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Abstract. In this paper we describe HeSP, a complete simulation frame-
work to study a general task scheduling-partitioning problem on het-
erogeneous architectures, which treats recursive task partitioning and
scheduling decisions on equal footing. Considering recursive partition-
ing as an additional degree of freedom, tasks can be dynamically parti-
tioned or merged at runtime for each available processor type, exposing
additional or reduced degrees of parallelism as needed. Our simulations
reveal that, for a specific class of dense linear algebra algorithms taken as
a driving example, simultaneous decisions on task scheduling and parti-
tioning yield significant performance gains on two different heterogeneous
platforms: a highly heterogeneous CPU-GPU system and a low-power
asymmetric big.LITTLE ARM platform. The insights extracted from
the framework can be further applied to actual runtime task schedulers
in order to improve performance on current or future architectures and
for different task-parallel codes.

1 Introduction and Motivation

Task-parallel programming models have emerged as an appealing solution in
order to tackle the programmability problem on both homogeneous and hetero-
geneous platforms. These efforts aim at reducing user intervention to manage
data dependences, task allocation and data transfer management by delegating
those tasks to underlying runtime task schedulers. However, the ever-increasing
heterogeneity in current (and future) architectures has dramatically aggravated
the challenge for runtime developers; as more types of computing resources are
available, it becomes more difficult to concurrently exploit them in order to opti-
mize co-operative parallel implementations. One of the main conceptual prob-
lems lies on how to optimally (and possibly dynamically) partition a task into
sub-tasks (that is, solving a task partitioning problem), and how to efficiently
schedule them to the most convenient resource among those available in order
to maximize performance (that is, solving a task scheduling problem).

In this paper, we present HeSP (Heterogeneous Scheduler-Partitioner), a
simulation framework that addresses both problems in a simultaneous fashion.
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Based on per-task and data transfers performance models, HeSP adds an addi-
tional degree of freedom to typical task scheduling policies by considering a joint
task partitioning/scheduling approach. The framework proceeds by finding a set
of task partitions that divides the initial workload into a number of sub-tasks
with different granularity, that better fit to the underlying hardware resources
at a given execution point. The approach drives to considerable performance
improvements and more efficient resource utilization. We show that the new
task scheduler-partitioner paradigm is of wide appeal to increase the schedul-
ing quality on highly heterogeneous architectures, and to gain insights that can
be further applied to specific task-parallel implementations, actual runtime task
schedulers, and present and future heterogeneous architectures.

Runtime task schedulers are capable of managing efficient load balancing,
asynchronous out-of-order task execution and handling data across separated
memory spaces, abstracting these mechanisms to the programmer. Concretely,
StarPU [1], OmpSs [2] or XKaapi [4], among others, offer implicit parallel pro-
gramming models with transparent data dependence analysis among tasks, and
support scheduling on heterogeneous processing platforms. Efficient scheduling
under this task-based perspective strongly depends on the quality of the schedul-
ing policies implemented in the runtime, and more specifically, how they address
the special features of the algorithm and the underlying architecture.

These efforts usually consider the static creation and management of equally-
sized tasks operating on uniform data tiles, which naturally drives to an improper
load balancing among computing resources on heterogeneous architectures, given
the different processing capabilities of each type of resource. As a side effect,
establishing the optimal block size, even in the homogeneous target system
case, is a time-consuming effort for the developer, and strongly depends on the
algorithmic properties of the target implementation and the features of the
underlying architecture. Although each processor type typically reaches its
performance peak for substantially different task sizes, and the chosen initial
granularity exposes a fixed amount of parallelism, few strategies have been devel-
oped in order to dynamically adapt task granularity to the underlying heteroge-
neous hardware. Focusing on dense linear algebra implementations, [8] propose
a hierarchical directed acyclic graph (DAG onwards) strategy, creating a two-
level DAG hierarchy on systems featuring two types of computing platforms
(CPU/GPU). Similarly, [5] proposes an offline adaptation of the task grain size
to the processor type and to statically assign tasks to distributed compute nodes.
On the other hand, [3] proposes an alternative approach in which computing
resources are aggregated as needed in order to adapt the computing capabilities
to coarse grain kernels. The Versioning task scheduler for the OmpSs runtime [6]
defines multiple implementations per task, each one targeting a different proces-
sor type, and decides at runtime where to map them based on historical runtime
information.

HeSP extends the aforementioned efforts by exploring the global impact of
arbitrary degrees of task granularity on an arbitrary heterogeneous platform,
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adapting task sizes not only to the individual processor capabilities, but also to
the current degree of available parallelism dictated by a specific algorithm.

1.1 A Motivating Example: Tiled Cholesky Factorization

Let us expose a motivating and illustrative example of the actual problems
related with equally-sized task partitioning on heterogeneous platforms. The
blocked Cholesky factorization decomposes an n×n symmetric positive definite
matrix A stored by s × s blocks of dimension b × b each, into A = LLT where
L is a lower triangular matrix. At runtime, the outer loop in the code depicted
in Fig. 1 that calculates the Cholesky factorization divides the operation into a
number of sub-tasks that, when executed under a task-parallel paradigm, gener-
ate a task DAG as that shown in Fig. 2(a). In the task DAG, nodes correspond
to different tasks, and edges denote data dependencies between them.

void cholesky (double *A[s][s], int b, int s) {
for (int k = 0; k < s; k++) {

chol (A[k][k], b, b); // Cholesky factor. (diag. block)

for (int j = k + 1; j < s; j++)
trsm (A[k][k], A[k][j], b, b); // Triangular solve

for (int i = k + 1; i < s; i++) {
for (int j = i + 1; j < s; j++)

gemm (A[k][i], A[k][j], // Matrix multiplication
A[i][j], b, b);

syrk (A[k][i], A[i][i], b, b); // Symmetric rank -b update
} } }

Fig. 1. C implementation of the blocked Cholesky factorization.
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(a) Task DAG. (b) Compute load trace.

Fig. 2. (a) Task DAG in which the computation evolves from left to right, and
(b) compute load trace generated by the Cholesky factorization in Fig. 1, for a problem
size n = 16, 384, and block size b = 1, 024.

The Cholesky factorization is an appealing example for our purposes: it
exhibits different sub-task types (chol, syrk, gemm and trsm) and complex
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data dependences among them, and it features different degrees of parallelism
as the factorization evolves. Consider, for example, how the DAG depicted in
Fig. 2(a) reduces the potential parallelism (that is, the number of tasks that can
be potentially executed in parallel, typically related with the width of the DAG)
at the first stages of the factorization, and (in a much larger extent) at the last
stages. This is usually translated into processor load patterns like that shown in
Fig. 2(b), that represents a timeline of an execution of the Cholesky factoriza-
tion on a highly heterogeneous platform, composed by 28 Intel Xeon cores and
3 different GPUs. The plot represents the number of active processors as the
execution proceeds. Areas with reduced load are usually due to load imbalance.
Note that this phenomenon can be motivated by two different factors: different
processing capabilities of each processor type, and lack of potential parallelism on
specific stages of the execution. The first can be alleviated by scheduling heuris-
tics (e.g. mapping tasks in the critical path to fast processors), but the second
is inherent to the algorithm, and can be alleviated by dynamic task partitioning
in order to expose additional parallelism at runtime.

Data block (tile) size is a crucial parameter in task-parallel executions, as
it ultimately determines the amount of available parallelism, and the efficiency
of each individual task execution. In Fig. 1, block size is determined by b; note
that, typically, larger block sizes usually imply higher performance per individ-
ual task, and smaller block sizes tend to expose higher degrees of parallelism,
which naturally drives to better processor occupation. In addition, different block
(task) sizes are desired for different architectures, and even for different problem
dimensions in the same architecture.

Altogether, these observations motivate the exploration of new techniques
that explore the impact of heterogeneous or non-uniform task partitioning on the
performance and resource occupation of heterogeneous architectures. In the fol-
lowing, we introduce HeSP, a complete framework that supports the definition of
complex heterogeneous architectures and simulates simultaneous task-scheduling
and task-partitioning schemes that alleviate the aforementioned problems.

2 HeSP: Heterogeneous Scheduler-Partitioner

HeSP is a simulation framework that approximately solves the task scheduling-
partitioning problem targeting heterogeneous architectures. At a glance, the
input to this problem is (1) a hardware platform description where several
finite-size memory spaces are connected according to a certain network topology,
together with a (possibly heterogeneous) set of processors associated with them;
and (2) a task to be computed in that platform. A solution to this problem
consists of (1) a set of tasks –presumably with different granularity–, related by
arbitrary data dependences and equivalent to the input task, and (2) a task-to-
processor mapping. The objective function is typically performance maximiza-
tion, although energy consumption minimization is also supported by HeSP.
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2.1 Features of the Scheduling-Partitioning Simulation Framework

Besides supporting recursive task partitioning, HeSP is designed to be a realis-
tic framework that simulates not only current heterogeneous architectures, but
also state-of-the-art scheduling and data management policies on task-parallel
executions. In the following, we introduce its features in detail.

Task and Data Scheduling Heuristics. HeSP implements different heuristics
for task-to-processor assignments. Random (R-P) and Fastest (F-P) processor
selection policies consider such processor choices among idle processors at the
task release time. The Earliest Idle Time (EIT-P) and Earliest Finish Time
(EFT-P) policies select the processor becoming idle first, and the processor
finishing first if that task is assigned to it, respectively. EFT-P estimates the
finishing time accounting for eventual data transfers if needed. Task schedul-
ing order is specified by choosing between First-come, first-served (FCFS) or
Priority-List (PL) choices. In PL, a priority list is built by sorting tasks by
their critical times in decreasing order. Critical times are computed by averag-
ing task processing time for all processors, and propagating them throughout
the task DAG by a backflow algorithm. The combination of Priority-List and
EFT-P heuristics is practically identical to the well-known HEFT scheduling
algorithm [7].

When several independent memory spaces are present, HeSP considers data
movement for scheduling decisions, considering individual memory spaces of each
accelerator as software caches of a main memory space, typically tied to CPUs.
Common caching policies like write-through (WT), write-back (WB) or write-
around (WA) are used. When a task is about to be scheduled to a processor, the
required data transfers are issued from the source memory space to the memory
space the processor is tied to using prefetching schemes.

Performance and Data Transfer Models. HeSP estimates computing or
transfer times relying on analytical models extracted a priori for each task/data
type and size mapped to any existing processor/interconnect in the system.
These estimations are required when making both scheduling and partitioning
decisions, jointly or in an isolated fashion. The quality of these models will
ultimately determine the accuracy of the simulated scheduling results.

Recursive Task Partitioners. Task partitioners, specified for each task type
willing to be partitioned, are just blocked algorithms (see, for example, Fig. 1
for the specific case of the Cholesky factorization) with an input parameter that
specifies the data granularity/degree of parallelism of the following partition. On
a partitioner invocation, the corresponding emergent sub-tasks are managed by
HeSP by introducing them in the respective task DAG which the partitioned task
belongs to. In Fig. 3, starting from initial chol task –Cholesky factorization–, it
is illustrated how three successive task partitions –corresponding to respective
chol, trsm and syrk blocked algorithms– affect the prior task DAG, and the
corresponding data partitions they induce.

Note that any task can be partitioned again as long as its dependent data
blocks can be divided consistently, so an extremely hierarchical task DAG can
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Fig. 3. Three successive task partitions and corresponding partitioned data blocks.
Tasks and their related data dependences –Q1, Q2 and Q3 quadrants– are shown only
for the first partition for the sake of clarity. (Color figure online)

be constructed by recursively partition its tasks. A task cluster is a set of tasks
generated from a single task partitioning, being the source task their parent. We
refer to the DAG/graph depth to indicate the maximum number of nested task
clusters, and DAG/graph width as the maximum number of tasks that can be
run in parallel. For instance, in the four task DAGs in Fig. 3, the corresponding
depths are 0, 1, 2 and 2, and their widths are 1, 1, 2 and 6. Dependences between
tasks, shown as dashed arrows, represent RaW, WaR and WaW constraints.

Recursive Data Partitioning and Data Coherence Management. New
tasks generated after a partition reference to finer-grained input and output
data dependences, which are partitions of the initial data block(s) of the parent
task (see Fig. 3). HeSP implements validate/invalidate mechanisms to ensure
data coherency among different memory spaces while handling asynchronous
memory transfers. Since recursive task partitions induce corresponding recursive
data block partitions, the existing partitioned data blocks are organized in a
directed acyclic graph structure (data DAG onwards) in which nodes represent
data blocks and directed links represent nesting relations between them; for
example, A −→ B means B is fully contained in A and A is bigger than B.

Armed with the data DAG, validations and invalidations are propagated
by top-bottom and bottom-top mechanisms throughout this graph to maintain
coherence. For instance, to ensure that a task can start its computation and store
the result in an output block OB, not only the block OB must be invalidated
on the remaining memory spaces in which the block might be present, but the
hypothetical data block partitions contained in OB and the bigger blocks in
which OB might be contained must be invalidated as well. Similarly, after a
certain task has finished its computation updating OB, both OB and all the
blocks within OB must be validated in the memory space corresponding to the
processor assigned to that task.
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In general, these data block partitions induced by task partitions form tree
structures. However, it is possible to have a pair of blocks which intersect par-
tially, nested within a common bigger parent block. This case shows up when
two partitions of non-divisible grain sizes are applied to the same data block (for
example, quadrant Q2 in Fig. 3). In this case, a new data block descriptor which
refers to its intersection is introduced in the data DAG as a common child node
of two intersecting blocks (see Fig. 4). With this mechanism, together with the
validate/invalidate propagation mechanisms, data coherency is ensured for all
possible data partitions and hierarchical data graphs.

Q2
A B

DC

a b

fed

g h

c

i

Q2

b de f hB A DC

Bb Ab Ad CdBe Ae DeCeBf Df DhChc a ig

Fig. 4. A data block (Q2 quadrant) can be simultaneously divided according to differ-
ent tilings (yellow and blue tilings, corresponding to trsm and syrk task partitions in
Fig. 3). Additional data block descriptors (green) are constructed to represent partial
overlaps between not nested data blocks. (Color figure online)

Iterative Solver. HeSP solves the scheduling-partitioning problem by itera-
tively searching for those hierarchical task DAGs which best fit to an hetero-
geneous processing platform—according to performance optimization—given a
specific combination of the mentioned scheduling heuristics—processor selection
heuristic and task ordering. A schedule stage is followed by a partition stage for
each iteration, being the number of iterations a user-defined parameter.

At the partition stage, HeSP chooses a candidate task to be partitioned
or a candidate task cluster to be merged back/repartitioned with a different
granularity. A global analysis of the schedule-partition done in the previous
iteration can provide useful information—i.e., bottleneck identification, number
of idle resources, or too fine grained tasks— to help the iterative process to
converge towards a better overall schedule-partition. This is the reason why we
chose an iterative approach as the first implementation of HeSP instead of a
local-scoped constructive approach, in which scheduling or partitioning decisions
are made at every task arrival to the scheduling queue.

The partition procedure is based on two stages: (1), task selection to build
the candidate list, and (2), sampling type to choose the final candidate. For (1),
HeSP implements three different policies: All, CP and Shallow. All selects all
tasks of the previous step, CP selects only tasks belonging to the critical path,
and Shallow selects those tasks whose depth (that is, number of task clusters
that contain it) is minimal. All existing task clusters are candidates to be merged
back or repartitioned. For each added candidate, a positive score is computed
by subtracting the current cost delay by an estimated cost after its eventual
partition or merge, being this estimation based on the available parallelism at its
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scheduling time of the previous step. For each candidate whose data dependences
have a characteristic size d, a partition parameter p ∈ (0, 1] is chosen such that
new tasks created after the eventual partition will depend on data blocks of size
b = p × d1. The more available parallelism is exposed, the smaller p is set in
order to generate a higher amount of parallel finer-grained tasks.

In the second stage, a final selection among all candidates is done according
to Hard or Soft procedures. In Hard, the candidate with the maximum score
is chosen; in Soft, the candidate is randomly selected such that the selection
probability equals the score divided by the sum of all scores.

3 Performance Results on Heterogeneous Architectures

In the following, we will feed HeSP with data describing two different hetero-
geneous architectures: bujaruelo, a highly heterogeneous CPU-GPU architec-
ture, composed by 28 Intel Xeon-E5 2695v3 cores running at 2.3 GHz, 2 GeForce
GTX980 GPU and 1 GTX950; and odroid, a low-power asymmetric ARM archi-
tecture with two types of processors: 4 slow Cortex-A7 and 4 fast Cortex-A15,
running at 800 and 1300 MHz respectively. Nvidia cuBLAS/cuSOLVER v7.5
and Intel MKL v11.3 were used to extract task performance models on bujaru-

elo, and BLIS v0.9.1 was used on odroid.

3.1 Framework Validation and Evaluation of Scheduling Heuristics

The goal of the first set of experiments is twofold: first, to validate the results
extracted from HeSP by comparing them with an equivalent execution using a
real task scheduler; second, to illustrate the impact on performance of several
scheduling policies in HeSP when using homogeneous or uniform task partitions.

Each point in the OmpSs line in Fig. 5 (left) corresponds to the best schedul-
ing performance out of 20 OmpSs executions for each grain size. These 20 trials
were set to let OmpSs Versioning scheduler [6] improve itself by gathering enough
task execution delay samples for each task type/size and processor. The other
two curves—HeSP-Replica-PM and HeSP-Replica-RD—denote the perfor-
mance attained by HeSP when applying the same task-to-processor mapping
extracted from the best OmpSs trial, using our performance models and the real
OmpSs task delays, respectively, for each uniform tiling.

Differences in performance between HeSP-Replica-RD and OmpSs points
are a measure of the OmpSs runtime overhead while the differences between
HeSP-Replica-PM and HeSP-Replica-RD are mainly due to the accuracy
of our performance models and possible differences between own OmpSs task
delay instrumentation module and the instrumentation we used to extract our
performance models. Summarizing, the differences between the replicated sched-
ules are small enough and easily explainable to assert the validity of the following
results. In general, our observations reveal a qualitative matching between real
and simulated workloads for all problem sizes, with deviations that can be easily
explained and do not usually affect the quality of the observations.
1 A task cluster is a candidate to be merged if p = 1 or repartitioned if p < 1.
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Fig. 5. Left: Comparison between OmpSs and their replicated schedules. Right: Com-
parison between different scheduling policies and block sizes in HeSP.

To introduce the context where our heterogeneous or non-uniform partition-
ing approach takes place and its potential benefits, Fig. 5 (right) reports the
performance obtained by running HeSP simulations using different scheduling
policies for different uniform task partitions. Some facts are remarkable: first,
the optimal tile size does not only depend on the underlying architecture and
problem size, but also on the selected scheduling policy; second, for every policy,
performance curves follow a similar pattern, exhibiting a peak performance in a
trade-off tile size that best balances potential parallelism and optimal individual
task performance; third, differences in performance are relevant depending on
the selected scheduling policy, being even more dramatic for large tile sizes; this
gives a clue on the potential benefits that will be obtained by using a non-uniform
partitioning scheme, as exposed next.

3.2 Impact of Non-uniform Partitioning on Performance

In the following, we illustrate the main performance improvements obtained with
HeSP using All/Soft configuration for task partitioning selection. Table 1 reports
performance values on bujaruelo and odroid using the best uniform and non-
uniform partitions found by HeSP for different scheduling policies2, together with
additional metrics that clarify many of the concepts exposed hereafter, including
average processor load, optimal/average block size and task DAG depth. The
first point to notice is the overall improvement attained for all non-uniform task
partitions found by HeSP and the overall reduction in the optimal average block
size on non-uniform partitions.

Note the direct relation between the average processor occupancy and the
improvements of the non-uniform partitions. For example, EIT-P with uniform
partitioning yields high processor occupancies (between 91 % and 98.5 %), so the
potential benefit expected from additional extracted parallelism is poor, ranging
between 0.76 % and 2.02 %. Contrary, uniform partitions on EFT-P schedules
yield better performance than EIT-P ones while still leaving more room for
potential parallelism. Although the quality of EFT-P schedules could actually
leave little room for additional improvements, the greater processor availability

2 In all cases, we use WB as the caching mechanism.
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Table 1. Performance comparison for bujaruelo and odroid.

bujaruelo (32, 768 × 32, 768 Cholesky factorization in single precision)

Best Uniform Best Found Non-uniform

Perf Avg. load Block Perf Improve Avg. load Avg DAG

Config (GFLOPS) (%) size (GFLOPS) (%) (%) block size depth

FCFS/R-P 3453.91 75.3 1024 4189.17 21.29 82.3 991.23 2

PL/R-P 4460.30 88.4 1024 4752.43 6.55 89.4 978.33 2

FCFS/F-P 2846.78 53.4 2048 3687.93 29.55 63.6 446.52 3

PL/F-P 3381.76 68.4 2048 3614.28 6.88 66.2 1165.70 3

FCFS/EIT-P 5650.10 91.3 1024 5747.87 1.73 92.3 1002.26 2

PL/EIT-P 6096.91 93.9 1024 6206.55 1.80 95.4 1009.91 2

FCFS/EFT-P 6581.96 23.3 2048 7569.34 15.00 63.9 412.15 5

PL/EFT-P (*) 7046.87 55.9 2048 8030.50 13.96 86.9 407.41 4

odroid (8, 192 × 8, 192 Cholesky factorization in double precision)

Best Uniform Best Found Non-uniform

Perf Avg. load Block Perf Improve Avg. load Avg DAG

Config (GFLOPS) (%) size (GFLOPS) (%) (%) block size depth

FCFS/R-P 3.75 63.9 512 4.87 29.9 70.8 458.89 2

PL/R-P 4.89 70.9 512 5.84 19.3 77.4 461.11 2

FCFS/F-P 7.59 69.7 512 8.10 6.74 73.7 335.80 3

PL/F-P 8.55 88.4 512 8.80 2.91 92.0 466.00 2

FCFS/EIT-P 8.46 98.5 256 8.52 0.76 99.1 255.19 2

PL/EIT-P 8.74 96.2 512 8.91 2.03 97.7 463.76 2

FCFS/EFT-P 8.77 89.6 512 8.96 2.20 96.2 301.23 3

PL/EFT-P (*) 8.84 91.4 512 9.08 2.75 99.0 352.07 3

they offer permits the iterative scheduler-partitioner to find finer-grained par-
titions (see Fig. 6(d)), attaining remarkable net improvements for bujaruelo

(between 13.96 % and 15 %). Note also that bigger performance improvements
do not only correspond with lower processor occupancies, but also with higher
task DAG depths (up to 5 in bujaruelo). This observation reinforces the impor-
tance of managing arbitrary task granularity, introduced by HeSP, extending the
idea of using only two degrees of granularity for two types of processors intro-
duced in other works [8].

This reasoning also applies when comparing the highly heterogeneous
bujaruelo with the less heterogeneous odroid since the optimal uniform tile
size seems to fit better to homogeneous platforms, yielding higher occupancies
for all scheduling policies tested, hence leaving less room for non-uniform par-
titioning improvements. Even with those limitations, HeSP does always provide
improvements in all cases.

Note the even better improvements, with simpler –i.e. less deep– partitions,
attained by our scheme when jointly applied with simpler schedulers –R-P/F-P–
and naive FCFS task ordering. Since bad scheduling decisions exhibit a smaller
worsening global impact when applied to a bigger set of smaller tasks, task par-
titions cooperating with a simple scheduler might alleviate its poor performance:
under highly heterogeneous scenarios and available resources, it could be safer to
partition a task rather than taking the risk of assigning it to the wrong processor.
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(a) Best uniform partitioning. Task scheduling.

(b) Best uniform partitioning. Compute load.

(c) Best non-uniform partitioning. Task scheduling.

(d) Best non-uniform partitioning. Task granularity.

(e) Best non-uniform partitioning. Compute load.

Fig. 6. Execution traces for the blocked Cholesky factorization on bujaruelo (left
column, n = 32, 768) and odroid (right column, n = 8, 192), using PL/EFT-P. For
each case, traces are adjusted to fit the longest execution. In the task scheduling traces,
colors correspond to the legend in Fig. 3. (Color figure online)

Figure 6 reports execution traces for the best-performing configurations
observed for both architectures3 (marked in Table 1 with an asterisk), using
uniform and non-uniform task partitioning setups. In the traces, each line cor-
responds to a different processor. In bujaruelo, (25 CPUs on top, 3 GPUs on
bottom), observe the amount of idle times (marked in light blue) in the early
and last stages of computation; see how the corresponding best non-uniform
schedule fills those gaps by exposing extra parallelism through task partitioning.
Concretely, observing the task granularity trace, in which granularity is reported
as a gradient (from light green for small tasks to dark blue for large tasks), it is
possible to conclude that HeSP is able to refine task granularity only on those
stages in which processor occupancy is scarce, improving global performance.

3 Detailed trace generation is supported by HeSP using Paraver (http://www.bsc.es/
computer-sciences/performance-tools/paraver).

http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver
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The increase in compute load can be observed by comparing the corresponding
uniform and non-uniform compute load traces (Figs. 6(b) and (e)).

Similar qualitative results are observed for odroid, filling the gaps that arise
in the same stages on slow cores (top four lines in the trace) with finer-grained
tasks. In this case, as was observed in Table 1, the opportunities for improvement
are more reduced, but overall performance is also increased by our scheme.

4 Conclusion

In this paper we have presented the HeSP framework and its internal mech-
anisms towards joint scheduling/partitioning tasks on heterogeneous architec-
tures. Insights reveal that important performance benefits and improved proces-
sor loads can be extracted from the framework for a family of scheduling policies.
The extracted insights for the Cholesky factorization can be applied to other
irregular task-parallel implementations, or to arbitrary heterogeneous architec-
tures.

The static iterative implementation of HeSP has shown to be useful to explore
the practical performance bounds of a scheduling-partitioning problem, and it
naturally paves the road towards a constructive implementation, in which local
information is applied on a per-task basis. This approach can be applied directly
on actual task schedulers (e.g. OmpSs) or programming models, in order to
introduce in them the recursive task partitioning as an additional degree of free-
dom. Future work also includes the exploration of more sophisticated scheduling
techniques attending not only performance optimization, but also energy con-
sumption on different architectures.
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