Chapter 20

Mortality Prediction in the ICU Based

on MIMIC-II Results from the Super ICU
Learner Algorithm (SICULA) Project

Romain Pirracchio

Learning Objectives
In this chapter, we illustrate the use of MIMIC II clinical data, non-parametric
prediction algorithm, ensemble machine learning, and the Super Learner algorithm.

20.1 Introduction

Predicting mortality in patients hospitalized in intensive care units (ICU) is crucial
for assessing severity of illness and adjudicating the value of novel treatments,
interventions and health care policies. Several severity scores have been developed
with the objective of predicting hospital mortality from baseline patient charac-
teristics, defined as measurements obtained within the first 24 h after ICU admis-
sion. The first scores proposed, APACHE [1] (Acute Physiology and Chronic
Health Evaluation), APACHE II [2], and SAPS [3] (Simplified Acute Physiology
Score), relied upon subjective methods for variable importance measure, namely by
prompting a panel of experts to select and assign weights to variables according to
perceived relevance for mortality prediction. Further scores, such as the SAPS 1I [4]
were subsequently developed using statistical modeling techniques [4—7]. To this
day, the SAPS 1I [4] and APACHE II [2] scores remain the most widely used in
clinical practice. However, since first being published, they have been modified
several times in order to improve their predictive performance [6—11]. Despite these
extensions of SAPS, predicted hospital mortality remains generally overestimated
[8, 9, 12-14]. As an illustration, Poole et al. [9] compared the SAPS II and the
SAPS3 performance in a cohort of more than 28,000 admissions to 10 different
Italian ICUs. They concluded that both scores provided unreliable predictions, but
unexpectedly the newer SAPS 3 turned out to overpredict mortality more than the
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older SAPS II. Consistently, Nassar et al. [8] assessed the performance of the
APACHE 1V, the SAPS 3 and the Mortality Probability Model III [MPM(0)-III] in
a population admitted at 3 medical-surgical Brazilian intensive care units and found
that all models showed poor calibration, while discrimination was very good for all
of them.

Most ICU severity scores rely on a logistic regression model. Such models
impose stringent constraints on the relationship between explanatory variables and
risk of death. For instance, main term logistic regression relies on the assumption of
a linear and additive relationship between the outcome and its predictors. Given the
complexity of the processes underlying death in ICU patients, this assumption
might be unrealistic.

Given that the true relationship between risk of mortality in the ICU and
explanatory variables is unknown, we expect that prediction can be improved by
using an automated nonparametric algorithm to estimate risk of death without
requiring any specification about the shape of the underlying relationship. Indeed,
nonparametric algorithms offer the great advantage of not relying on any
assumption about the underlying distribution, which make them more suited to fit
such complex data. Some studies have evaluated the benefit of nonparametric
approaches, namely based on neural networks or data-mining, to predict hospital
mortality in ICU patients [15-20]. These studies unanimously concluded that
nonparametric methods might perform at least as well as standard logistic regres-
sion in predicting ICU mortality.

Recently, the Super Learner was developed as a nonparametric technique for
selecting an optimal regression algorithm among a given set of candidate algo-
rithms provided by the user [21]. The Super Learner ranks the algorithms according
to their prediction performance, and then builds an aggregate algorithm obtained as
the optimal weighted combination of the candidate algorithms. Theoretical results
have demonstrated that the Super Learner performs no worse than the optimal
choice among the provided library of candidate algorithms, at least in large sam-
ples. It capitalizes on the richness of the library it builds upon and generally offers
gains over any specific candidate algorithm in terms of flexibility to accurately fit
the data.

The primary aim of this study was to develop a scoring procedure for ICU
patients based on the Super Learner using data from the Medical Information Mart
for Intensive Care II (MIMIC-II) study [22-24], and to determine whether it results
in improved mortality prediction relative to the SAPS II, the APACHE II and the
SOFA scores. Complete results of this study have been published in 2015 in the
Lancet Respiratory Medicine [25]. We also wished to develop an easily-accessible
user-friendly web implementation of our scoring procedure, even despite the
complexity of our approach (http://webapps.biostat.berkeley.edu:8080/sicula/).
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20.2.1 Data Collection and Patients Characteristics

The MIMIC-II study [22-24] includes all patients admitted to an ICU at the Beth
Israel Deaconess Medical Center (BIDMC) in Boston, MA since 2001. For the sake
of the present study, only data from MIMIC-II version 26 (2001-2008) on adult
ICU patients were included. Patients younger than 16 years were not included. For
patients with multiple admission, we only considered the first ICU stay. A total of
24,508 patients were included in this study.

20.2.2 Patient Inclusion and Measures

Two categories of data were collected: clinical data, aggregated from ICU infor-
mation systems and hospital archives, and high-resolution physiologic data
(waveforms and time series of derived physiologic measurements), recorded on
bedside monitors. Clinical data were obtained from the CareVue Clinical
Information System (Philips Healthcare, Andover, Massachusetts) deployed in all
study ICUs, and from hospital electronic archives. The data included time-stamped
nurse-verified physiologic measurements (e.g., hourly documentation of heart rate,
arterial blood pressure, pulmonary artery pressure), nurses’ and respiratory thera-
pists’ progress notes, continuous intravenous (IV) drip medications, fluid balances,
patient demographics, interpretations of imaging studies, physician orders, dis-
charge summaries, and ICD-9 codes. Comprehensive diagnostic laboratory results
(e.g., blood chemistry, complete blood counts, arterial blood gases, microbiology
results) were obtained from the patient’s entire hospital stay including periods
outside the ICU. In the present study, we focused exclusively on outcome variables
(specifically, ICU and hospital mortality) and variables included in the SAPS II [4]
and SOFA scores [26].

We first took an inventory of all available recorded characteristics required to
evaluate the different scores considered. Raw data from the MIMIC II database
version 26 were then extracted. We decided to use only R functions (without any
SQL routines) as most of our researchers only have R package knowledge. Each
table within each patient datafile were checked for the different characteristics and
extracted. Finally, we created a global CSV file including all data and easily
manipulable with R.

Baseline variables and outcomes are summarized in Table 20.1.
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Table 20.1 Baseline characteristics and outcome measures

Overall population Dead at hospital Alive at hospital

(n = 24,508) discharge (n = 3002) discharge (n = 21,506)
Age 65 [51-77] 74 [59-83] 64 [50-76]
Gender 13,838 (56.5 %) 1607 (53.5 %) 12,231 (56.9 %)
(female)
First SAPS 13 [10-17] 18 [14-22] 13 [9-17]
First SAPS II |38 [27-51] 53 [43-64] 36 [27-49]
First SOFA 5 [2-8] 8 [5-12] 5 [2-8]
Origin
Medical 2453 (10 %) 240 (8 %) 2213 (10.3 %)
Trauma 7703 (31.4 %) 1055 (35.1 %) 6648 (30.9 %)
Emergency 10,803 (44.1 %) 1583 (52.7 %) 9220 (42.9 %)
surgery
Scheduled 3549 (14.5 %) 124 (4.1 %) 3425 (15.9 %)
surgery
Site
MICU 7488 (30.6 %) 1265 (42.1 %) 6223 (28.9 %)
MSICU 2686 (11 %) 347 (11.6 %) 2339 (10.9 %)
CCU 5285 (21.6 %) 633 21.1 %) 4652 (21.6 %)
CSRU 8100 (33.1 %) 664 (22.1 %) 7436 (34.6 %)
TSICU 949 (3.9 %) 93 (3.1 %) 856 (4 %)
HR (bpm) 87 [75-100] 92 [78-109] 86 [75-99]
MAP 81 [70-94] 78 [65-94] 82 [71-94]
(mmHg)
RR (cpm) 14 [12-20] 18 [14-23] 14 [12-18]
Na (mmol/l) | 139 [136-141] 138 [135-141] 139 [136-141]
K (mmol/l) 4.2 [3.8-4.6] 4.2 [3.8-4.8] 4.2 [3.8-4.6]
HCO; 26 [22-28] 24 [20-28] 26 [23-28]
(mmol/1)
WBC 10.3 [7.5-14.4] 11.6 [7.9-16.9] 10.2 [7.4-14.1]
(10*/mm®)
P/F ratio 281 [130-447] 174 [90-352] 312 [145-461]
Ht (%) 34.7 [30.4-39] 33.8 [29.8-38] 34.8 [30.5-39.1]
Urea 20 [14-31] 28 [18-46] 19 [13-29]
(mmol/l)
Bilirubine 0.6 [0.4-1] 0.7 [0.4-1.5] 0.6 [0.4-0.9]
(mg/dl)
Hospital LOS | 8 [4-14] 9 [4-17] 8 [4-14]
(days)
ICU death 1978 (8.1 %) 1978 (65.9 %) -
(%)
Hospital 3002 (12.2 %) - -
death (%)

Continuous variables are presented as median [InterQuartile Range]; binary or categorical

variables as count (%)
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20.3 Methods

20.3.1 Prediction Algorithms

The primary outcome measure was hospital mortality. A total of 1978 deaths
occurred in ICU (estimated mortality rate: 8.1 %, 95 %CI: 7.7-8.4), and 1024
additional deaths were observed after ICU discharge, resulting in an estimated
hospital mortality rate of 12.2 % (95 %CI: 11.8-12.7).

The data recorded within the first 24 h following ICU admission were used to
compute two of the most widely used severity scores, namely the SAPS 1II [4] and
SOFA [26] scores. Individual mortality prediction for the SAPS II score was cal-
culated as defined by its authors [4]:

o [ pr(death) ]

= —7.7631 +0.0737 * SAPSII + 0.9971 * log(1 + SAPSII)
1 — pr(death)

In addition, we developed a new version of the SAPS II score, by fitting to our
data a main-term logistic regression model using the same explanatory variables as
those used in the original SAPS II score [4]: age, heart rate, systolic blood pressure,
body temperature Glasgow Coma Scale, mechanical ventilation, PaO,, FiO,, urine
output, BUN (blood urea nitrogen), blood sodium, potassium, bicarbonates,
bilirubin, white blood cells, chronic disease (AIDS, metastatic cancer, hematologic
malignancy) and type of admission (elective surgery, medical, unscheduled sur-
gery). The same procedure was used to build a new version of the APACHE II
score [2]. Finally, because the SOFA score [26] is widely used in clinical practice as
a proxy for outcome prediction, it was also computed for all subjects. Mortality
prediction based on the SOFA score was obtained by regressing hospital mortality
on the SOFA score using a main-term logistic regression. These two algorithms for
mortality prediction were compared to our Super Learner-based proposal.

The Super Learner has been proposed as a method for selecting via
cross-validation the optimal regression algorithm among all weighted combinations
of a set of given candidate algorithms, henceforth referred to as the library [21, 27, 28]
(Fig. 20.1). To implement the Super Learner, a user must provide a customized
collection of various data-fitting algorithms. The Super Learner then estimates the
risk associated to each algorithm in the provided collection using cross-validation.
One round of cross-validation involves partitioning a sample of data into comple-
mentary subsets, performing the analysis on one subset (called the training set), and
validating the analysis on the other subset (called the validation set or testing set). To
reduce variability, multiple rounds of cross-validation are performed using different
partitions, and the validation results are averaged over the rounds. From this esti-
mation of the risk associated with each candidate algorithm, the Super Learner builds
an aggregate algorithm obtained as the optimal weighted combination of the candi-
date algorithms. Theoretical results suggest that to optimize the performance of the
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Fig. 20.1 Super learner algorithm. From van der Laan, targeted learning 2011 (with permission)
[41]

resulting algorithm, the inputted library should include as many sensible algorithms
as possible.

In this study, the library size was limited to 12 algorithms (list available in the
Appendix) for computational reasons. Among these 12 algorithms, some were
parametric such as logistic regression of affiliated methods classically used for ICU
scoring systems, and some non-parametric i.e. methods that fit the data without any
assumption concerning the underlying data distribution. In the present study, we
chose the library to include most of parametric (including regression models with
various combinations of main and interaction terms as well as splines, and fitted
using maximum likelihood with or without penalization) and nonparametric algo-
rithm, previously evaluated for the prediction of mortality in critically ill patients in
the literature. The main term logistic regression is the parametric algorithm that has
been used for constructing both the SAPS II and APACHE II scores. This algorithm
was included in the SL library so that revised fits of the SAPS II score based on the
current data also competed against other algorithms.

Comparison of the 12 algorithms relied on 10-fold cross-validation. The data are
first split into 10 mutually exclusive and exhaustive blocks of approximately equal
size. Each algorithm is fitted on a the 9 blocks corresponding to the training set and
then this fit used to predict mortality for all patients in the remaining block used a
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validation set. The squared errors between predicted and observed outcomes are
averaged. The performance of each algorithm is evaluated in this manner. This
procedure is repeated exactly 10 times, with a different block used as validation set
every time. Performance measures are aggregated over all 10 iterations, yielding a
cross-validated estimate of the mean-squared error (CV-MSE) for each algorithm.
A crucial aspect of this approach is that for each iteration not a single patient
appears in both the training and validation sets. The potential for overfitting,
wherein the fit of an algorithm is overly tailored to the available data at the expense
of performance on future data, is thereby mitigated, as overfitting is more likely to
occur when training and validation sets intersect.

Candidate algorithms were ranked according to their CV-MSE and the algorithm
with least CV-MSE was identified. This algorithm was then refitted using all
available data, leading to a prediction rule referred to as the Discrete Super Learner.
Subsequently, the prediction rule consisting of the CV-MSE-minimizing weighted
convex combination of all candidate algorithms was also computed and refitted on
all data. This is what we refer to as the Super Learner combination algorithm [28].

The data used in fitting our prediction algorithm included the 17 variables used
in the SAPS II score: 13 physiological variables (age, Glasgow coma scale, systolic
blood pressure, heart rate, body temperature, PaO,/FiO, ratio, urinary output, serum
urea nitrogen level, white blood cells count, serum bicarbonate level, sodium level,
potassium level and bilirubin level), type of admission (scheduled surgical,
unscheduled surgical, or medical), and three underlying disease variables (acquired
immunodeficiency syndrome, metastatic cancer, and hematologic malignancy
derived from ICD-9 discharge codes). Two sets of predictions based on the Super
Learner were produced: the first based on the 17 variables as they appear in the
SAPS 1II score (SL1), and the second, on the original, untransformed variables
(SL2).

20.3.2 Performance Metrics

A key objective of this study was to compare the predictive performance of scores
based on the Super Learner to that of the SAPS II and SOFA scores. This com-
parison hinged on a variety of measures of predictive performance, described
below.

1. A mortality prediction algorithm is said to have adequate discrimination if it
tends to assign higher severity scores to patients that died in the hospital
compared to those that did not. We evaluated discrimination using the
cross-validated area under the receiver-operating characteristic curve (AUROC),
reported with corresponding 95 % confidence interval (95 % CI).
Discrimination can be graphically illustrated using the receiver-operating
(ROC) curves. Additional tools for assessing discrimination include boxplots of
predicted probabilities of death for survivors and non-survivors, and
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corresponding discrimination slopes, defined as the difference between the mean
predicted risks in survivors and non-survivors. All these are provided below.

2. A mortality prediction algorithm is said to be adequately calibrated if predicted
and observed probabilities of death coincide rather well. We assessed calibration
using the Cox calibration test [9, 29, 30]. Because of its numerous shortcoming,
including poor performance in large samples, the more conventional
Hosmer-Lemeshow statistic was avoided [31, 32]. Under perfect calibration, a
prediction algorithm will satisfy the logistic regression equation ‘observed
log-odds of death = a + p* predicted log-odds of death’ with o =0. To
implement the Cox calibration test, a logistic regression is performed to estimate
a and f3; these estimates suggest the degree of deviation from ideal calibration.
The null hypothesis (a, B) = (0, 1) is tested formally using a U-statistic [33].

3. Summary reclassification measures, including the Continuous Net
Reclassification Index (cNRI) and the Integrated Discrimination Improvement
(IDI), are relative metrics which have been devised to overcome the limitations
of usual discrimination and calibration measures [34—36]. The cNRI comparing
severity score A to score B is defined as twice the difference between the
proportion of non-survivors and of survivors, respectively, deemed more severe
according to score A rather than score B. The IDI comparing severity score A to
score B is the average difference in score A between survivors and
non-survivors minus the average difference in score B between survivors and
non-survivors. Positive values of the cNRI and IDI indicate that score A has
better discriminative ability than score B, whereas negative values indicate the
opposite. We computed the reclassification tables and associated summary
measures to compare each Super Learner proposal to the original SAPS 1I score
and each of the revised fits of the SAPS II and APACHE 1I scores.

All analyses were performed using statistical software R version 2.15.2 for
Mac OS X (The R Foundation for Statistical Computing, Vienna, Austria; specific
packages: cvAUC, Super Learner and ROCR). Relevant R codes are provided in
Appendix.

20.4 Analysis

20.4.1 Discrimination

The ROC curves for hospital mortality prediction are provided below (Fig. 20.2).
The cross-validated AUROC was 0.71 (95 %CI: 0.70-0.72) for the SOFA score,
and 0.78 (95 %CI: 0.77-0.78) for the SAPS II score. When refitting the SAPS II
score on our data, the AUROC reached 0.83 (95 %CI: 0.82—-0.83); this is similar to
the results obtained with the revised fit of the APACHE II, which led to an AUROC
of 0.82 (95 %CI: 0.81-0.83). The two Super Learner (SL1 and SL2) prediction
models substantially outperformed the SAPS II and the SOFA score. The AUROC
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Fig. 20.2 Receiver-operating ROC Curves
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was 0.85 (95 %CI: 0.84-0.85) for SL1, and 0.88 (95 %CI: 0.87-0.89) for SL2,
revealing a clear advantage of the Super Learner-based prediction algorithms over
both the SOFA and SAPS 1II scores.

Discrimination was also evaluated by comparing differences between the pre-
dicted probabilities of death among the survivors and the non-survivors using each
prediction algorithm. The discrimination slope equaled 0.09 for the SOFA score,
0.26 for the SAPS 1I score, 0.21 for SL1, and 0.26 for SL2.

20.4.2 Calibration

Calibration plots (Fig. 20.3) indicate a lack of fit for the SAPS II score. The esti-
mated values of a and § were of —1.51 and 0.72 respectively (U statistic = 0.25,
p < 0.0001). The calibration properties were markedly improved by refitting the
SAPS Il score: a < 0.0001 and B = 1 (U < 0.0001, p = 1.00). The prediction based
on the SOFA and the APACHE II scores exhibited excellent calibration properties,
as reflected by a < 0.0001 and =1 (U< 0.0001, p=1.00). For the Super
Learner-based predictions, despite U-statistics significantly different from zero, the
estimates of a and § were close to the null values: SL1: 0.14 and 1.04, respectively
(U =0.0007, p=0.0001); SL2: 0.24 and 1.25, respectively (U = 0.006,
p < 0.0001).
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20.4.3 Super Learner Library

The performance of the 12 candidate algorithms, the Discrete Super Learner and
the Super Learner combination algorithms, as evaluated by CV-MSE and
CV-AUROC, are illustrated in Fig. 20.4.

As suggested by theory, when using either categorized variables (SL1) or
untransformed variables (SL2), the Super Learner combination algorithm achieved
the same performance as the best of all 12 candidates, with an average CV-MSE of
0.084 (SE = 0.001) and an average AUROC of 0.85 (95 %CI: 0.84-0.85) for SL1
[best single algorithm: Bayesian Additive Regression Trees, with CV-MSE = 0.084
and AUROC = 0.84 (95 %CI: 0.84, 0.85)]. For the SL2, the average CV-MSE was
of 0.076 (SE = 0.001) and the average AUROC of 0.88 (95 %CI: 0.87-0.89) [best
single algorithm: Random Forests, with CV-MSE = 0.076 and AUROC = 0.88
(95 %CI: 0.87-0.89)]. In both cases (SL1 and SL2), the Super Learner outper-
formed the main term logistic regression used to develop the SAPS II or the
APACHE II score [main term logistic regression: CV-MSE = 0.087 (SE = 0.001)
and AUROC = 0.83 (95 %CI: 0.82-0.83)].

20.4.4 Reclassification Tables

The reclassification tables involving the SAPS 1l score in its original and its actu-
alized versions, the revised APACHE II score, and the SL1 and SL2 scores are
provided in Table 20.2. When compared to the classification provided by the
original SAPS II, the actualized SAPS II or the revised APACHE II score, the Super
Learner-based scores resulted in a downgrade of a large majority of patients to a
lower risk stratum. This was especially the case for patients with a predicted
probability of death above 0.5.

We computed the cNRI and the IDI considering each Super Learner proposal
(score A) as the updated model and the original SAPS II, the new SAPS II and the
new APACHE II scores (score B) as the initial model. In this case, positive values
of the cNRI and IDI would indicate that score A has better discriminative ability
than score B, whereas negative values indicate the opposite. For SL1, both the cNRI
(cNRI = 0.088 (95 %CI: 0.050, 0.126), p < 0.0001) and IDI (IDI = —0.048 (95 %
CI: —0.055, —0.041), p < 0.0001) were significantly different from zero. For SL2,
the cNRI was significantly different from zero (cNRI = 0.247 (95 %CI: 0.209,
0.285), p < 0.0001), while the IDI was close to zero (IDI =—0.001 (95 %CI:
—0.010, —0.008), p = 0.80). When compared to the classification provided by the
actualized SAPS II, the cNRI and IDI were significantly different from zero for both
SL1 and SL2: ¢NRI = 0.295 (95 %CI: 0.257, 0.333), p < 0.0001 and IDI = 0.012
(95 %CI: 0.008, 0.017), p < 0.0001 for SLI1; cNRI =0.528 (95 %CI: 0.415,
0.565), p < 0.0001 and IDI = 0.060 (95 %CI: 0.054, 0.065), p < 0.0001 for SL2.
When compared to the actualized APACHE II score, the cNRI and IDI were also
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Table 20.2 Reclassification tables
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Updated model

0-0.25 0.25-0.5 0.5-0.75 0.75-1 % Reclassified
Super learner 1
Initial model: original
SAPS I
0-0.25 13,341 134 3 0 1%
0.25-0.5 4529 723 50 0 86 %
0.5-0.75 2703 1090 174 2 96 %
0.75-1 444 705 473 137 92 %
Super learner 2
Initial model: original
SAPS I
0-0.25 12,932 490 55 1 4 %
0.25-0.5 4062 1087 142 11 79 %
0.5-0.75 2531 1165 258 15 93 %
0.75-1 485 775 448 51 97 %
Super learner 1
Initial model: new
SAPS 11
0-0.25 20,104 884 30 2 4 %
0.25-0.5 894 1426 238 9 44 %
0.5-0.75 18 328 361 62 53 %
0.75-1 1 14 71 66 57 %
Super learner 2
Initial model: new
SAPS 11
0-0.25 19,221 1667 124 8 9 %
0.25-0.5 765 1478 318 6 42 %
0.5-0.75 24 346 367 32 52 %
0.75-1 0 26 94 32 79 %
Super learner 1
Initial model: new
APACHE I
0-0.25 19,659 1140 107 6 6 %
0.25-0.5 1262 1195 296 34 57 %
0.5-0.75 89 298 264 71 63 %
0.75-1 7 19 33 28 68 %
Super learner 2
Initial model: new
APACHE I
0-0.25 18,930 1764 200 18 9 %
0.25-0.5 1028 1395 345 19 50 %

(continued)
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Updated model

0-0.25 0.25-0.5 0.5-0.75 0.75-1 % Reclassified
0.5-0.75 50 333 309 30 57 %
0.75-1 2 25 49 11 87 %

Super learner 1: super learner with categorized variables; super learner 2: super learner with
non-transformed variables

significantly different from zero for both SL1 and SL2: cNRI = 0.336 (95 %CI:
0.298, 0.374), p < 0.0001 and IDI = 0.029 (95 %CI: 0.023, 0.035), p < 0.0001 for
SL1; cNRI = 0.561 (95 %CI: 0.524, 0.598), p < 0.0001 and IDI = 0.076 (95 %CI:
0.069, 0.082) for SL2. When compared either to the new SAPS II or the new
APACHE II score, both Super Learner proposals resulted in a large proportion of
patients reclassified, especially from high predicted probability strata to lower ones.

20.5 Discussion

The new scores based on the Super Learner improve the prediction of hospital
mortality in this sample, both in terms of discrimination and calibration, as com-
pared to the SAPS II or the APACHE II scoring systems. The Super Learner
severity score based on untransformed variables, also referred to as SL2 or
SICULA, is available online through a web application. An ancillary important
result is that the MIMIC-II database can easily and reliably serve to develop new
severity score for ICU patients.

Our results illustrate the crucial advantage of the Super Learner that can include
as many candidate algorithms as inputted by investigators, including algorithms
reflecting available scientific knowledge, and in fact borrows strength from diver-
sity in its library. Indeed, established theory indicates that in large samples the
Super Learner performs at least as well as the (unknown) optimal choice among the
library of candidate algorithms [28]. This is illustrated by comparing the CV-MSE
associated with each algorithm included in the library: SL1 achieves similar per-
formance as BART, which is the best candidate in the case, while SL2 achieves
similar performance as random forest, which outperformed all other candidates in
this case. Hence, the Super Learner offers a more flexible alternative to other
nonparametric methods.

Given the similarity in calibration of the two Super Learner-based scores (SL1
and SL2), we recommend using the Super Learner with untransformed explanatory
variables (SL2) in view of its greater discrimination. When considering risk
reclassification, the two Super Learner prediction algorithms had similar cNRI, but
SL2 clearly had a better IDI. It should be emphasized that, when considering the
IDI, the SL1 seemed to perform worse that the SAPS II score. Nonetheless, the IDI
must be used carefully since it suffers from similar drawbacks as the AUROC: it
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summarizes prediction characteristics uniformly over all possible classification
thresholds even though many of these are unacceptable and would never be con-
sidered in practice [37].

20.6 What Are the Next Steps?

The SICULA should be compared to more recent severity scores. Nonetheless, such
scores (e.g., SAPS 3 and APACHE III) have been reported to face the same
drawbacks as SAPS II [9, 12, 38]. Moreover, those scores remain the most widely
used scores in practice [39]. Despite the fact that MIMIC II encompasses data from
multiple ICUs, the sample still comes from a single hospital and thus needs further
external validation. However, the patients included in the MIMIC-II cohort seem
representative of the overall ICU patient population, as reflected by a hospital
mortality rate in the MIMIC-II cohort that is similar to the one reported for ICU
patients during the same time period [40]. Consequently, our score can be rea-
sonably expected to exhibit, in other samples, performance characteristics similar to
those reported here, at least in samples drawn from similar patient populations.
A large representation in our sample of CCU or CSRU patients, who often have
lower severity scores than medical or surgical ICU patients, may have limited our
score’s applicability to more critically ill patients. Finally, a key assumption jus-
tifying this study was that the poor calibration associated with current severity
scores derives from the use of insufficiently flexible statistical models rather than an
inappropriate selection of variables included in the model. For this reason and for
the sake of providing a fair comparison of our novel score with the SAPS II score,
we included the same explanatory variables as used in SAPS II. Expanding the set
of explanatory variables used could potentially result in a score with even better
predictive performance. In the future, expending the number of explanatory vari-
ables will probably further improve the predictive performances of the score.

20.7 Conclusions

Thanks to a large collection of potential predictors and a sufficient sample size,
MIMIC II dataset offers a unique opportunity to develop and validate new severity
scores. In this population, the prediction of hospital mortality based on the Super
Learner achieves significantly improved performance, both in terms of calibration
and discrimination, as compared to conventional severity scores. The SICULA
prediction algorithm is a promising alternative that could prove valuable in clinical
practice and for research purposes. Externally validating results of this study in
different populations (especially population outside the U.S.), providing regular
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update of the SICULA fit and assessing the potential benefit of including additional
variables in the score remain important future challenges that are to be faced in the
second stage of the SICULA project.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

This case study used code from the Super Learner Library, implemented in R.
Further details and code are available from the GitHub repository accompanying
this book: https://github.com/MIT-LCP/critical-data-book. The following algo-
rithms are included in the Super Learner Library.

Parametric algorithms:

— Logistic regression: standard logistic regression, including only main terms for
each covariate and including interaction terms [42] (SL.glm),

— Stepwise regression: logistic regression using a variable selection procedure
based on the Akaike Information Criteria [43] (SL.stepAIC),

— Generalized additive model [43] (SL.gam):,

— Generalized linear model with penalized maximum likelihood [44] (SL.glmnet),

— Multivariate adaptive polynomial spline regression [44] (SL.polymars),

— Bayesian generalized linear model [45] (SL.bayesglm).

Non parametric algorithms:

— Random Forest [46] (SL.randomForest),

— Neural Networks [47] (SL.nnet),

— Bagging classification trees [48] (SL.ipredbagg),

— Generalized boosted regression model [49] (SL.gbm),

— Pruned Recursive Partitioning and Regression Trees [50] (SL.rpartPrune),
— Bayesian Additive Regression Trees [51] (SL.bart).


http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://github.com/MIT-LCP/critical-data-book
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