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Abstract. In this paper we study a scheduling problem motivated by
performing intensive numerical simulations on large meshes. In order to
run the simulation as fast as possible, we must allocate computations on
different processors such that the makespan is minimized, but also take
care of the limited memory on each processor. We present a dynamic
programming based algorithm that ensures that both of these objectives
are satisfied, within a ratio of 1 + ε. Our algorithm is fixed-parameter
tractable (FPT) with respect to the path-width of the graph. For sake
of readability, the algorithm is presented for two identical machines, but
it can be generalized for a fixed number of unrelated processors.

Keywords: Scheduling · Approximation algorithm · Dynamic
programming · Fixed-parameter tractable

1 Introduction

In this paper, we study a specific scheduling problem involving two types of
memory constraints: each processing unit has a bounded memory capacity; the
tasks to be scheduled depend on each others in a complex way, which we model
using a graph structure. A motivation for this problem comes from distributed
numerical simulations where most numerical schemes are based on finite ele-
ments or volume methods (FEM or VEM) [3,10]. Such approaches require the
geometric domain of study Ω to be discretized into basic elements, called cells,
which form a mesh. Then, each cell j is assigned a computation valued by a
computation cost pj , and data (like density, pressure, . . . ) valued by a memory
weight mj . Moreover, performing the computation of a cell j requires, in addition
to its data, data located in its neighborhood1, denoted N (j). For a distributed
simulation, the problem is so to assign all the computations to processing units

1 The neighborhood is most of the time topologically defined (cells sharing an edge
or a face) and its depth depends on the numerical scheme used for performing the
numerical simulation.
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with bounded memory capacities, while minimizing the makespan2 and ensuring
that the following constraints are satisfied:

– the computation of each cell j is scheduled to a processing unit;
– if a processing unit performs the computation of a cell j, then it needs to

locally access data from cell j and cells in N (j);
– the amount of data stored by a processing unit cannot exceed its capacity.

To illustrate such an assignment, let us consider Fig. 1(a), where a mesh MΩ and
its associated computations are assigned onto 3 processing units. This assign-
ment puts each computation onto a processing unit according to the cell color.
Due to the neighborhood constraint, the total amount of memory needed for each
processing unit is not limited to those colored cells but extends to some adjacent
cells. For an edge-based adjacency relationship, we get the configuration pre-
sented in Fig. 1(b), where the memory needed for each processing unit is equal
to the memory of both white and colored cells. The white cells contain additional
data needed by a processing unit to process all its assigned computation.

(a) Compact view of the com-
putation assignment of MΩ

(b) Exploded-view of MΩ , where the white cells are
cells whose data are locally known by the processing
unit and the computation is not performed by the
latter.

Fig. 1. Computation assignment of a mesh MΩ onto 3 processing units in (a) and its
exploded-view with neighbor memory needed (b).

In the present work, we model this problem as a scheduling problem using
a graph G(J,E), which we refer to as the neighborhood graph3. Computations
assigned to cells correspond to jobs (one per cell in the mesh), modeled by the
set J . Throughout this paper we will denote by n the number of jobs, i.e. n := |J |.
Job j ∈ J requires pj ∈ N units of time to be executed (computation time) and
an amount mj ∈ N of memory. Jobs have to be assigned among k identical
machines (i.e. processing unit), each machine l having a memory capacity Ml,
for l = 1, . . . , k. Moreover, each job j requires data from some adjacent jobs,
denoted by N (j) ⊆ J . We say that jobs j ∈ J and j′ ∈ J are adjacent if there

2 Recall that the makespan is the maximum computation time among the processing
units.

3 We draw the reader’s attention on the fact that this graph is not a precedence graph,
as our problem has no precedence relation between the jobs.
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is an edge (j, j′) ∈ E. We assume the graph is not directed, i.e. j′ ∈ N (j) if
and only if j ∈ N (j′). For a subset of jobs J ′ ⊆ J , N (J ′) := ∪j∈J ′N (j). When
a subset of jobs J ′ ⊆ J is scheduled on a machine, this machine needs to allo-
cate an amount of memory equal to

∑
j∈J ′∪N (J ′) mj , while its processing time

is
∑

j∈J ′ pj . The objective is then to assign all jobs of J onto a machine, while
minimizing the makespan and ensuring strong memory constraints: the amount
of memory stored by each machine is smaller than or equal to its memory capac-
ity. In the following we assume that there exists at least one feasible solution, i.e.
an assignment of all the jobs such that the memory constraint on each machine
is satisfied. Using the notation introduced by Graham et al. [5] we refer to our
problem as Pk|G,mem|Cmax. Notice that the second field doesn’t contain the
term prec as there are no precedence constraints among the jobs.

The neighborhood graph G(J,E) is the main feature of Pk|G,mem|Cmax

and dealing with it is the most challenging part as dynamically assigning the
jobs may lead to different amount of memory needed to be allocated. As an
illustration, let us consider an instance with 2 machines with the neighborhood
graph depicted on Fig. 2. Suppose that the subset J ′ := {j4, j5, j6} is assigned
to machine 1 while the subset J ′′ := {j7} is assigned to machine 2. Then the
assignment of j8 to machine 1 or 2 has a different impact in terms of memory
allocation: assigning j8 to machine 1 makes this machine to allocate an additional
amount of memory equal to mj8 + mj10 (see Fig. 2(a)) whereas assigning it to
machine 2 makes this machine to allocate an additional amount of memory equal
to mj10 only (see Fig. 2(b)).

j6 j7

j4

j5

j8

j9

j3 j10

j1

j2
J ′ j8 ∪ N (j8)

(a) The assignment of J ′ = {j4, j5, j6}
constraints the machine to allocate an
amount of memory for each (colored) job
j ∈ J ′ ∪ N (J ′) = {j3, j4, j5, j6, j7}. As-
signing j8 to this machine induces an ad-
ditional amount of m8 + m10.

j6 j7

j4

j5

j8

j9

j3 j10

j1

j2

J ′′

j8 ∪ N (j8)

(b) The assignment of J ′′ = {j7}
constraints the machine to allocate an
amount of memory for each (colored) job
j ∈ J ′′ ∪N (J ′′) = {j6, j7, j8, j9}. Assign-
ing j8 to this machine induces an addi-
tional amount of m10.

Fig. 2. A neighborhood graph G(J, E) and the memory allocation induced by J ′ =
{j4, j5, j6} ∈ J in (a) and J ′′ = {j7} ∈ J in (b).

1.1 Related Problems

When mj = 0 for each job j, the problem Rk|G,mem|Cmax becomes the well-
known NP- scheduling problem denoted by Rk||Cmax. Lenstra et al. [9] gave a
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2-approximation algorithm when the number of machines k is not part of the
input and proved that no polynomial algorithm can achieve an approximation
ratio less than 3/2 unless P = NP . Their algorithm computes an optimal frac-
tional solution to a natural LP -relaxation and then uses rounding to obtain a
schedule for the discrete problem. In [4], Gairing et al. gave a faster algorithm
that matches the 2-approximation quality and which is based on unsplittable flow
techniques. If the number of machines is fixed, there exist a fully polynomial-time
approximation scheme [14].

When the neighborhood graph has no edges, and the memory is bounded
on each machine, and mj = 1 for each job j, we get the so-called Schedul-
ing Machines with Capacity Constraints problem (SMCC). In this problem,
each machine k can process at most a fixed number of jobs. Saha and
Srinivasan [12] gave a 2-approximation in a more general scheduling setting,
i.e. Scheduling Unrelated Machines with Capacity Constraints. For the special
case of two machines, Woeginger designed a FPTAS for this problem [15].

1.2 Main Contribution

As Pk|G,mem|Cmax is a generalization of those well-known scheduling prob-
lems, a reasonable question is to know whether we can get approximation algo-
rithms, which could possibly depend on some parameters of the neighborhood
graph4. We answer this question by providing a dynamic programming based
algorithm that, assuming that there exists at least one feasible solution to
our problem, returns a solution within a ratio of (1 + ε) for both the opti-
mum makespan and the memory capacity constraints. This algorithm is Fixed-
Parameter Tractable (FPT) with respect to the path-width of the neighborhood
graph. Notice that there cannot exist an exact FPT algorithm with respect to
the path-width parameter, since when the graph has no edge (and therefore a
path-width equal to 0), the problem is NP-hard (see Sect. 1.1).

1.3 Outline of the Paper

We start by briefly recalling in Sect. 2 the definitions of different notions useful
for our proof. We then provide in Sect. 3 a dynamic programming based algo-
rithm that computes all the solutions to this problem. This task is not trivial
as dynamically assigning the jobs may lead to differents amounts of memory
needed to be allocated. Since the time complexity of this algorithm is not poly-
nomial in the input size, we apply the Trimming-of-the-State-Space technique
[6] in Sect. 4 obtaining an approximation algorithm that is FPT with respect to
the path-width of the graph. Finally, we give some concluding remarks in Sect. 5.

4 Recall that an algorithm is fixed-parameter tractable (FPT) with respect to h if its
running time is bounded by f(h).|I|O(1) where |I| is the size of the instance and f
is an arbitrary function depending only on the parameter h.



200 E. Angel et al.

2 Definitions

Throughout this paper we consider simple, finite, undirected graphs. Let us
start by defining the notions of path decomposition and path-width. They were
initially introduced in the framework of graph minor theory [11]. A path decom-
position of a graph G(J,E) is a pair (P,X), where P := (J(P ), E(P )) is a path,
and X := (Xi)i∈J(P ) is a family of subsets of J satisfying:

1. ∪i∈J(P )Xi = J ;
2. ∀(j, j′) ∈ E, there exists an i ∈ J(P ) such that {j, j′} ⊆ Xi;
3. ∀j, j′, j′′ ∈ J(P ), if j′ lies on the path from j to j′′ then Xj ∩ Xj′′ ⊆ Xj′ .

The width of a path decomposition is max(|Xi|−1 : i ∈ J(P )) and the path-width
of G is the minimum width of a path decomposition of G. The construction of
such a path decomposition is illustrated on Fig. 3(a), and the result is presented
on Fig. 3(b). When P is required to be a tree instead of being a path, previous
definitions straightforwardly extend to the definitions tree decomposition and
tree-width of a graph.
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j8 j10

j9j7

X1

X2

X3 X4 X5

X6

(a) Construction of X := (Xi)i∈J(P ), a fam-
ily of subsets of J satisfying the three prop-
erties of a path decomposition.

X1 X2 X3 X4 X5 X6
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(b) Path decomposition (P,X) of the neighborhood graph G(J,E).

Fig. 3. Example of a path decomposition (P, X) of the neighborhood graph G(J, E),
where X is composed by the subsets X1 = {j1, j2, j3}, X2 = {j3, j4, j5}, X3 =
{j4, j5, j6}, X4 = {j6, j7}, X5 = {j7, j8, j9}, X6 = {j8, j9, j10} in (a) and (P, X) is
presented in (b). This path decomposition is optimal with respect to the path-width.
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In order to define the notion of vertex separation number, which is equiva-
lent to path-width [7], let us introduce the notion of (linear) layout of a graph
G(J,E), which is simply a one-to-one mapping L : J → {1, 2, . . . , |J |}. For any
layout L, we define

VL(i) := {j ∈ J | L(j) ≤ i and ∃j′ ∈ J such that (j, j′) ∈ E and L(j′) > i}.

Thus VL(i) is the set of vertices of G mapped to integers less than or equal to i
and that are adjacent to vertices mapped to integers greater than i. Then the
vertex separation of G with respect to L, vsL(G), is the maximum number of
vertices in any VL(i). And eventually, the vertex separation number of G is the
minimum, over all possible layouts L of G, of vsL(G). Formally,

vsL(G) := max
1≤i≤|J|

{|VL(i)|}

and
vs(G) := min{vsL(G) | L is a linear layout of G}.

We note L∗ := arg minL vsL(G), i.e. L∗ is a linear layout associated with the
vertex separation number. Such an optimal numbering is used on Figs. 2 and 3.
When G has a path-width bounded by a constant integer value h, such a lay-
out can be obtained in polynomial time by constructing a linear decomposition
(P,X) of G with width h [1], and using an algorithm presented in [7], which (by
using a suitable data structure) transforms a given optimal path-decomposition
into an optimal layout L∗. It has been proved that pw(G) = O(log(n)tw(G)) for
any graph G on n vertices [8], and therefore vs(G) = O(log(n)tw(G)), where pw
and tw mean path-width and tree-width respectively.

3 An Exact Algorithm Using Dynamic Programming

For sake of readability, the presentation of the algorithm is done for two
machines. But it can be generalized to a constant number k of machines, with
k > 2, as we will see in Sect. 5. In the following, we assume that the jobs have
been numbered such that L∗(ji) = i, for 1 ≤ i ≤ n, i.e. the layout is optimal
with respect to the vertex separation number.

The dynamic programming goes through n phases. Each phase i, with i =
1, . . . , n, processes the job ji and produces a set Si of states. Each state in the
state space Si is a vector S = [s1, s2, s3, s4, Ci] ∈ Si, which encodes a partial
solution for the first i jobs, i.e. an assignment of the first i jobs to the machines,
and where:

1. s1 (resp. s2) is the total processing time on the first (resp. second) machine
in the partial schedule,

2. s3 (resp. s4) is the total amount of memory required by the first (resp. second)
machine in the partial schedule,
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3. Ci is an additional structure, called combinatorial frontier . For a given partial
solution from j1 to ji, it is defined as Ci := (VL(i), σi, σ

′
i) with σi : VL(i) →

{1, 2} and σ′
i : VL(i) → {0, 1}, such that σi(j) is the machine on which j

has been assigned, and σ′
i(j) := 1 if the machine on which j has not been

assigned, i.e. the machine 3 − σi(j), has already memorized the data of j.

Notice that in the definition of Ci we use only the set of vertices VL(i), instead
of the whole set {1, . . . , i}, since these vertices are the only ones needed to
compute additional amounts of memory induced by the future tasks’s assign-
ment. Moreover, the number of distinct combinatorial frontiers Ci is equal to
4|VL(i)| ≤ 4vs(G).

The algorithm main structure is summarized in Algorithm 1.

Algorithm 1. Summary of the exact dynamic programming algorithm.
input : A graph G(J, E) where L∗(ji) = i, for 1 ≤ i ≤ n
output: A solution vector s

1 S1 := {[p1, 0, m1 +
∑

j∈N (j1)
mj , 0, C1

1 ], [0, p1, 0, m1 +
∑

j∈N (j1)
mj , C

2
1 ]};

2 foreach i ← 2, n do
3 foreach [s1, s2, s3, s4, Ci−1] ∈ Si−1 do
4 Compute α1

i and C1
i ;

5 Si ← Si ∪ [s1 + pi, s2, s3 + α1
i , s4, C

1
i ];

6 Compute α2
i and C2

i ;
7 Si ← Si ∪ [s1, s2 + pi, s3, s4 + α2

i , C
2
i ];

8 end

9 end
10 s ← [s1, s2, s3, s4, Cn] ∈ Sn with s3 ≤ M1 and s4 ≤ M2 and such that

max{s1, s2} is minimum;

Line 1 is the initialization phase. The set S1 contains two states, the
first (resp. second) is when job 1 is assigned on machine 1 (resp. 2). C1

1 :=
(VL(1), σ1, σ

′
1) is the combinatorial frontier when job j1 is assigned on machine 1.

Either VL(1) = {j1} or VL(1) = ∅. In case VL(1) = {j1} we have σ1(j1) := 1 and
σ′
1(j1) := 0. Similarly, C2

1 is the combinatorial frontier when job j1 is assigned on
machine 2. Then at each iteration in the lines 4–7, for each state in Si−1 we add
two states in Si: The state in line 5 (resp. 7) corresponds to the case when job ji

is assigned on machine 1 (resp. 2) and α1
i (resp. α2

i ) is the memory induced by
this assignment. In order to show how to compute α1

i , used in Line 5, we define
two sets of jobs, namely J1 and J2, such that

J1 := {j ∈ VL(i − 1) ∩ N (ji) : σi−1(j) �= 1 ∧ σ′
i−1(j) = 0},

J2 := {jk ∈ N (ji) : k > i ∧ ∀jl ∈ VL(i − 1) ∩ N (jk) σi−1(jl) �= 1}.

J1 is the set of jobs that are in the neighborhood of ji, have not been assigned
to machine 1, and have not been memorized by machine 1 either. J2 is the set of
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jobs that are in the neighborhood of ji, not already assigned, and such that they
do not have a job in their neighborhood already assigned to machine 1. Then,
we have

α1
i :=

∑

j∈J1∪J2

mj +
{

mi if ∀jl ∈ VL(i − 1) ∩ N (ji), σi−1(jl) �= 1
0 otherwise

To illustrate the sets J1 and J2, let us consider Fig. 4 where we want to
assign j6 to machine 1, and where J ′ = {j1, j2} is assigned to machine 1
and J ′′ = {j3, j4, j5} is assigned to machine 2. We have VL(5) = {j4, j5},
N (j6) = {j4, j5, j7} so VL(5) ∩ N (j6) = {j4, j5}. As J ′′ = {j3, j4, j5} is assigned
to machine 2, we have σ5(j4) �= 1, σ5(j5) �= 1 and σ′

5(j4) = σ′
5(j5) = 0. There-

fore J1 = {j4, j5}, i.e. assigning j6 to machine 1 forces this machine to allocate
an amount of memory for j4 and j5. Moreover, we have j7 ∈ N (j6) such that
∀jl ∈ VL(5)∩N (j7), σ5(jl) �= 1. Therefore J2 = {j7}, i.e. assigning j6 to machine
1 forces this machine to allocate an amount of memory for j7.

j1

j2

j3 j4

j5 j6 j7

j8

j9

j10

J1

J2

J ′ assigned to
machine 1

J ′′ assigned to
machine 2

Fig. 4. An example illustrating the sets of jobs J1 and J2, when i = 6, J ′ = {j1, j2} is
assigned to machine 1 and J ′′ = {j3, j4, j5} is assigned to machine 2.

Value α2
i , used in Line 7, is similarly computed. Eventually, let us show how

to obtain the new combinatorial frontier Ci := (VL(i), σi, σ
′
i) in Line 5 and 7,

denoted by C1
i and C2

i respectively, from Ci−1 := (VL(i − 1), σi−1, σ
′
i−1). Let us

consider the first case, i.e. the vertex ji is assigned on the first machine, and
let us show how to obtain C1

i . If ji ∈ VL(i), then σi(ji) := 1, and σ′
i(ji) := 1

if ∃j ∈ VL(i − 1) ∩ N (ji) such that σi−1(j) = 2, and σ′
i(ji) := 0 otherwise. For

j ∈ (VL(i)\{ji})∩N (ji) we have σi(j) := σi−1(j) and σ′
i(j) := 1 if σ′

i−1(j) = 1 or
σi(j) = 2, and 0 otherwise. For j ∈ VL(i)\({ji}∪N (ji)) we have σi(j) := σi−1(j)
and σ′

i(j) := σ′
i−1(j). The combinatorial frontier C2

i can be similarly computed.
Notice that in the dynamic programming algorithm, if two states S and S′ have
the same components, including the same combinatorial frontier, then only one
of them is kept in the state space. The time complexity to test whether two
states S and S′ are the same, is thus O(vs(G)).

Let psum :=
∑n

i=1 pi and msum :=
∑n

i=1 mi, then for each vector S =
[s1, s2, s3, s4, Ci] ∈ Si, s1 and s2 are integers between 0 and psum, s3 and s4
are integers between 0 and msum, and we have |Si| = O(p2sum × m2

sum × 4vs(G)).
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The time complexity of this algorithm is proportional to
∑n

i=1 |Si|. Thus, the
overall complexity is O(n × vs(G) × p2sum × m2

sum × 4vs(G)).
The time complexity of this algorithm being pseudo-polynomial, we are going

to transform it into an approximation FPT algorithm with respect to the path-
width of the neighborhood graph.

4 Getting an Approximated Algorithm via Trimming
Techniques

In this section, we propose an approximated algorithm, derived from Algorithm 1
to get an FPT approximation algorithm. The main idea is to apply the trimming-
the-state technique [14] and to withdraw, during the execution of the algorithm,
states that are close to each other.

We define Δ := 1 + ε/2n, with ε > 0 a fixed constant. Let us first consider
the first two coordinates of a state S = [s1, s2, s3, s4, Ci]. We have 0 ≤ s1 ≤ psum

and 0 ≤ s2 ≤ psum. We divide each of those intervals into intervals of the form [0]
and [Δl,Δl+1], with l an integer value getting from 0 to L1 := 
logΔ(psum)� =

ln(psum)/ln(Δ)� ≤ 
(1+ 2n

ε )ln(psum)�. In the same way, we divide the next two
coordinates into intervals of the form [0] and [Δl,Δl+1], with l an integer value
getting from 0 to L2 := 
logΔ(msum)�. The union of those intervals defines a
set of axis-aligned and non-overlapping boxes in a four dimensional space. If two
states have the same combinatorial frontier and have their first four coordinates
falling into the same box, then they encode similar solutions.

The approximation algorithm proceeds in the same way as the dynamic pro-
gramming Algorithm 1, except that we add a trimming phase. The trimming
phase works as follows. If in a box, there are more than one state with the same
combinatorial frontier, then we keep only one of them (chosen arbitrarily). We
will denote by Ui the (untrimmed) state space obtained before performing that
trimming phase at the i-th phase of the algorithm, and Ti the (trimmed) state
space obtained after thinning out and trimming Ui. Algorithm 2 fully describes
the approximated dynamic programming algorithm.

The worst time complexity of this algorithm is O(n×vs(G)×(L1)2×(L2)2×
4vs(G)). Since the size of an instance I is Θ(n + |E| + ln(psum + msum)), this
algorithm is therefore FPT with respect to the path-width. Let us also notice that
if the tree-width is a constant h, then the time complexity remains polynomial
since, as mentioned in Sect. 2, vs(G) = O(log(n)tw(G)). Moreover, the tree-
width of G being a constant h, we can construct a layout L such that vsL(G) =
O(log(n)h) in polynomial time by constructing a tree decomposition (T,X) of
G with width h [1] and using works in [7,13].

Theorem 1. There exists an FPT algorithm with respect to the path-width,
which returns a solution for the problem Pk|G,mem|Cmax within a ratio of
(1 + ε) for the optimum makespan, where the memory capacity Mi, 1 ≤ i ≤ k,
of each machine may be exceeded by at most a factor (1 + ε).
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Algorithm 2. The approximated dynamic programming algorithm.
input : A graph G(J, E) where L∗(ji) = i, for 1 ≤ i ≤ n
output: A solution vector s

1 S1 := {[p1, 0, m1 +
∑

j∈N (j1)
mj , 0, C1

1 ], [0, p1, 0, m1 +
∑

j∈N (j1)
mj , C

2
1 ]};

2 T1 := S1;
3 foreach i ← 2, n do
4 Ui := ∅;
5 foreach [s1, s2, s3, s4, Ci−1] ∈ Ti−1 do
6 Compute α1

i and C1
i ;

7 Ui ← Ui ∪ [s1 + pi, s2, s3 + α1
i , s4, C

1
i ];

8 Compute α2
i and C2

i ;
9 Ui ← Ui ∪ [s1, s2 + pi, s3, s4 + α2

i , C
2
i ];

10 end
11 Compute a trimmed copy Ti of Ui;

12 end
13 s ← [s1, s2, s3, s4, Cn] ∈ Tn with s3 ≤ (1 + ε)M1 and s4 ≤ (1 + ε)M2 and such

that max{s1, s2} is minimum;

As stated before we present here the proof when k = 2. In the conclusion we
mention the general case when k is any fixed constant. The proof of this theorem
relies on the following lemma.

Lemma 1. For each state S = [s1, s2, s3, s4, Ci] ∈ Si, there exists a state T =
[s#1 , s#2 , s#3 , s#4 , Ci] ∈ Ti such that

s#1 ≤ Δis1 and s#2 ≤ Δis2 and s#3 ≤ Δis3 and s#4 ≤ Δis4. (1)

Proof. The proof of this statement is by recurrence on i. By construction T1 = S1

so the statement is true for i = 1. Now, let us assume that inequalities (1) hold
for some index i − 1, and consider an arbitrary state S = [s1, s2, s3, s4, Ci] ∈
Si. Then, S is computed from a state [w, x, y, z, Ci−1] ∈ Si−1 and either
[s1, s2, s3, s4, Ci] = [w+pi, x, y+α1

i , z, C1
i ] or [s1, s2, s3, s4, Ci] = [w, x+pi, y, z+

α2
i , C

2
i ] must hold. We assume that [s1, s2, s3, s4, Ci] = [w+pi, x, y+α1

i , z, C1
i ] as,

with similar arguments, the rest of the proof is also valid when [s1, s2, s3, s4, Ci] =
[w, x + pi, y, z + α2

i , C
2
i ]. By the inductive assumption, there exists a vector

[w#, x#, y#, z#, Ci−1] ∈ Ti−1 such that

w# ≤ Δi−1w and x# ≤ Δi−1x and y# ≤ Δi−1y and z# ≤ Δi−1z. (2)

The trimmed algorithm generates the vector [w# + pi, x
#, y# + α1

i , z
#, C1

i ] ∈ Ui

and may remove it during the trimming phase, but it must leave some vec-
tor [s#1 , s#2 , s#3 , s#4 , C1

i ] ∈ Ti that is in the same box as [w# + pi, x
#, y# +

α1
i , z

#, C1
i ]. This vector [s#1 , s#2 , s#3 , s#4 , C1

i ] ∈ Ti is an approximation of S =
[s1, s2, s3, s4, Ci] ∈ Si in the sense of (2). Indeed, its first coordinate s#1 satisfies

s#1 ≤ Δ(w# + pi) ≤ Δ(Δi−1w + pi) ≤ Δiw + Δpi ≤ Δi(w + pi) = Δis1, (3)
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its third coordinate s#3 satisfies

s#3 ≤ Δ(y# + α1
i ) ≤ Δ(Δi−1y + α1

i ) ≤ Δiy + Δα1
i ≤ Δi(y + α1

i ) = Δis3, (4)

and its last coordinate C1
i is equal to Ci. By analogous arguments, we can show

that s#2 ≤ Δis2 and s#4 ≤ Δis4. Our assumption is valid during the transition
from phase i − 1 to i, which completes the inductive proof.

�

Let us now go back to the proof of Theorem 1. At the end of phase n, the
untrimmed algorithm (Algorithm 1) outputs the vector s = [s1, s2, s3, s4, Cn]
that minimizes the value max{s1, s2} such that s3 ≤ M1 and s4 ≤ M2. By
Lemma 1, there exists a vector [s#1 , s#2 , s#3 , s#4 , Cn] ∈ Tn whose coordinates are
at most a factor of Δn above the corresponding coordinates of s. We conclude
that our algorithm (Algorithm 2) returns a solution such that the makespan
is at most Δn times the optimal solution and the amount of memory for each
machine is at most Δn its capacity. Moreover Δn ≤ 1+ ε. Indeed, if we consider
functions f(x) = (1 + x/n)n and g(x) = 1 + 2x, with 0 ≤ x ≤ 1 and n ≥ 1, we
have

(1 + x/n)n ≤ 1 + 2x (5)

since f and g are respectively a convex and a linear function in x and the
inequality holds true at x = 0 and x = 1.

So we have constructed an algorithm that returns a solution such that the
makespan is at most (1+ε) times the optimal solution and the amount of memory
for each machine is at most (1+ ε) its capacity. It ends the proof of Theorem 1.

We provide a non-intuitive optimal solution to P2|G,mem|Cmax on Fig. 5.
On that Figure the connected set of colored jobs is assigned to machine 1 while
the non-connected set of white jobs is assigned to machine 2.

j1

j2

j3 j4

j5 j6 j7

j8

j9

j10

Fig. 5. Example of an optimal assignment to P2|G, mem|Cmax for the following
instance : Ml = 21, 1 ≤ l ≤ 2; pji = mji , 1 ≤ i ≤ 10; pj1 = pj2 = pj3 = pj5 =
pj7 = pj9 = pj10 = 1; pj4 = pj8 = 5; pj6 = 9. This optimal assignment induces a
computation time of 11 to machine 1 (resp. 15 to machine 2) and a memory allocation
of 21 to machine 1 (resp. 19 to machine 2). Therefore, the induced makespan is 15 and
the memory capacity of each machine is satisfied.
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5 Conclusion

Given 2 machines and a neighborhood graph of jobs with h-bounded linear-
width or tree-width, we have constructed an algorithm that returns a solution if
at least one solution exists for our scheduling problem with memory constraints.
The output of this algorithm is generated in polynomial time and is such that
the makespan is at most (1 + ε) times the optimal solution and the amount of
memory for each machine is at most (1 + ε) its capacity. Moreover, we have
constructed an algorithm that returns an optimal solution to our problem in
pseudo-polynomial time.

This result can be extended to any constant number of machines as adding
machines means increasing the number of dimensions of a state. It only requires
to redefine the combinatorial frontier where σ′

i(j) would express the machines
on which j has not been assigned and which have memorized the data of j. This
leads to a time complexity O(n×k×vs(G)×(L1)k ×(L2)k ×(k×2k)vs(G)) where
n is the number of phases; k × vs(G) is the time complexity to test whether two
states S and S′ are the same; (L1)k×(L2)k is the number of boxes induced by the
algorithm; and (k × 2k)vs(G) is the number of distinct combinatorial frontiers.
Notice that if the maximum degree of G is bounded by a constant d, we can
lower the previous complexity as at most d machines can memorize the data of
a task. Extending the result to unrelated machines can be easily carried over.

As the algorithm is FPT with respect to the path-width, it is particularly
interesting for graphs with bounded path-width. Given the fact that such a graph
does not occur naturally in large simulations on large meshes, we are wondering
if there are FPT approximation algorithms with respect to more generic graph
parameters such as the tree-width, and the local tree-width [2].
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