Clearly, all model outputs depend on model
inputs. The optimization and simulation models
discussed in the previous chapters are no
exception. This chapter introduces some alter-
native modeling approaches that depend on
observed data. These approaches include artifi-
cial neural networks and various evolutionary
models. The chapter ends with some qualitative
modeling. These data-driven models can serve as
substitutes for more process-based models in
applications where computational speed is criti-
cal or where the underlying relationships are
poorly understood or too complex to be easily
incorporated into calculus-based, linear, nonlin-
ear, or dynamic programming models. Evolu-
tionary algorithms involve random searches
based on evolutionary or biological processes for
finding the values of parameters and decision
variables that best satisfy system performance
criteria. Evolutionary algorithms are popular
methods for analyzing systems that require
complex simulation models to determine values
of performance measures. Qualitative modeling
approaches are useful when performance mea-
sures are expressed qualitatively, such as “I want

© The Author(s) 2017

a reliable supply of clean water at a reasonable
cost,” where there can be disagreements among
different stakeholders and decision makers with
respect to specifying just how reliable, how
clean, and how affordable.

5.1 Introduction

Most models used for water resources planning
and management describe, in mathematical
terms, the interactions and processes that take
place among the various components of the
system. These mechanistically or process-based
models usually contain parameters whose values
are determined from observed data during model
calibration. These types of models are contrasted
to what are typically called “black-box” models,
or statistical models. Such models do not
describe physical processes. They attempt to
convert observed inputs (e.g., rainfall and runoff,
inflows to a reservoir, pollutants entering a
wastewater treatment plant or effluent concen-
trations discharged to a river) to observed outputs
(e.g., runoff, reservoir releases, pollutant
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concentrations) using any set of mathematical
equations or expressions that does the job. One
type of such models is regression.

Regression equations, such as of the forms

Output variable value = a + b(input variable value)
(5.1)

Output variable value = a + b(input variable value)“

(5.2)

Output variable value
= a+ b, (input variable; value)“" (5.3)

+ by (input variable,value)

are examples of such data-fitting or statistical
models.

They depend on observed inputs and observed
outputs for the estimation of the values of their
parameters (a, b, ¢, etc.) and for further refine-
ment of their structure. They lack an explicit,
well-defined representation of the processes
involved in the transformation of inputs to
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outputs. While these statistical models are better
at interpolating within the range of data used to
calibrate them, rather than extrapolating outside
that range (as illustrated in Fig. 5.1), many have
proven quite successful in representing complex
physical systems.

Other examples of data-driven models are
based on biological principles and concepts.
These are a class of probabilistic search proce-
dures known as evolutionary algorithms (EAs).
Such algorithms include genetic algorithms
(GAs), genetic or evolutionary programming (GP
or EP), and evolutionary strategy (ES). Each of
these methods has many varieties but all use
computational methods based on natural evolu-
tionary processes and learning. Perhaps the most
robust and hence the most common of these
methods are genetic algorithms and their vari-
eties used to find the values of parameters and
variables that best satisfy some objective. Alter-
natively, an extension of regression is artificial
neural networks (ANN). The development and
application of black-box models like GA, GP,

y == true relation E(y/x)
= model y(x)

— density

O data

unsupported area

Fig. 5.1 Data-fitting models are able to estimate rela-
tively accurately within their calibrated ranges, but not
outside those ranges. The bottom curve represents the

relative density of data used in model calibration. The
arrows point to where the model does not predict well
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and ANNs emulate larger, deterministic, process-
oriented models. Once calibrated, their use may
be advantageous if and when it is quicker to use
them to obtain the information needed rather than
using process-oriented models that typically take
longer to solve. Process-oriented models are
sometimes used to calibrate artificial neural net-
works, which are then used to more quickly
explore and evaluate the range of solution out-
puts associated with varying inputs.

Examples of such situations where multiple
solutions of a model must be obtained include
sensitivity or uncertainty analysis, scenario
evaluations, risk assessment, optimization,
inverse modeling to obtain parameter values
given the values of the decision variables, and/or
when model runs must be extremely fast, as for
rapid assessment and decision support systems,
real-time predictions/management/control, and
so on. Examples of the use of data-fitting models
for model emulation are given in the next several
sections.

Genetic algorithms and genetic programming
are automated, domain-independent methods for
evolving solutions to existing models or for
producing new models that emulate actual sys-
tems, such as rainfall-runoff relationships in a
watershed, wastewater removal processes in a
treatment plant, or discharges of water from a
system of natural lakes, each subject to random
inputs. Search methods such as genetic algo-
rithms and genetic programming are inspired by
our understanding of biology and natural evolu-
tion. They start initially with a number of sets of
randomly created values of the unknown vari-
ables or a number of black-box models, respec-
tively. The variable values or structure of each of
these models are progressively improved over a
series of generations. The evolutionary search
uses the Darwinian principal of “survival of the
fittest” and is patterned after biological opera-
tions including crossover (sexual recombination),
mutation, gene duplication, and gene deletion.

Artificial neural networks are distributed,
adaptive, generally nonlinear networks built from
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many different processing elements (PEs) (Prin-
cipe et al. 2000). Each processing element
receives inputs from other processing elements
and/or from itself. The inputs are scaled by
adjustable parameters called weights. The pro-
cessing elements sum all of these weighted
inputs to produce an output that is a nonlinear
(static) function of the sum. Learning (calibra-
tion) is accomplished by adjusting the weights.
The weights are adjusted directly from the
training data (data used for calibration) without
any assumptions about the data’s statistical dis-
tribution or other characteristics (Hagan et al.
1996; Hertz et al. 1991).

The following sections are intended to pro-
vide some background helpful to those who may
be selecting one among all the available com-
puter codes for implementing a genetic algo-
rithm, genetic program, or artificial neural
network.

5.2 Artificial Neural Networks

5.2.1 The Approach

Before the development of digital computers, any
information processing necessary for thinking
and reasoning was carried out in our brains.
Much of it still is. Brain-based information pro-
cessing continues today (e.g., see Fig. 2.1) and
will continue in the future even given our con-
tinually improving electronic digital processing
capabilities. While recent developments in
information technology (IT) have mastered and
outperformed much of the information process-
ing one can do just using brain power, IT has not
mastered the reasoning power of our brains.
Perhaps because of this, some computer scien-
tists have been working on creating information
processing devices that mimic the human brain.
This has been termed neurocomputing. It uses
ANNs representing simplified models of the
brain. In reality, it is just a more complex type of
regression or statistical (black-box) model.
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ORLTRY)

input layer

middle layer

E020723b

output layer

Fig. 5.2 A typical multilayer artificial neural network showing the input layer for ten different inputs, the hidden layer

(s), and the output layer having three outputs

An example of the basic structure of an ANN
is shown in Fig. 5.2. There are a number of input
layer nodes on the left side of the figure and a
number of output layer nodes on the right. The
middle column(s) of nodes between these input
and output nodes are called hidden layers. The
number of hidden layers and the number of
nodes in each layer are two of the design
parameters of any ANN. Most applications
require networks that contain at least these three
types of layers:

e The input layer consists of nodes that receive
an input from the external environment.
These nodes do not perform any transforma-
tions upon the inputs but just send their
weighted values to the nodes in the immedi-
ately adjacent, usually “hidden,” layer.

e The hidden layer(s) consist(s) of nodes that
typically receive the transferred weighted
inputs from the input layer or previous hidden
layer, perform their transformations on it, and

pass the output to the next adjacent layer,
which can be another hidden layer or the
output layer.

e The output layer consists of nodes that
receive the hidden layer output and send it to
the user.

The ANN shown in Fig. 5.2 has links only
between nodes in immediately adjacent layers or
columns and is often referred to as a multilayer
perceptron (MLP) network, or a feedforward
(FF) network. Other architectures of ANNSs,
which include recurrent neural networks (RNN),
self-organizing feature maps (SOFMs), Hopfield
networks, radial basis function (RBF) networks,
support vector machines (SVMs), and the like,
are described in more detail in other publications
(for example, Haykin 1999; Hertz et al. 1991).

Essentially, the strength (or weight) of the
connection between adjacent nodes is a design
parameter of the ANN. The output values O; that
leave a node j on each of its outgoing links are



5.2 Artificial Neural Networks

multiplied by a weight, w;. The input I, to each

node k in each middle and output layer is the sum

of each of its weighted inputs, w;0;, from all

nodes j providing inputs (linked) to node k.
Input value to node k:

Ik = Z WjOj

Again, the sum in Eq. 5.4 is over all nodes
J providing inputs to node k.

At each node k of hidden and output layers,
the input I, is an argument to a linear or nonlinear
function fi(I; + ), which converts the input I to
output O,. The variable 6§, represents a bias or
threshold term that influences the horizontal
offset of the function. This transformation can
take on a variety of forms. A commonly used
transformation is a sigmoid or logistic function as
defined in Eq. 5.5 and graphed in Fig. 5.3.

(5.4)

O = 1/[1 4 exp{—(Ic + 0i)}] (5.5)
The process of converting inputs to outputs at
each hidden layer node is illustrated in Fig. 5.4.
The same process also happens at each output
layer node.

The design issues in artificial neural networks
are complex and are major concerns of ANN
developers. The number of nodes in the input as
well as in the output layer is usually predeter-
mined from the problem to be solved. The
number of nodes in each hidden layer and the
number of hidden layers are calibration parame-
ters that can be varied in experiments focused on

1.0

0.5

0.0
<— O

Fig. 5.3 The sigmoid or logistic threshold function with
threshold 6y
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output:
Ok = f(Ix+0y)

Fig. 5.4 A middle-layer node k converting input values
to an output value using a nonlinear function f (such as
defined by Eq. 5.5) in a multilayer ANN

getting the best fit of observed and predicted
output data based on the same input data. These
design decisions, and most importantly the
determination of the values of the weights and
thresholds of each connection, are “learned”
during the “training” of the ANN using prede-
fined (or measured) sets of input and output data.

Some of the present-day ANN packages pro-
vide options for building networks. Most provide
fixed network layers and nodes. The design of an
ANN can have a significant impact on its
data-processing capability.

There are two major connection topologies
that define how data flows between the input,
hidden, and output nodes. These main categories
are:

e Feedforward networks in which the data
flow through the network in one direction
from the input layer to the output layer
through the hidden layer(s). Each output
value is based solely on the current set of
inputs. In most networks, the nodes of one
layer are fully connected to the nodes in the
next layer (as shown in Fig. 5.2); however,
this is not a requirement of feedforward
networks.

® Recurrent or feedback networks in which, as
their name suggests, the data flow not only in
one direction but in the opposite direction as
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well for either a limited or a complete part of
the network. In recurrent networks, informa-
tion about past inputs is fed back into and
mixed with inputs through recurrent (feed-
back) connections. The recurrent types of
artificial neural networks are used when the
answer is based on current data as well as on
prior inputs.

Determining the best values of all the weights
is called training the ANN. In a so-called
supervised learning mode, the actual output of
a neural network is compared to the desired
output. Weights, which are usually randomly set
to begin with, are then adjusted so that the next
iteration will produce a closer match between the
desired and the actual output. Various learning
methods for weight adjustments try to minimize
the differences or errors between observed and
computed output data. Training consists of pre-
senting input and output data to the network.
These data are often referred to as training data.
For each input provided to the network, the
corresponding desired output set is provided as
well.

The training phase can consume a lot of time.
It is considered complete when the artificial
neural network reaches a user-defined perfor-
mance level. At this level the network has
achieved the desired statistical accuracy as it
produces the required outputs for a given
sequence of inputs. When no further learning is
judged necessary, the resulting weights are typ-
ically fixed for the application.

Once a supervised network performs well on
the training data, it is important to see what it
can do with data it has not seen before. If a
system does not give a reasonable output for
this test set, this means that the training period
should continue. Indeed, this testing is critical
to ensure that the network has learned the
general patterns involved within an application
and has not simply memorized a given set of
data.

Smith (1993) suggests the following proce-
dure for preparing and training an ANN:
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1. Design a network.

2. Divide the data set into training, validation,
and testing subsets.

3. Train the network on the training data set.

4. Periodically stop the training and measure the
error on the validation data set.

5. Save the weights of the network.

6. Repeat Steps 2, 3, and 4 until the error on the
validation data set starts increasing. This is
the moment where the overfitting has started.

7. Go back to the weights that produced the
lowest error on the validation data set, and
use these weights for the trained ANN.

8. Test the trained ANN using the testing data
set. If it shows good performance, use it. If
not, redesign the network and repeat entire
procedure from Step 3.

There is a wide selection of available neural
network models. The most popular is probably
the multilayer feedforward network, which is
typically trained with static back propagation.
They are easy to use, but they train slowly, and
require considerable training data. In fact, the
best generalization performance is produced if
there are at least 30 times more training samples
than network weights (Haykin 1999). Adding
local recurrent connections can reduce the
required network size, making it less sensitive to
noise, but it may get stuck on a solution that is
inferior to what can be achieved.

5.2.2 An Example

To illustrate how an ANN might be developed,
consider the simple problem of predicting a
downstream pollutant concentration based on an
upstream concentration and the streamflow.
Twelve measurements of the streamflow quan-
tity, velocity, and pollutant concentrations at two
sites (an upstream and a downstream site) are
available. The travel times between the two
measurement sites have been computed and
these, plus the pollutant concentrations, are
shown in Table 5.1.
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Table 5.1 Streamflow travel times and pollutant concentrations

travel

time

(days)
2.0 20.0
2.0 15.0
1.5 30.0
1.0 20.0
0.5 20.0
1.0 15.0
0.5 30.0
1.5 25.0
1.5 15.0
2.0 30.0
1.0 30.0
0.5 25.0

Assume at first that the ANN structure con-
sists of two input nodes, a hidden node, and a
single output node. One of the input nodes is for
the upstream concentration and the other input
node is for the travel time. The single output
node represents the downstream concentration
expressed as a fraction of the upstream concen-
tration. This is shown in Fig. 5.5.

The model output is the fraction of the
upstream concentration that reaches the down-
stream site. That fraction can be any value from 0
to 1. Hence the sigmoid function (Eq. 5.5) is
applied at the middle node and at the output
node. Using two or more data sets to train or
calibrate this ANN (Fig. 5.5) results in a poor fit
as measured by the minimum sum of absolute
deviations between calculated and measured
concentration data. The more data samples used,

concentration
upstream downstream

6.0
4.5
12.2
11.0
14.8
82
222
10.2
6.1
9.0
16.5
18.5

the worse the fit. This structure is simply too
simple. Hence, another node was added to the
middle layer. This ANN is shown in Fig. 5.6.

Using only half the data (six data sets) for
training or calibration, the weights obtained
provided a near perfect fit. The weights obtained
are shown in Table 5.2.

Next the remaining six data sets were applied
to the network with weights set to those values
shown in Table 5.2. Again the sum of absolute
deviations was essentially 0. Similar results were
obtained with increasing numbers of data sets.

The values of the weights in Table 5.2 indi-
cate something water quality modelers typically
assume, and that is that the fraction of the
upstream pollutant concentration that reaches a
downstream site is independent of the actual
upstream concentration (see Chap. 4). This ANN
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Fig. 5.5 Initial ANN for
example problem

. weights:
upstream concentration |
w
travel time O/

input nodes

weights:
=O—n—0
w2

middle layer node output node

Fig. 5.6 Modified ANN
for example problem

upstream concentration Q wl

travel time

input nodes

weights: weights:

e

middle layer nodes

output node

Table 5.2 Weights for each link of the ANN shown in Fig. 5.6 based on six data sets from Table 5.1. All bias

variables (6 in Eq. 5.5) were 0

weights ‘ value ‘ weights value \
W) 0.0 wg 8.1
Wy 0.0 We -2.8
W3 -0.6
Wy 3.9

could have had only one input node, namely that
for travel time. This conforms to the typical
first-order decay function:

Fraction of pollutant concentration downstream
per unitconcentration upstream
= exp{—k(travel time)},
(5.6)

where the parameter k is the decay rate constant
having units of 1/travel time (travel time units_l).

5.3 Evolutionary Algorithms
Evolutionary algorithms (EA) represent a broad

spectrum of heuristic approaches for simulating
biological evolution in the search for improved
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“fitness,” i.e., the best values of decision vari-
ables and parameters based on an objective or
fitness function. Evolutionary algorithms are
broadly based on the repeated mutation and
recombination and selection: in each generation
(iteration) to define new individuals (candidate
solutions). These are generated by variation,
usually in a stochastic way, and then some
individuals are selected for the next generation
based on their relative fitness or objection func-
tion value. Over the generation sequence, indi-
viduals with increasingly better fitness values are
generated (Simon 2013).

Primary examples include genetic algorithms
(Holland  1975), evolutionary  strategies
(Rechenberg 1973; Schwefel 1981), evolutionary
programming (Fogel et al. 1966), and genetic
programming (Koza 1992). These methods are
comprised of algorithms that operate using a
population of alternative solutions or designs,
each represented by a potential decision vector.
They rely on randomized operators that simulate
mutation and recombination to create new indi-
viduals, i.e., solutions, who then compete to
survive via the selection process, which operates
according to a problem-specific fitness or objec-
tive function. In some cases this function can be
a complex simulation model dependent on the
values of its parameters and decision variables
derived from the EA. EA popularity is, at least in
part, due to their potential to solve nonlinear,
nonconvex, multimodal, and discrete problems
for which deterministic gradient-based search
techniques incur difficulty or fail completely. The
growing complexity and scope of environmental
and water resources applications has served to
expand EAs’ capabilities.

Currently, the field of biologically inspired
search algorithms mostly include variations of
evolutionary algorithms and swarm intelligence
algorithms, e.g., ant colony optimization (ACO),
particle swarm optimization (PSO), bees algo-
rithm, bacterial foraging optimization (BFO), and
so on, many of which have been used to analyze
water resources planning and management
problems. This is especially true for application
of genetic algorithms, arguably among the most
popular of the several types of EAs. EAs are
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flexible tools that can be applied to the solution
of a wide variety of complex water resources
problems. Nicklow et al. (2010) provides a
comprehensive review of state-of-the-art meth-
ods and their applications in the field of water
resources planning and management. EAs have
been successfully applied to the study of water
distribution systems, urban drainage and sewer
systems, water supply and wastewater treatment,
hydrologic and fluvial modeling, groundwater
systems, and parameter identification, to name a
few. Nicklow et al. also identify major challenges
and opportunities for the future, including a call
to address larger scale problems that involve
uncertainty and an expanded need for collabo-
ration among multiple stakeholders and disci-
plines. Evolutionary computation methods will
surely continue to evolve in the future as analysts
encounter increased problem complexities and
uncertainty and as the societal pressure for more
innovative and efficient solutions rises.

5.3.1 Genetic Algorithms

Genetic algorithms are randomized general-
purpose search techniques used for finding the
best values of the parameters or decision vari-
ables of existing models. It is not a model-
building tool like genetic programming. Genetic
algorithms and their variations are based on the
mechanisms of natural selection (Goldberg
1989). Unlike conventional optimization search
approaches based on gradients, genetic algo-
rithms work on populations of possible solutions,
attempting to find a solution set that either
maximizes or minimizes the value of a function
of those parameters and decision variables. This
function is called an objective function. Some
populations of solutions may improve the value
of the objective function, others may not. The
ones that improve its value play a greater role in
the generation of new populations of solutions
than those that do not. This process continues
until no significant improvement in model output
is apparent. Just how good or “fit” a particular
population of parameter and decision variable
values is must be evaluated using a model of the
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firm 1
B{=6x1 -x12

By=7x7-1.5x72 |

firm 3
B3 = 8x3-0.5x32

o

4

Fig. 5.7 Water allocation to three users from a stream having a flow of Q

system that contains these parameters and deci-
sion variables. This system model is separated
from the GA model. This model separation
makes GA applicable for estimating the best
parameter and decision variable values of a wide
variety of simulation models used for planning,
design, operation, and management.

Each individual solution set of a GA model
contains the values of all the parameters or
variables whose best values are being sought.
These solutions are expressed as strings of val-
ues. For example, if the values of three variables
x, ¥, and z are to be obtained, these variables are
arranged into a string, xyz. Assuming each vari-
able is expressed using three digits, then the
string 056004876 would represent x = 56, y = 4,
and z = 876. These strings are called chromo-
somes. A chromosome is an array of numbers.
The numbers of the chromosome are called
genes. Pairs of chromosomes from two parents
join together and produce offspring, who in turn
inherit some of the genes of the parents. Altered
genes may result in improved values of the
objective function. These genes will tend to
survive from generation to generation, while
those that are inferior will tend to die and not
reappear in future population sets.

Chromosomes are usually represented by strings
of binary numbers. While much of the literature on

genetic algorithms focuses on the use of binary
numbers, numbers of any base may be used.

To illustrate the main features of genetic
algorithms, consider the problem of finding the
best allocations of water to the three water-
consuming firms shown in Fig. 5.7. Assume only
integer solutions are to be considered. The
maximum allocation, x;, to any single user i can-
not exceed 5, and the sum of all allocations
cannot exceed the value of Q, say 6.

0<x;<5 for i=1,2, and 3. (5.7)

XI+X2+)C3 §6 (58)

The objective is to find the values of each
allocation that maximizes the total benefits, B(X),
while satisfying (5.7) and (5.8).

Maximize B(X) = (6x; — x}) + (7xa — 1.5x3)
+ (8x3 — 0.5x3)
(5.9)

A population of possible feasible solutions is gen-
erated randomly. The best size of the sample solu-
tion population—the number of solutions being
considered—is usually determined by trial and
error.
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Using numbers to the base 10, a sample
individual solution (chromosome) could be 312,
representing the allocations x; = 3, x, = 1, and
x3 = 2. Another individual solution, picked at
random, might be 101. These two individuals or
chromosomes, each containing three genes, can
pair up and have two children.

The genes of the children are determined by
crossover and mutation operations. These pair-
ing, crossover and mutation operations are ran-
dom. Suppose a crossover is to be performed on
the pair of strings, 312 and 101. Crossover
involves splitting the two solution strings into
two parts, each string at the same place. Assume
the location of the split was randomly determined
to be after the first digit,

3|12
101

Crossover usually involves switching one part
of one string with the corresponding part of the
other string. After a crossover, the two new
individuals are 301 and 112.

Another crossover approach is to determine
for each corresponding pair of genes whether or
not they will be exchanged. This would be based
on some preset probability. For example, sup-
pose the probability of a crossover was set at
0.30. Thus, an exchange of each corresponding
pair of genes in a string or chromosome has a
30% chance of being exchanged. Assume as the
result of this “uniform” crossover procedure,
only the middle gene in the pair of strings 312
and 101 is exchanged. This would result in 302
and 111. The literature on genetic algorithms
describes many crossover methods for both bin-
ary as well as base 10 numbers. The interesting
aspect of GA approaches is that they can be, and
are, modified in many ways to suit the analyst in
the search for the best solution set.

Next consider mutation. Random mutation
operations can apply to each gene in each string.
Mutation involves changing the value of the gene
being mutated. If these strings contain binary
numbers, a 1 would be changed to 0, and a 0
would be changed to 1. If numbers to the base 10
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are used as they are here, mutation processes
have to be defined. Any reasonable mutation
scheme can be defined. For example, suppose the
mutation of a base 10 number reduces it by 1,
unless the resulting number is infeasible. Hence
in this example, a mutation could be defined such
that if the current value of the gene being
mutated (reduced) is 0, then the new number is 5.
Suppose the middle digit 1 of the second new
individual, 112, is randomly selected for muta-
tion. Thus, its value changes from 1 to 0. The
new string is 102. Mutation could just as well
increase any number by 1 or by any other integer
value. The probability of a mutation is usually
much smaller than that of a crossover.

Suppose these paring, crossover, and mutation
operations have been carried out on numerous
parent strings representing possible feasible
solutions. The result is a new population of
individuals (children). Each child’s fitness, or
objective value, can be determined. Assuming
the objective function (or fitness function) is to
be maximized, the higher the value the better.
Adding up all the objective values associated
with each child in the population, and then
dividing each child’s objective value by this total
sum yields a fraction for each child. That fraction
is the probability of that child being selected for
the new population of possible solutions. The
higher the objective value of a child, the higher
the probability of its being selected to be a parent
in a new population.

In this example, the objective is to maximize
the total benefit derived from the allocation of
water, Eq. 5.9. Referring to Eq. 5.9, the string
301 has a total benefit of 16.5. The string 102 has
a total benefit of 19.0. Considering just these two
children, the sum of these two individual benefits
is 35.5. Thus the child (string) 301 has a proba-
bility of 16.5/35.5 = 0.47 of being selected for
the new population, and the other child (string
102) has a probability of 19/35.5 = 0.53 of being
selected. Drawing from a uniform distribution of
numbers ranging from O to 1, if a random number
is in the range 0-0.47, then the string 301 would
be selected. If the random number exceeds 0.47,
then the string 102 would be selected. Clearly in
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a more realistic example the new population size
should be much greater than two, and indeed it
typically involves hundreds of strings.

This selection or reproduction mechanism
tends to transfer to the next generation the better
(more fit) individuals of the current generation.
The higher the “fitness” (i.e., the objective value)
of an individual—in other words, the larger the
relative contribution to the sum of objective
function values of the entire population of indi-
vidual solutions—the greater will be the chances
of that individual string of solution values being
selected for the next generation.

Genetic algorithms involve numerous itera-
tions of the operations just described. Each iter-
ation (or generation) produces populations that
tend to contain better solutions. The best solution
of all populations of solutions should be saved.
The genetic algorithm process can end when
there is no significant change in the values of the
best solution that has been found. In this search
process, there is no guarantee this best solution
will be the best that could be found, that is, a
global optimum.

This general genetic algorithm process just
described is illustrated in the flow chart in
Fig. 5.8.

5.3.2 Example Iterations

A few iterations with a small population of ten
individual solutions for this example water allo-
cation problem can illustrate the basic processes
of genetic algorithms. In practice, the population
typically includes hundreds of individuals and
the process involves hundreds of iterations. It
would also likely include some procedures the
modeler/programmer may think would help
identify the best solution. Here we will keep the
process relatively simple.

The genetic algorithm process begins with the
random generation of an initial population of
feasible solutions, proceeds with the paring of
these solution strings, performs random cross-
over and mutation operations, computes the
probability that each resulting child will be
selected for the next population, and then
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randomly generates the new population. This
process repeats itself with the new population
and continues until there is no significant
improvement in the best solution found from all
past iterations.

For this example, we will

1. Randomly generate an initial population of
strings of allocation variable values, ensuring
that each allocation value (gene) is no less
than 0 and no greater than 5. In addition, any
set of allocations A;, A,, and A5 that sum to
more than 6 will be considered infeasible and
discarded.

2. Pair individuals and determine if a crossover
is to be performed on each pair, assuming the
probability of a crossover is 50%. If a cross-
over is to occur, we will determine where in
the string of numbers it will take place,
assuming an equal probability of a crossover
between any two numbers.

3. Determine if any number in the resulting
individual strings is to be mutated, assuming
the probability of mutation of any particular
number (gene) in any string (chromosome) of
numbers as 0.10. For this example, a mutation
reduces the value of the number by 1, or if the
original number is 0, mutation changes it to 5.
After mutation, all strings of allocation values
(the genes in the chromosome) that sum to
more than 6 are discarded.

4. Using Eq. 5.9, evaluate the “fitness” (total
benefits) associated with the allocations rep-
resented by each individual string in the
population. Record the best individual string
of allocation values from this and previous
populations.

5. Return to Step 1 above if the change in the
best solution and its objective function value
is significant; Otherwise terminate the
process.

These steps are performed in Table 5.3 for
three iterations using a population of 10.

The best solution found so far is 222: that is,
X1 =2, xp =2, x3=2. This process can and
should continue. Once the process has converged
on the best solution it can find, it may be prudent
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and mutation
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Fig. 5.8 Flow chart of genetic algorithm procedure

to repeat the process, but this time, change the
probabilities of crossover or mutation or let
mutation be an increase in the value of a number
rather than a decrease. It is easy to modify the
procedures used by genetic algorithms in an
attempt to derive the best solution in an efficient
manner.

Note that the above description of how ge-
netic algorithms work permits the use of any
“fitness function” for comparing alternative

solutions, and for selecting preferred ones. The
search procedure is independent of the particular
characteristics of the water resource system being
analyzed. This fitness “function” can be a com-
plex groundwater quality model, for example, the
parameter values of which are being suggested
by the outcome of the GA procedure. Thus in
such an application, both simulation and opti-
mization procedures are combined and there are
no restrictions on the features of either. As might
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Table 5.3 Several iterations for solving the allocation problem using genetic algorithms
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be expected, this has opened up a wide variety of
planning and management problems that now
can be analyzed in the search for effective
solutions.

5.3.3 Differential Evolution

Differential evolution (DE) operates through
similar computational steps as employed by a
standard evolutionary algorithm (EA) such as
genetic algorithms. DE is an optimization tech-
nique that iteratively modifies a population of
candidate solutions to make it converge to an
optimum value. However, unlike traditional EAs,
DE programs create new-generation population
members by adding a weighted difference
between two population vectors to a third vector.
To illustrate, after initializing multiple candidate
solutions with random values, begin an iterative
process where for each candidate solution x you
produce a trial vector v = a + (b — ¢)/2, where aq,
b, c are three distinct candidate solutions picked
randomly among the population of possible
solutions. Next, you randomly swap vector
components between x and v to produce v'. At
least one component from v must be swapped.
Finally, you replace x in your population with v’
only if V' is a better candidate (i.e., it improves
the value your objective or fitness function). This
process is repeated until no better solution can be
found. No separate probability distribution need
be used for generating the offspring.

Since its inception in 1995, many variants of
the basic algorithm have been developed with
improved performance. Books and web pages are
available that present detailed reviews of the
basic concepts of DE and of its major variants, as
well as its application to multiobjective, con-
strained, large-scale, and uncertain optimization
problems. Numerous computer software pack-
ages are also available for solving problems
using DE. For example, see Das and Suganthan
(2011), Storn and Price (1997), Price et al.
(2006), and Schwefel (1995) to mention a few.
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5.3.4 Covariance Matrix Adaptation
Evolution Strategy

Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) is another stochastic,
derivative-free method for numerical solution of
nonlinear or nonconvex continuous optimization
problems. They belong to the class of evolu-
tionary algorithms. Pairwise dependencies
between the variables are represented by a
covariance matrix. The covariance matrix adap-
tation (CMA) method updates the covariance
matrix in a way that improves the value of the
fitness function. Adaptation of the covariance
matrix is similar to the approximation of the
inverse Hessian matrix in calculus-based opti-
mization. In contrast to most classical methods,
fewer assumptions on the nature of the underly-
ing objective function are made. Only the rank-
ing between candidate solutions is exploited for
learning the sample distribution and neither
derivatives nor even the function values them-
selves are required by the method (Hansen 2006;
Igel et al. 2007).

Some software programs for DE are at (http://
www l.icsi.berkeley.edu/ ~ storn/code.html), for
CMA-ES at (https://www.Iri.fr/ ~ hansen/
cmaesintro.html) and for multiobjective EAs at
(http://moeaframework.org/).

5.4 Genetic Programming

One of the challenges in computer science is to
program computers to perform tasks without
telling them how. In other words, how to enable
computers to learn to program themselves for
solving particular problems? Since the 1950s,
computer scientists have tried, with varying
degrees of success, to give computers the ability
to learn. The name for this field of study is
“machine learning” (ML), a phrase used in 1959
by the first person to make a computer perform a
serious learning task, Arthur Samuel. Originally,
“machine learning” meant the ability of
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computers to program themselves. That goal has,
for many years, proven very difficult. As a con-
sequence, computer scientists have pursued more
modest goals. A good present-day definition of
machine learning is given by Mitchell (1997),
who identifies machine learning as the study of
computer algorithms that improve automatically
through experience.

Genetic programming (GP) aspires to do just
that: to induce a population of computer pro-
grams or models (objects that turn inputs to
outputs) that improve automatically as they
experience the data on which they are trained
(Banzhaf et al. 1998). Genetic programming is
one of the many machine-learning methods.
Within the machine-learning community, it is
common to use “genetic programming” as
shorthand for any machine-learning system that
evolves tree structures (Koza 1992).

While there is no GP today that will auto-
matically generate a model to solve any problem,
there are some examples where GP has evolved
programs that are better than the best programs
written by people to solve a number of difficult
engineering problems. Some examples of these
human-competitive GP achievements can be seen
in Koza et al. (1999), as well as in a longer list on
the Internet (www.genetic-programming.com/
humancompetitive.html). Since Babovic (1996)
introduced the GP paradigm in the field of water
engineering, a number of researchers have used
the technique to analyze a variety of water
management problems.

The main distinctive feature of GP is that it
conducts its search for a solution to a given
problem by changing model structure rather than
by finding better values of model parameters or
variables. There is no guarantee, however, that
the resulting structure (which could be as simple
as regression Eqgs. 5.1, 5.2, or 5.3) will give us
any insight into the actual workings of the
system.

The task of genetic programming is to find at
the same time both a suitable functional form of a
model and the numerical values of its parameters.
To implement GP, the user must define the basic
building blocks (mathematical operations and
variables) that may be used; the algorithm then
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tries to build the model using sequences of the
specified building blocks.

One of the successful applications of GP in
automatic model building is that of symbolic
regression. Here GP searches for a mathematical
regression expression in symbolic form that best
produces the observed output given the associ-
ated input. To perform this task GP uses a
physical symbol system divided into two sets.
The first set contains the symbols for indepen-
dent variables as well as parameter constants as
appropriate. The content of this set is based on
the nature of the problem to be solved. The
second set contains the basic operators used to
form a function. For example, the second set can
contain the arithmetic operators (+, —, *, /) and
perhaps others such as log, square root, sine, and
cosine as well, again based on the perceived
degree of complexity of the regression.

To produce new expressions (individuals)
GP requires that two “parent” expressions from
the previous generation be divided and recom-
bined into two offspring expressions. An exam-
ple of this is the parse tree for the expression
a + (blc) illustrated in Fig. 5.9. The crossover
operation simply exchanges a branch of one
parent with a branch of the other.

Software programs have been written to
implement GP. For example, GPKernel devel-
oped by Babovic and Keijzer (2000) at the
Danish Hydraulic Institute (DHI) has been used
in applications such as: rainfall-runoff modeling
(Babovic and Abbott 1997; Drecourt 1999;
Liong et al. 2000), sediment transport modeling,
salt intrusion in estuaries, and roughness esti-
mation for a flow over a vegetation bed (Babovic
and Abbott 1997). More details about GPKernel
can be seen in Aguilera (2000).

The challenge in applying genetic program-
ming for model development is not only getting
a close fit between observed and predicted
outputs, given a set of input data, but also of
interpreting the model that is generated to
obtain additional understanding of the actual
processes taking place. There are also potential
problems in creating a dimensionally correct
model if the input data are not dimensionless.
As a consequence, many applications using
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Fig. 5.9 An illustration of
a crossover operation and
mutation operation for
genetic programming

child |

=]
4]

parent | [a+(b/c)]
gt
ﬂ
DG T n
ofn
[a+((d-e)/c)]

afia
IO am

parent 2 [(d-e)*(f+(g/h))]

child 2 [b*(f+(gh))]

GP seem to require some guidance based on a
mix of both physically based and data-driven
approaches.

5.5 Qualitative Functions
and Modeling

So far the discussion in this chapter has been
focused on quantitative data that have numerical
values. The precise quantification of many sys-
tem performance criteria and parameter and
decision variables is not always possible, nor is it
always necessary. When the values of variables
cannot be precisely specified, they are said to be
uncertain or fuzzy. If the values are uncertain,
probability distributions may be used to quantify
them. (The next chapter describes this approach
in some detail.) Alternatively, if they are best
described by qualitative adjectives, such as dry or
wet, hot or cold, expensive or cheap, clean or
dirty, and high or low, membership functions
indicating the fraction of stakeholders who
believe particular quantitative descriptions of

parameter or decision variable values are indeed
hot, or cold, or clean or dirty, etc., can be used to
quantify these qualitative descriptions. Both
probability distributions and membership func-
tions of these uncertain or qualitative variables
can be included in quantitative models. This
section introduces how qualitative variables can
be included within models used for the prelimi-
nary screening of alternative water resources
plans and management policies.

5.5.1 Linguistic Functions

Large, small, pure, polluted, satisfactory, unsat-
isfactory, sufficient, insufficient, excellent, good,
fair, poor, and so on are words often used to
describe various attributes or performance mea-
sures of water resources systems. These
descriptors do not have “crisp,” well-defined
boundaries that separate them from their oppo-
sites. A particular mix of economic and envi-
ronmental impacts may be more acceptable to
some and less acceptable to others. Plan A is
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better than Plan B. The quality and temperature
of water is good for swimming. These qualita-
tive, or so-called “fuzzy,” statements convey
information despite the imprecision of the itali-
cized adjectives. The next section illustrates how
these linguistic qualitative descriptors can be
incorporated into optimization models using
membership functions.

5.5.2 Membership Functions

Assume a set A of real or integer numbers
ranging from 18 to 25. Thus A = [18, 25]. Any
number x is either in or not in the set A. The
statement “x belongs to A” is either true or false
depending on the value of x. The set A is called a
crisp set. If one is not able to say for certain
whether or not any number x is in the set, then
the set A could be referred to as fuzzy. The degree
of truth attached to that statement is defined by a
membership function. Membership functions
range from O (completely false) to 1 (completely
true).

Consider the statement, “The water tempera-
ture should be suitable for swimming.” Just what
temperatures are suitable will depend on the
persons asked. It would be difficult for anyone to
define precisely those temperatures that are
suitable if it is understood that temperatures
outside that range are absolutely not suitable.

A function defining the interval or range of
water temperatures suitable for swimming is
shown in Fig. 5.10. Such functions may be
defined on the basis of the responses of many
potential swimmers. There is a zone of impreci-
sion or disagreement at both ends of the range.
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The form or shape of a function depends on the
individual subjective feelings of the “members”
or individuals who are asked their opinions. To
define this particular function, each individual
i could be asked to define his or her comfortable
water temperature interval (T';, Ty;). The value
associated with any temperature value 7T equals
the number of individuals who place that
T within their range (T;, T»;), divided by the total
number of individual opinions obtained. It is the
fraction of the total number of individuals that
consider the water temperature 7' suitable for
swimming. For this reason such functions are
often called membership functions (Figs. 5.10,
5.11 and 5.12).

The assignment of membership values is
based on subjective judgments, but such judg-
ments seem to be sufficient for much of human
communication.

Now suppose the water temperature applied to
a swimming pool where the temperature could be
regulated. The hotter the temperature the more it
will cost. If we could quantify the economic
benefits associated with various temperatures we
could perform a benefit—cost analysis by maxi-
mizing the net benefits. Alternatively, we could
maximize the fraction of people who consider the
temperature good for swimming subject to a cost
constraint using a membership function such as
in Fig. 5.10 in place of an economic benefit
function (Chap. 4 discusses ways of doing this.).

Continuing with this example, assume you are
asked to provide the desired temperature at a
reasonable cost. Just what is reasonable can also
be defined by another membership function, but
this time the function applies to cost, not tem-
perature. Both the objective and constraint of this

Fig. 5.10 A membership
function for suitability of
water temperature for 1
swimming
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Fig. 5.11 Two membership functions relating to swim-
ming water temperature. Set A is the set defining the
fraction of all individuals who think the water temperature

is too cold, and Set B defines the fraction of all individuals
who think the water temperature is too hot

Fig. 5.12 Membership
function for water
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problem are described qualitatively. In this case
one could consider there are in fact two objec-
tives, suitable temperature and acceptable cost.
A model that maximizes the minimum value of
both membership functions is one approach for
finding an acceptable policy for controlling the
water temperature at this swimming pool.

5.5.3 lllustrations of Qualitative
Modeling
5.5.3.1 Water Allocation

Consider the application of qualitative modeling
to the water allocation problem illustrated in
Fig. 5.7. Assume, as in the previous uses of this
example, the problem is to find the allocations of
water to each firm that maximize the total ben-
efits TB(X):

Maximize TB(X) = (6x;—x7) + (7x, — 1.5x3)
+ (8x3 — 0.5x3)
(5.10)

These allocations cannot exceed the amount
of water available, Q, less any that must remain
in the river, R. Assuming the available flow for
allocations, Q — R, as 6, the crisp optimization
problem is to maximize Eq. (5.10) subject to the
resource constraint:

X1 +x+x3<6 (5.11)

The optimal solution is x; = 1, x, = 1, and
x3 =4 as previously obtained in Chap. 4 using
any of several different optimization methods.
The maximum total benefit, TB(X), from
Eq. (5.10), equals 34.5.

To create a qualitative equivalent of this crisp
model, the objective can be expressed as a
membership function of the set of all possible
objective values. The higher the objective value
the greater the membership function value. Since
membership functions range from 0 to 1, the
objective needs to be scaled so that it also ranges
from O to 1.
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Fig. 5.13 Membership
function for “about 6 units
more or less”

The highest value of the objective occurs
when there is sufficient water to maximize each
firm’s benefits. This unconstrained solution
would result in a total benefit of 49.17 and this
happens when x; = 3, x, = 2.33, and x3 = 8.

Thus, the objective membership function can
be expressed by

m(X) = [(6x1—x7) + (7x2 — 1.5x3)

+ (8x3 — 0.5x3)] /49.17 512

It is obvious that the two functions (Egs. 5.10
and 5.12) are equivalent. However, the goal of
maximizing objective function 5.10 is changed to
that of maximizing the degree of reaching the
objective target. The optimization problem
becomes

maximize m(X) = [(6x;—x7) + (7x, — 1.5x3)
+ (8x3 — 0.5x3)] /49.17
(5.13)

subject to

X1 +x+x3<6 (514)

The optimal solution of (5.13) and (5.14)
results in the same values of each allocation as do
Egs. (5.10) and (5.11). The optimal degree of
satisfaction is m(X) = 0.70.

Next, assume the total amount of resources
available to be allocated is limited to “about 6
units more or less,” which is a qualitative

constraint. Assume the membership function
describing this constraint is defined by Eq. (5.14)
and is shown in Fig. 5.13.

me(X)=1 if xj+x+x<5
mC(X) = [7 — ()C] + X2 +X3)}/2 if
mC(X):O if xi+x+x3>7

S5<xi+x+x3<7

(5.15)

Let the membership function of (5.12) be
called mg(X). The qualitative optimization
problem becomes one of maximizing the mini-
mum value of the two membership functions
(mg(X), mc(X)) subject to their definitions in
Egs. (5.12) and (5.15).

This yields x; = 0.91, x, = 0.94, x3 = 3.81,
mg(X) = mc(X) = 0.67, and the total net benefit,
Eq. (5.10), is TB(X) = 33.1. Compare this with
the crisp solution of x; = 1, x, = 1, x3 = 4, and
the total net benefit of 34.5.

5.5.3.2 Qualitative Reservoir Storage
and Release Targets

Consider the problem of trying to identify a
reservoir storage volume target, TS, for recreation
facilities given a known minimum release target,
T%, and reservoir capacity K. Assume, in this
simple example, these known release and
unknown storage targets must apply in each of
the three seasons in a year. The objective will be
to find the highest value of the storage target, T°,
that minimizes the sum of squared deviations
from actual storage volumes and releases that are
less than the minimum release target.
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Table 5.4 The solution to the reservoir optimization problem

variable value remarks

e 15.6
Sq 19.4
S, 7.5
S3 20.0
R4 16.9
R, 375
R, 20.6

Given a sequence of inflows, Q, the opti-
mization model is

Minimize D = 3 [(TS —8,)? +DR2} —0.0017"
t

(5.16)

subject to
SRS T
S, <K t=1,2,3 (5.18)
R, >TR —DR, r=1,2,3 (5.19)

Assume K = 20, T® = 25 and the inflows Q, are
5, 50, and 20 for periods ¢ =1, 2, and 3. The
optimal solution, yielding an objective value of
184.4, is listed in Table 5.4.

Now consider changing the objective function
into maximizing the weighted degrees of

target storage for each period

reservoir storage volume at beginning of period |
reservoir storage volume at beginning of period 2
reservoir storage volume at beginning of period 3
reservoir release during period |

reservoir release during period 2

reservoir release during period 3

“satisfying” the reservoir storage volume and
release targets.

Maximize E (wsms; + wrnig;)
12

(5.20)

where wg and wr are weights indicating the rel-
ative importance of storage volume targets and
release targets, respectively. The variables mg;,
are the degrees of satisfying the storage volume
target in the three periods ¢, expressed by
Eq. (5.21). The variables mg, are the degrees of
satisfying the release target in periods ¢, expres-
sed by Eq. (5.22).

ms, = S;/TS for S§;<TS and

(K—$)/(K—TS) for Ts<s, O3V

mr, = R;/TR for R, <TR and
1 for R, > TR (522)
Equations (5.21) and (5.22) are shown in

Figs. 5.14 and 5.15, respectively.
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Fig. 5.14 Membership
function for storage
volumes w 1.0

0 TS K

—)> storage y

Fig. 5.15 Membership
function for releases
x 1.0
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Box 5.1. Reservoir model written for solution using LINGO.

SETS:

PERIODS /1..3/: I, R, m, ms, mr, sl, s2, ms|, ms2;

NUMBERS /I..4/: S;

ENDSETS

1¥%* OBJECTIVE ***; max = degree + 0.001*TS;

!Initial conditions; s(l) = s(TN + 1);

!Total degree of satisfaction; degree = @SUM(PERIODS(t): m(t));

'Weighted degree in period t; @FOR (PERIODS(t):

m(t) = ws*ms(t) + wr*mr(t);

S(t) = sl(t) + s2(t);

sl(t) <TS; s2(t) <K-TS ;

'ms(t) = (sl (t)/TS) - (s2(t)/(K-TS)) = rewritten in case dividing by 0;

ms | (t)*TS = sl(t); ms2(t)*(K-TS) = s2(t); ms(t) = msl(t) - ms2(t);
mr(t) < R(t)/TR; mr(t) < I; St+1) = S(t) + I(t) - R(t); );

DATA:

TN =3;K=20;ws=%wr=1? |=55020; TR = 25;

ENDDATA
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Table 5.5 Solution of qualitative model for reservoir storage volumes and releases based on objective (5.20)
variable value remarks &
'Th1s opt1m;§zz.1t10n model _ertten for solution Maximize
using LINGQ is as shown in Box 5.1. Mynin = maximize minimum (ms,, mg,)
Given weights wg = 0.4 and wg = 0.6, the (5.23)

optimal solution obtained from solving the model
shown in Box 5.1 using LINGO® is listed in
Table 5.5.

If the objective Eq. 5.20 is changed to one of
maximizing the minimum membership function
value, the objective becomes

To include the objective Eq. 5.23 in the opti-
mization model a common lower bound, m,,;,, is
set on each membership function, mg; and mg,, and
this variable is maximized. The optimal solution
changes somewhat and is as shown in Table 5.6.
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Table 5.6 Optimal solution of reservoir operation model based on objective (5.23)

remarks

variable value

E020827t

This solution differs from that shown in
Table 5.5 primarily in the values of the mem-
bership functions. The target storage volume
operating variable value, T°, stays the same value
in this example.

5.5.3.3 AQualitative Water Quality
Management Objectives
and Constraints
Consider the stream pollution problem illustrated
in Fig. 5.12. The stream receives waste, W; from
sources located at sites i =1 and 2. Without
some waste treatment at these sites, the pollutant
concentrations at sites 2 and 3 will exceed the
maximum desired concentration. The problem is
to find the fraction of wastewater removal, x;, at
sites i = 1 and 2 required to meet the quality

standards at sites 2 and 3 at a minimum total cost.
The data used for the problem shown in Fig. 5.16
are defined and listed in Table 5.7.

Using the notation defined in Table 5.7, the
crisp model for this problem, as discussed in the
previous chapter, is

Minimize C; (X]) + G (Xz) (5.24)

subject to
Water quality constraint at site 2:

P10+ Wi (1 —Xi)|an/Qr < PF™

((32)(10) 4 250,000(1 — X;)/86.4] 0.25/12
<20 which, when simplified, is : X; >0.78
(5.25)
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Table 5.7 Parameter values selected for the water quality management problem illustrated in Fig. 5.12

parameter unit value

Water quality constraint at site 3:

{[P1Q1 + Wi (1 — X1)]ass
+ [Wa(1 — X5)]ar)/ 03 < P

{[(32)(10) +250,000(1 — X;)/86.4] 0.15
+[80,000(1 — X,)/86.4]0.60} /13 < 20
(5.26)

which, when simplified, is: X; + 1.28X, = 1.79
Restrictions on fractions of waste removal:

0<X;<1.0 forsitesi=1and2 (5.27)

For a wide range of reasonable costs, the
optimal solution found using linear programming
was 0.78 and 0.79, or essentially 80% removal
efficiencies at sites 1 and 2. Compare this
solution with that of the following qualitative
model.

remark

E020827u

To consider a more qualitative version of this
problem, suppose the maximum allowable pol-
lutant concentrations in the stream at sites 2 and
3 were expressed as “about 20 mg/l more or
less.” Obtaining opinions of individuals of what
they consider to be “20 mg/l more or less,” a
membership function can be defined. Assume it
is as shown in Fig. 5.17.

Next, assume that the government environ-
mental agency expects each polluter to install
best available technology (BAT) or to carry out
best management practices (BMP) regardless of
whether or not this is required to meet stream
quality standards. Asking experts just what BAT
or BMP means with respect to treatment effi-
ciencies could result in a variety of answers.
These responses can be used to define member-
ship functions for each of the two firms in this
example. Assume these membership functions
for both firms are as shown in Fig. 5.18.
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Fig. 5.16 A stream pollution problem of finding the waste removal efficiencies (x1, x,) that meet the stream quality

standards at least cost

Fig. 5.17 Membership
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Finally, assume there is a third concern that
has to do with equity. It is expected that no
polluter should be required to treat at a much
higher efficiency than any other polluter.
A membership function defining just what dif-
ferences are acceptable or equitable could quan-
tify this concern. Assume such a membership
function is as shown in Fig. 5.19.

Considering each of these membership func-
tions as objectives, a number of fuzzy

optimization models can be defined. One is to find
the treatment efficiencies that maximize the
minimum value of each of these membership
functions.

Maximize m = max min{mp, mr, mg}
(5.28)

If we assume that the pollutant concentrations
at sites j = 2 and 3 will not exceed 23 mg/l, the
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Fig. 5.18 Membership
function for best available

treatment technology EP 1.0
? 0.5

0.0 ;

60 65
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—> % treatment efficiency x;

Fig. 5.19 Equity
membership function in
terms of the absolute
difference between the two
treatment efficiencies
expressed as a percent

pollutant concentration membership functions
mp; are

mp; = 1-— sz/S (529)

The pollutant concentration at each site j is the
sum of two components:

Pj=P1j+P2j (530)

where
P; <18 (5.31)
Py <(23 —18) (5.32)

If we assume the treatment plant efficiencies
will be between 70 and 90% at both sites i = 1

and 2, the treatment technology membership

functions mr; are
mr; = (XZI/OOS) - (x41/010) (533)

and the treatment efficiencies, expressed as
fractions, are

X; = 0.70 4 xp; + x3; + x4 (5.34)
where
X2 <0.05 (5.35)
x3: <0.05 (5.36)
x4; <0.10 (5.37)
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Finally, assuming the difference between
treatment efficiencies will be no greater than 14,
the equity membership function, mg, is

mg = Z — (0.5/0.05)D; +0.5(1 — Z)

—(0.5/(0.14 — 0.05))D> (5.38)

where
D, <0.05Z (5.39)
D, < (0.14 — 0.05)(1 — Z) (5.40)
X, — X, =DP - DM (5.41)
DP+DM = D; +0.05(1 — Z)+ D, (5.42)
Z is a binary 0, 1 variable. (5.43)

The remainder of the water quality model
remains the same: Water quality constraint at site 2:

PO +Wi(1 —X))]a2/Qr = P,
[(32)(10) +250,000(1 — X,)/86.4]0.25/12 = P,

(5.44)
Water quality constraint at site 3:

{P1Q1 + Wi (1 = X1)]ai3 + [Wa(l — X2)] a3} /03 = P3
{1(32)(10) +250,000(1 — X,)/86.4] 0.15
+[80,000(1 — X»)/86.4]0.60} /13 = P

(5.45)
Restrictions on fractions of waste removal:

0<X;,<1.0 forsites i=1 and 2. (5.46)

Solving this model using LINGO® yields the
results shown in Table 5.8.

This solution confirms the assumptions made
when constructing the representations of the
membership functions in the model. It is also
very similar to the least-cost solution found
from solving the crisp linear programming (LP)
model containing no membership functions.

Table 5.8 Solution to water quality management model Egs. 5.28 to 5.46

remarks

variable value

E020827v




5.6 Conclusions
5.6 Conclusions

Most computer-based models used for water
resources planning and management are physi-
cal, mechanistic, or process-based quantitative
models. Builders of such models attempt to
incorporate the important physical, biological,
chemical, geomorphological, hydrological, and
other types of interactions among all system
components, as appropriate for the problem
being addressed and the system being modeled.
This is done in order to be able to predict pos-
sible economic, ecologic, environmental, or
social impacts that might result from the imple-
mentation of some plan or policy. These types of
models almost always contain parameters. These
need values, and the values of the parameters
affect the accuracy of the impact predictions.

This chapter has outlined some data-fitting
methods of modeling that do not attempt to
model natural, economic, or social processes.
These have included ANN and two evolutionary
search approaches: genetic algorithms (GA) for
estimating the parameter and decision variable
values, and genetic programming for finding
models that replicate the real system. In some
situations, these biologically motivated search
methods, which are independent of the particular
system model, provide the most practical way to
calibrate model parameters.

Fortunately for potential users of GA, GP, and
ANN methods, software programs implementing
many of these methods are available on the
Internet. Applications of such methods to
groundwater modeling, sedimentation processes
along coasts and in harbors, rainfall runoff pre-
diction, reservoir operation, data classification,
and predicting surge water levels for navigation
represent only a small sample of what can be
found in the current literature.

Not all data are quantitative. In many cases
objectives and constraints are expressed as quali-
tative expressions. Optimization models incorpo-
rating such expressions or functions are
sometimes appropriate when only qualitative
statements apply to a particular water management
problem or issue. This chapter concludes by
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showing how this can be done using some simple
example problems associated with water alloca-
tions, reservoir operation, and pollution control.

The information presented in this chapter
serves only as an introduction. Those interested
in more detailed and complete explanations and
applications may refer to any of the additional
references listed in the next section.
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Exercises

5.1 An upstream reservoir serves as a recreation
site for swimmers, wind surfers, and boaters.
Italso serves as aflood storage reservoirin the
second of four seasons or time periods in a
year. The reservoir’s releases can be diverted
to an irrigation area. A wetland area further
downstream receives the unallocated portion
of the reservoir release plus the return flow
from the irrigation area. The irrigation return
flow contains a salinity concentration that can
damage the ecosystem.

(a) Assume there exist recreation lake level
targets, irrigation allocation targets, and
wetland flow and salinity targets. The
challenge is to determine the reservoir
releases and irrigation allocations so as
to “best” meet these targets. This is the
crisp’ problem.


http://dx.doi.org/10.1016/j.advwatres.2012.01.005

Data:

Reservoir storage capacity: 30 mcm;
During period 2 the flood storage ca-
pacity is 5 mcm;

Irrigation return flow fraction: 0.3 (i.e.,
30% of that diverted for irrigation);

Salinity concentration of reservoir
water: 1 ppt;
Salinity concentration of irrigation

return flow: 20 ppt;
Reservoir average inflows for four sea-
sons, respectively: 5, 50, 20, 10 mcm;

Targets for part (a):

Target maximum salinity concentration
in wetland: 3 ppt;

Target storage target for all four sea-
sons: 20 mcm;

Minimum flow target in wetland in each
season, respectively: 10, 20, 15,
15 mcm;

Maximum flow target in wetland in
each season, respectively: 20, 30, 25,
25 mcm;

Target irrigation allocations: 0, 20, 15,
5 mcm;

Next create fuzzy membership functions
to replace the targets and solve the prob-
lem. Assume that the targets used in
(a) above are expressed in qualitative
terms as membership functions. The
membership functions indicate the degree
of satisfaction for these targets. Solve for
the “best” reservoir release and allocation
policy that maximizes the minimum
membership function value. Each mem-
bership function defines the relative level
of satisfaction, where a value of 1 indi-
cates complete stakeholder satisfaction.
This is the qualitative problem.

(b)

5.2 Develop a flow chart showing how you

would apply genetic algorithms to finding the
parameters, a;;, of a water quality prediction
model, such as the one we have used to find
the concentration downstream of an upstream
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discharge site i. This will be based on
observed values of mass inputs, W;, and
concentrations, Cj;, and flows, Q; at a
downstream site j.

G= Z Wia;/Q;

The objective to be used for fitness is to
minimize the sum of the differences
between the observed C; and the computed
C;. To convert this to a maximization
objective you could use something like the
following:

Max1/(1+ D)
where

D> (Cjobs—Cjcalculated)
D > (Cjcalculated—Cjobs. )

Use a genetic algorithm program to predict
the parameter values asked for in problem
5.2, and then an artificial neural network
ANN to obtain a predictor of downstream
water quality based on the values of these
parameters. You may use the model and
data presented in Sect. 5.2 of Chap. 4 if you
wish.

Using a genetic algorithm program to
findthe allocations X; that maximize the
total benefits to the three water users i along
a stream, whose individual benefits are

Use I: 6X; — X}
Use2: 7X, — X3
Use 3: 8X; — X3

Assume the available stream flow is some
known value (ranging from O to 20).
Determine the effect of different genetic
algorithm parameter values on the ability to
find the best solution.

Consider the wastewater treatment problem
illustrated in the drawing below.
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200 kg/day

211

W

100 kg/day

The initial stream concentration just
upstream of site 1 is 32. The maximum
concentration of the pollutant just upstream
of site 2 is 20 mg/l (g/m?), and at site 3 it is
25 mg/l. Assume the marginal cost per
fraction (or percentage) of the waste load
removed at site 1 is no less than that cost at
site 2, regardless of the amount removed.
Using a suitable genetic algorithm program,
solve for the least-cost wastewater treatment
at sites 1 and 2 that will satisfy the quality
constraints at sites 2 and 3, respectively.
Discuss the sensitivity of the GA parameter
values in finding the best solution. You can
get the exact solution using LINGO as
discussed in Sect. 4.5.3.

Develop an artificial neural network for flow
routing given the following two sets of
upstream and downstream flows. Use one set
of 5-periods for training (finding the unknown
weights and other variables) and the other set
for validation of the calculated parameter
values (weights and bias constants).
Develop the simplest artificial neural net-
work you can that does an adequate job of
prediction.

5.6

Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.

Vst

Flow = 0.01157 m’/s
=1000 m*/d

Time period Upstream flow Downstream flow
1 450 366
2 685 593
3 830 755
4 580 636
5 200 325
1 550 439
2 255 304
3 830 678
4 680 679
5 470 534

[These outflows come from the following
model, assuming an initial storage in period
1 of 50, the detention storage that will
remain in the reach even if the inflows go to
0. For each period #:

Outflow(r) = 1.5(—50 + initial storage(t) + inflow(z))"?,

where the outflow is the downstream flow
and inflow is the upstream flow.]

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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