �=2

� sin�1 �

e�ud
 : (A8.10)

Equation (A8.10) can be integrated directly to give

P11 D 1

4
C 1

2�
sin�1 � : (A8.11)

Appendix 8.3 Optimal Performance for Four-Level
Quantization

Schwab (1986) has investigated various aspects of the performance of correlators
with four-level quantization. These include precise values for optimal thresholds and
quantization efficiencies, and expressions for computation of the cross-correlation
as a function of the correlator output. The threshold values and the efficiencies are
given Table A8.1.

The values of quantization efficiency 	4 for n D 3 and 4 are within 0.3% of the
highest value and are useful because nonintegral values of the weighting factor n
would require more complicated implementation in a lag-type correlator. Rational
approximations for the cross-correlation Q� are minimax solutions; that is, they
minimize the maximum relative error. The variable rN is the normalized correlator
output, that is, the measured output divided by the corresponding output for � D 1.
The first three approximations given below are valid for all jrN j � 1.

For n D 3 and the corresponding value of v0=� in Table A8.1, the following
approximation yields a maximum relative error of 1:51 � 10�4:

Q�.rN/ D 1:1347043� 3:0971312r2
N C 2:9163894r4

N � 0:89047693r6
N

1 � 2:6892104r2
N C 2:4736683r4

N � 0:72098190r6
N

rN :

(A8.12)

For n 
 3:3359 and the corresponding value of v0=� in Table A8.1, the following
approximation yields a maximum relative error of 1:46 � 10�4:

Q�.rN/ D 1:1329552� 3:1056902r2
N C 2:9296994r4

N � 0:90122460r6
N

1 � 2:7056559r2
N C 2:5012473r4

N � 0:73985978r6
N

rN :

(A8.13)
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Table A8.1 Optimal thresholds and efficiencies
for four-level quantization

n v0=� 	4

3 0.99568668 0.8811539496

3.3358750 0.98159883 0.8825181522

4 0.94232840 0.8795104597

For n D 4 and the corresponding value of v0=� in Table A8.1, the following
approximation yields a maximum relative error of 1:50 � 10�4:

Q�.rN/ D 1:1368256� 3:0533973r2
N C 2:8171512r4

N � 0:85148929r6
N

1 � 2:6529114r2
N C 2:4027335r4

N � 0:70073934r6
N

rN :

(A8.14)

The following approximation also applies for n D 4 and the corresponding value of
v0=� in Table A8.1 but is valid for only jrN j � 0:95. It yields a maximum relative
error of 2:77 � 10�5:

Q�.rN/ D
1:1369813� 1:2487891r2

N C 4:5380174� 10�2r4
N � 9:1448344� 10�3r6

N

1 � 1:0617975r2
N

rN :

(A8.15)

Appendix 8.4 Introduction to the Discrete Fourier Transform

This appendix provides a brief introduction to the discrete Fourier transform (DFT),
with specific emphasis on applications important to topics covered in this book. For
more comprehensive discussion, see Bracewell (2000) or Oppenheim and Schafer
(2009).

Consider the Fourier transform integral of a function x.t/, a bandlimited signal
(0 to ��), which has finite duration T.

X.�/ D
Z T

0

x.t/ e�j2��tdt : (A8.16)

We can approximate this integral as

X.�/ ' �

N�1X

nD0

x.tn/ e
�j2��tn ; (A8.17)
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where x.tn/ is a sampled version of x.t/ at the Nyquist interval � D 1=2�� so that
tn D n�. For simplicity, we assume x.t/ to be a real function. We calculate X.�/ at
a set of N frequencies, �k D 2k��=N, where k D 0 to N � 1, as

X.�k/ ' �

N�1X

nD0

x.tn/ e
�j2�kn=N : (A8.18)

The important next step is to use Eq. (A8.18) as the basis for a definition of the DFT
by writing

Xk �
N�1X

nD0

xn e
�j2�kn=N ; (A8.19)

where xn are the samples x.tn/, and Xk are the corresponding spectral components,
X.�k/. For k D 0,

X0 D
N�1X

nD1

xn ; (A8.20)

which corresponds to the component of X at � D 0. For k D N=2,

XN=2 D
N�1X

nD1

xn e
�j�n D

N�1X

nD1

xn.�1/n ; (A8.21)

which corresponds to X at � D ��. The negative frequency components lie between
k D N=2 and N � 1, and XN D X0. The inverse DFT is

xn D 1

N

N�1X

kD0

Xk e
j2�kn=N : (A8.22)

We can show that Eq. (A8.22) is indeed the inverse discrete transform of Eq. (A8.19)
by substituting Eq. (A8.19) into Eq. (A8.22), that is,

xn D 1

N

N�1X

kD0

 
N�1X

`D0

x` e
�j2�k`=N

!

e j2�kn=N : (A8.23)

We introduced time index ` to distinguish it from n. Interchanging the order of
summation gives

xn D 1

N

N�1X

`D0

x`

 
N�1X

kD0

e j2�k.n�`/=N

!

: (A8.24)
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In the summation in parentheses in Eq. (A8.24), the phasor steps uniformly around
the complex plane exactly n � ` times. Hence,

1

N

N�1X

kD0

e j2�k.n�`/=N D ın` ; (A8.25)

where ın` is called the Kronecker delta function, which has the properties

ın` D 0 ; n 6D ` ;

D 1 ; n D ` : (A8.26)

The Kronecker delta function is nonzero only for ` D n, so Eq. (A8.24) yields
xn D xn and demonstrates that xn is recovered from the original data after a DFT
followed by an inverse DFT. Note that xn and Xk are both periodic with period N.
Thus,

XkCmN D Xk (A8.27)

and

xnCmN D xn ; (A8.28)

where m is the period number. Thus, for example, XN D X0 DPN�1
nD0 xn.

A very useful concept is to think of xn and Xk as lying on a circle instead
of on a line. Most of the well-known theorems in Fourier transform theory have
counterparts in DFT theory where the data lie on a circle. The shift theorem of
Fourier transforms illustrates the circular nature of the DFT. The DFT of a circularly
shifted, by one step, sequence of xn, i.e., yn D xn�1, or

y D fxN�1; x0; x1; x2; ::: ; xN�2g ; (A8.29)

is

Yk D
N�1X

nD0

yn e
�j2�kn=N ; (A8.30)

D
N�1X

nD1

xn�1e
�j2�kn=N C xN�1 ; (A8.31)

D
N�2X

nD0

xn e
�j2�k.nC1/=N C xN�1 ; (A8.32)
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D e�j2�k=N
N�2X

nD0

xn e
�j2�kn=N C xN�1 ; (A8.33)

D e�j2�k=N
N�1X

nD0

xn e
�j2�kn=N : (A8.34)

The last step of absorbing xN�1 into the summation was accomplished by recogniz-
ing that the xN�1 term of the summation in Eq. (A8.34) is

e�j2�k=NxN�1 e
�j2�k.N�1/=N D xN�1 : (A8.35)

Thus,

Yk D e�j2�k=NXk : (A8.36)

In general, for a shift of ` steps,

yn D xn�` ; (A8.37)

the DFT becomes

Yk D e�j2�`k=NXk : (A8.38)

Hence, the shift theorem for DFT is clearly based on a circular shift of xn. It is
straightforward to prove the cyclic convolution and correlation theorems:

xn � yn DFT �! 1

N
Xk Yk ; (A8.39)

xn ? yn
DFT �! 1

N
Xk Yk : (A8.40)

It is important to understand that to use expressions (A8.39) and (A8.40) to
calculate either convolution or correlation function, it is necessary to pad the spectral
array with N zeros to avoid unwanted products in the circular correlation (see
Sect. A8.4.2).

Parseval’s theorem for the DFT can be easily proved, by using Eq. (A8.19) and
writing

N�1X

kD0

XkX
�
k D

N�1X

kD0

"
N�1X

nD0

xn e
�j2�kn=N

#"
N�1X

`D0

x` e
j2�k`=N

#

: (A8.41)
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Interchanging the order of summations gives

N�1X

kD0

XkX
�
k D

N�1X

nD0

N�1X

`D0

xnx`

N�1X

kD0

e�j2�k.n�`/=N : (A8.42)

The rightmost sum is proportional to the Kronecker delta function [Eq. (A8.25)], so

N�1X

kD0

XkX
�
k D N

N�1X

nD0

x2
n : (A8.43)

If xn is complex, then the general form of Eq. (A8.43) becomes9

N�1X

nD0

jxnj2 D 1

N

N�1X

kD0

jXkj2 : (A8.44)

A8.4.1 Response to a Complex Sine Wave

We now calculate the DFT response to a complex sine wave,

xn D e j2��tn ; tn D n

2��
: (A8.45)

We introduce a normalizing frequency �0 D �

��

N

2
. For the positive frequency

range of 0 to ��, �0 ranges from 0 to N=2. Note that �0 does not have to be an
integer. The DFT of xn is

Xk D
N�1X

nD0

e�j2�n.k��0/=N : (A8.46)

We use the formula for the sum of a geometric series,

N�1X

nD0

yn D 1 � yN

1 � y
; (A8.47)

9In some DFT formulations, the N factor of Eq. (A8.22) appears in Eq. (A8.19). In that case, the N
factor in Eq. (A8.44) moves to the numerator on the left side.
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where y D e�j2�.k��0/=N , to write Eq. (A8.46) as

Xk D 1 � e j2�.k��0/

1 � e j2�.k��0/=N
: (A8.48)

By factoring out e j�.k��0/ from the numerator and e j�.k��0/=N from the denominator
of Eq. (A8.48), we can write

Xk D
"

e j�.k��0/

e j�.k��0/=N

# �
sin�.k � �0/

sin .�.k � �0/=N/

�
: (A8.49)

We are interested in the power response

Sk D jXkj2 D
�

sin�.k � �0/
sin.�.k � �0/=N/

�2

: (A8.50)

This is the circular form of the sinc function, which repeats on the interval N, that
is, XkCN D Xk, or SkCN D Sk.

We approximate the denominator of Eq. (A8.50) as �.k � �0/=N, so that

Sk D jXj2 ' N sinc2.k � �0/ : (A8.51)

If �0 D m, an integer, then

Sk D N ; k D m ;

D 0 ; k 6D m : (A8.52)

In Fig. A8.1, we show the response to the complex sine wave for �0 D m and
�0 D mC 1=2. Unless �0 corresponds exactly to a DFT channel, Sk will be nonzero
in every channel, demonstrating the problem of spectral leakage.

The DFT of Eq. (A8.50) gives the corresponding response for the correlation
function, which is a triangle function. This reflects the fact that the number of ways
the correlation function, given by Eq. (A8.39), can be computed from a segment of
data decreases linearly from N ways for lag zero to one way for lag N� 1, as shown
in Fig. 8.23. If it is desired to calculate the correlation function from the power
spectrum, i.e., Eq. (A8.39), it is important to note that the spectrum must be padded
with zeros to length 2N.
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Fig. A8.1 (a) The response of the DFT of length N to a complex sine wave of frequency �0 D m.
This is a plot of Eq. (A8.49) without the phase factor. The continuous envelope [e.g., as calculated
from Eq. (A8.54)] is shown along with the function values at the sample points. One repetition of
this periodic function is shown. (b) Response where �0 D m C 1=2 (the frequency falls midway
between two DFT channels). (c) The data array size has been increased from N to 4N by padding
with zeros, which results in a more finely defined spectrum.

A8.4.2 Padding with Zeros

Padding with zeros is a very important concept in DFT theory. Padding with zeros
means adding a block of zeros to the data sequence, usually at the end, to increase
its length from N to N0. The three main reasons to pad with zeros are:

1. It provides a way to interpolate Xk and define it at more finely spaced frequency
intervals.

2. If N is not a power of two, xn can be padded with zeros to N0, a power of two.
This makes the FFT used to calculate the DFT more computationally efficient.
The N0 spectrum is a properly interpolated spectrum in the Nyquist sense.

3. If a linear correlation function of two functions is to be properly calculated from
XnYn via the circular convolution theorem [Eq. (A8.39)], then Xn and Yn must be
padded with zeros to 2N to avoid unwanted multiplications.
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To understand how interpolation is achieved, consider a data sequence of length
N to whichM zeros are added, giving a sequence of length N0 D N CM. The DFT
of the new data set is

Xk D
N�1X

nD0

xn e
�j2�kn=N0 C

N0�1X

nDN

0 	 e�j2�kn=N0

D
N�1X

nD0

xn e
j2�kn=Nr ; 0 � k � N0 � 1 ; (A8.53)

where r D N0=N. The frequency spacing interval is now 2��=Nr. Hence, if r D 2,
the spectrum Xk gives a halfway interpolation of the unpadded version of Xk.

Padding with zeros can provide arbitrarily fine definition of Xk. However, it is
often helpful to define a continuous spectrum associated with the discrete series
xn as

X.�/ D
N�1X

nD0

xn e
�j�n�0

; (A8.54)

where �0 D �=��. This is sometimes called the discrete time Fourier transform
(DTFT). It can be calculated for arbitrary values of �0.

It is often useful to load the FFT in such a way as to avoid unwanted phase factors
from appearing in the transform. For example, suppose we want to calculate the
spectrum from an autocorrelation function R.�/ D Rn, where n D 0;N=2 ranging
over positive delays only. Load Rn into the array

R0
n D Rn ; n D 0;N=2 ;

R0
N�1�n D Rn : (A8.55)

The DFT of R0
n will have a real valued spectrum Sk in the positive frequencies

k D 0 to k D N=2, with the negative frequencies being in k D N to N �N=2� 1, as
shown in Fig. 8.2.
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Fig. 8.2 An example of the loading of an autocorrelation function into a DFT array. (top) A
continuously defined autocorrelation function (left) and its power spectrum (right) via Fourier
transform. (bottom) Positive lags loaded into 0 to N=2 indices, and negative lags loaded into
N=2 to N � 1 indices and its spectrum (right) via DFT. Loading the data in this manner gives a
real power spectrum. Zero padding should be done in the middle of the delay values to keep the
spectrum real valued.
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the copyright holder.
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