Skip to main content

Fivebranes and 4-Manifolds

  • Chapter
  • First Online:
Arbeitstagung Bonn 2013

Part of the book series: Progress in Mathematics ((PM,volume 319))

Abstract

We describe rules for building 2d theories labeled by 4-manifolds. Using the proposed dictionary between building blocks of 4-manifolds and 2d \(\mathcal{N} = (0,2)\) theories, we obtain a number of results, which include new 3d \(\mathcal{N} = 2\) theories T[M 3] associated with rational homology spheres and new results for Vafa–Witten partition functions on 4-manifolds. In particular, we point out that the gluing measure for the latter is precisely the superconformal index of 2d (0, 2) vector multiplet and relate the basic building blocks with coset branching functions. We also offer a new look at the fusion of defect lines/walls, and a physical interpretation of the 4d and 3d Kirby calculus as dualities of 2d \(\mathcal{N} = (0,2)\) theories and 3d \(\mathcal{N} = 2\) theories, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, detQ = ±1.

  2. 2.

    Note, this cannot be deduced from the Rokhlin’s theorem as in the case of the E 8 manifold.

  3. 3.

    Sometimes, to avoid clutter, we suppress the choice of the gauge group, G, which in most of our applications will be either G = U(N) or G = SU(N) for some N ≥ 1. It would be interesting to see if generalization to G of Cartan type D or E leads to new phenomena. We will not aim to do this analysis here.

  4. 4.

    Recall, that a free Fermi multiplet contributes to the central charge (c L , c R ) = (1, 0).

  5. 5.

    Another nice property of such 4-manifolds is that they admit an achiral Lefschetz fibration over the disk [Har79].

  6. 6.

    But not all! See Fig. 3 for an instructive (counter)example.

  7. 7.

    Depending on the context, sometimes M 3 will refer to a single component of the boundary.

  8. 8.

    While this problem has been successfully solved for a large class of 3-manifolds [DGG1, CCV, DGG2], unfortunately it will not be enough for our purposes here and we need to resort to matching M 3 with T[M 3] based on identification of vacua, as was originally proposed in [DGH11]. One reason is that the methods of loc. cit. work best for 3-manifolds with sufficiently large boundary and/or fundamental group, whereas in our present context M 3 is itself a boundary and, in many cases, is a rational homology sphere. As we shall see below, 3d \(\mathcal{N} = 2\) theories T[M 3] seem to be qualitatively different in these two cases; typically, they are (deformations of) superconformal theories in the former case and massive 3d \(\mathcal{N} = 2\) theories in the latter. Another, more serious issue is that 3d theories T[M 3] constructed in [DGG1] do not account for all flat connections on M 3, which will be crucial in our applications below. This second issue can be avoided by considering larger 3d theories T (ref)[M 3] that have to do with refinement/categorification and mix all branches of flat connections [FGSA, FGP13]. Pursuing this approach should lead to new relations with rich algebraic structure and functoriality of knot homologies.

  9. 9.

    The converse is not true since some line defects in 2d come from line operators in 3d.

  10. 10.

    Explaining how to do this is precisely the goal of the present section.

  11. 11.

    Note, in [VW94] the symmetry group U(1) U is enhanced to the global symmetry group SU(2) U due to larger R-symmetry of the starting point.

  12. 12.

    When M 4 is non-compact χ(M 4) should be replaced by the regularized Euler characteristic, and when G = U(N) one needs to remove by hand the zero-mode to ensure that the partition function does not vanish identically.

  13. 13.

    Here and in what follows the instanton number is not necessarily an integer.

  14. 14.

    Let us note that H 2(M 4 +) ≠ H 2(B) ⊕ H 2(M 4 ). However, the lattice H 2(M 4 +) can be obtained from the lattice H 2(B) ⊕ H 2(M 4 ) by the so-called gluing procedure that will be described in detail shortly.

  15. 15.

    Such lift exists because the manifold is Spinc.

References

  1. D.M. Austin, SO(3)-instantons on L(p, q) ×R. J. Differ. Geom. 32 (2), 383–413 (1990)

    MathSciNet  MATH  Google Scholar 

  2. T. Asselmeyer, Generation of source terms in general relativity by differential structures. Classical Quantum Gravity 14, 749–758 (1997). [ gr-qc/9610009 ]

    Google Scholar 

  3. S. Akbulut, 4-Manifolds. Oxford Graduate Texts in Mathematics, vol. 25 (Oxford University Press, Oxford, 2016)

    Google Scholar 

  4. A. Adams, D. Guarrera, Heterotic flux Vacua from hybrid linear models (2009) [ arXiv:0902.4440 ]

  5. B.S. Acharya, S. Gukov, M theory and singularities of exceptional holonomy manifolds. Phys. Rep. 392, 121–189 (2004). [ hep-th/0409191 ]

    Google Scholar 

  6. B.S. Acharya, C. Vafa, On domain walls of N=1 supersymmetric Yang-Mills in four-dimensions (2001). [ hep-th/0103011 ]

  7. M.F. Atiyah, R.S. Ward, Instantons and algebraic geometry. Commun. Math. Phys. 55 (2), 117–124 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. L.F. Alday, F. Benini, Y. Tachikawa, Liouville/Toda central charges from M5-branes. Phys. Rev. Lett. 105, 141601 (2010). [ arXiv:0909.4776 ]

  9. L.F. Alday, D. Gaiotto, Y. Tachikawa, Liouville correlation functions from four-dimensional Gauge theories. Lett. Math. Phys. 91, 167–197 (2010). [ arXiv:0906.3219 ]

    Google Scholar 

  10. M.F. Atiyah, V. Patodi, I. Singer, Spectral asymmetry and Riemannian geometry. Bull. Lond. Math. Soc 5 (2), 229–234 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Aganagic, H. Ooguri, N. Saulina, C. Vafa, Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings. Nucl. Phys. B715, 304–348 (2005). [ hep-th/0411280 ]

    Google Scholar 

  12. F. Benini, N. Bobev, Two-dimensional SCFTs from wrapped Branes and c-extremization. J. High Energy Phys. 1306, 005 (2013). [ arXiv:1302.4451 ]

  13. C. Bachas, S. Monnier, Defect loops in gauged Wess-Zumino-Witten models. J. High Energy Phys. 1002, 003 (2010). [ arXiv:0911.1562 ]

  14. I. Brunner, D. Roggenkamp, B-type defects in Landau-Ginzburg models. J. High Energy Phys. 0708, 093 (2007). [ arXiv:0707.0922 ]

    Google Scholar 

  15. M. Blau, G. Thompson, Aspects of N(T) ≥ 2 topological gauge theories and D-branes. Nucl. Phys. B492, 545–590 (1997). [ hep-th/9612143 ]

    Google Scholar 

  16. M. Blau, G. Thompson, Euclidean SYM theories by time reduction and special holonomy manifolds. Phys. Lett. B415, 242–252 (1997). [ hep-th/9706225 ]

    Google Scholar 

  17. C. Beem, T. Dimofte, S. Pasquetti, Holomorphic blocks in three dimensions. J. High Energy Phys. 2014 (12), Article 177, 118 pp. (2014)

    Google Scholar 

  18. I. Brunner, H. Jockers, D. Roggenkamp, Defects and D-Brane monodromies. Adv. Theor. Math. Phys. 13, 1077–1135 (2009). [ arXiv:0806.4734 ]

    Google Scholar 

  19. M. Bershadsky, C. Vafa, V. Sadov, D-branes and topological field theories. Nucl. Phys. B463, 420–434 (1996). [ hep-th/9511222 ]

    Google Scholar 

  20. C. Bachas, J. de Boer, R. Dijkgraaf, H. Ooguri, Permeable conformal walls and holography. J. High Energy Phys. 0206, 027 (2002). [ hep-th/0111210 ]

    Google Scholar 

  21. F. Benini, R. Eager, K. Hori, Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups. Lett. Math. Phys. 104 (4), 465–493 (2014)

    Google Scholar 

  22. O. Bergman, A. Hanany, A. Karch, B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories. J. High Energy Phys. 9910, 036 (1999). [ hep-th/9908075 ]

    Google Scholar 

  23. P. Berglund, C.V. Johnson, S. Kachru, P. Zaugg, Heterotic coset models and (0,2) string vacua. Nucl. Phys. B460, 252–298 (1996). [ hep-th/9509170 ]

    Google Scholar 

  24. C.G. Callan, J.A. Harvey, Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B250, 427 (1985)

    Article  MathSciNet  Google Scholar 

  25. N. Carqueville, I. Runkel, Rigidity and defect actions in Landau-Ginzburg models. Commun. Math. Phys. 310, 135–179 (2012). [ arXiv:1006.5609 ]

    Google Scholar 

  26. S. Cecotti, C. Cordova, C. Vafa, Braids, walls, and mirrors (2011). [ arXiv:1110.2115 ]

  27. S.K. Donaldson, An application of gauge theory to four-dimensional topology. J. Differ. Geom. 18, 279–315 (1983)

    MathSciNet  MATH  Google Scholar 

  28. R. Dijkgraaf, P. Sulkowski, Instantons on ALE spaces and orbifold partitions. J. High Energy Phys. 0803, 013 (2008). [ arXiv:0712.1427 ]

    Google Scholar 

  29. J. Distler, E. Sharpe, Heterotic compactifications with principal bundles for general groups and general levels. Adv. Theor. Math. Phys. 14, 335–398 (2010). [ hep-th/0701244 ]

    Google Scholar 

  30. T. Dimofte, D. Gaiotto, S. Gukov, Gauge theories labelled by three-manifolds. Commun. Math. Phys. 325 (2), 367–419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Dimofte, D. Gaiotto, S. Gukov, 3-Manifolds and 3d Indices. [ arXiv:1112.5179 ]

  32. T. Dimofte, M. Gabella, A.B. Goncharov, K-Decompositions and 3d gauge theories (2013). [ arXiv:1301.0192 ]

  33. T. Dimofte, S. Gukov, L. Hollands, Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225–287 (2011). [ arXiv:1006.0977 ]

    Google Scholar 

  34. R. Dijkgraaf, E.P. Verlinde, M. Vonk, On the partition sum of the NS five-brane (2002). [ hep-th/0205281 ]

  35. R. Dijkgraaf, L. Hollands, P. Sulkowski, C. Vafa, Supersymmetric gauge theories, intersecting Branes and free fermions. J. High Energy Phys. 0802, 106 (2008). [ arXiv:0709.4446 ]

    Google Scholar 

  36. J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, et al., Triples, fluxes, and strings. Adv. Theor. Math. Phys. 4, 995–1186 (2002). [ hep-th/0103170 ]

  37. M. Freedman, The topology of four dimensional manifolds. J. Differ. Geom. 17, 357–453 (1982)

    MathSciNet  MATH  Google Scholar 

  38. M. Furuta, Y. Hashimoto, Invariant instantons on S 4. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (3), 585–600 (1990)

    MathSciNet  MATH  Google Scholar 

  39. D.S. Freed, E. Witten, Anomalies in string theory with D-branes. Asian J. Math. 3, 819 (1999). [ hep-th/9907189 ]

  40. H. Fuji, S. Gukov, P. Sulkowski, Super-a-polynomial for knots and BPS states. Nucl. Phys. B867, 506–546 (2013). [ arXiv:1205.1515 ]

    Google Scholar 

  41. J. Fuchs, C. Schweigert, A. Velentino, Bicategories for boundary conditions and for surface defects in 3-d TFT. Commun. Math. Phys. 321 (2), 543–575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Fuji, S. Gukov, P. Sulkowski, H. Awata, Volume conjecture: refined and categorified. Adv. Theor. Math. Phys. 16 (2), 1669–1777 (2012)

    MathSciNet  MATH  Google Scholar 

  43. H. Fuji, S. Gukov, M. Stos̆ić, P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies. J. High Energy Phys. 2013, 175 (2003)

    Google Scholar 

  44. O.J. Ganor, Compactification of tensionless string theories (1996) [ hep-th/9607092 ]

  45. S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Commun. Math. Phys. 255 (3), 577–627 (2005). [ hep-th/0306165 ]

    Google Scholar 

  46. S. Gukov, Gauge theory and knot homologies. Fortschr. Phys. 55, 473–490 (2007). [ arXiv:0706.2369 ]

    Google Scholar 

  47. D. Gaiotto, N=2 dualities. J. High Energy Phys. 1208, 034 (2012). [ arXiv:0904.2715 ]

  48. T. Gannon, C. Lam, Gluing and shifting lattice constructions and rational equivalence. Rev. Math. Phys. 3 (03), 331–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Gannon, C. Lam, Lattices and \(\Theta\)-function identities. I: Theta constants. J. Math. Phys. 33, 854 (1992)

    MathSciNet  MATH  Google Scholar 

  50. T. Gannon, C. Lam, Lattices and θ-function identities. II: Theta series. J. Math. Phys. 33, 871 (1992)

    MathSciNet  MATH  Google Scholar 

  51. J.P. Gauntlett, N. Kim, M five-branes wrapped on supersymmetric cycles. 2.. Phys. Rev. D65, 086003 (2002). [ hep-th/0109039 ]

  52. A. Giveon, D. Kutasov, Seiberg duality in Chern-Simons theory. Nucl. Phys. B812, 1–11 (2009). [ arXiv:0808.0360 ]

    Google Scholar 

  53. S. Gukov, D. Pei, Equivariant Verlinde formula from fivebranes and vortices (2015). [ arXiv:1501.0131 ]

  54. R.E. Gompf, A.I. Stipsicz, 4-manifolds and Kirby calculus. Graduate Studies in Mathematics, vol. 20 (American Mathematical Society, Providence, RI, 1999)

    Google Scholar 

  55. D. Gaiotto, E. Witten, Supersymmetric boundary conditions in N=4 super Yang-Mills theory. J. Stat. Phys. 135, 789–855 (2009). [ arXiv:0804.2902 ]

  56. A. Gadde, S. Gukov, P.J. Putrov, Walls, lines, and spectral dualities in 3d Gauge theories. J. High Energy Phys. 2014, 47 (2014)

    Article  Google Scholar 

  57. J.P. Gauntlett, N. Kim, D. Waldram, M Five-branes wrapped on supersymmetric cycles. Phys. Rev. D63, 126001 (2001). [ hep-th/0012195 ]

  58. D. Gaiotto, G.W. Moore, A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). [ arXiv:0807.4723 ]

    Google Scholar 

  59. S.B. Giddings, J. Polchinski, A. Strominger, Four-dimensional black holes in string theory. Phys. Rev. D48, 5784–5797 (1993). [ hep-th/9305083 ]

    Google Scholar 

  60. S. Gukov, J. Sparks, D. Tong, Conifold transitions and five-brane condensation in M theory on spin(7) manifolds. Classical Quantum Gravity 20, 665–706 (2003). [ hep-th/0207244 ]

    Google Scholar 

  61. M.B. Green, J. Schwarz, E. Witten, Superstring Theory. vol. 1: Introduction, 1st edn. (Cambridge, New York, 1987)

    Google Scholar 

  62. S. Gukov, C. Vafa, E. Witten, CFT’s from Calabi-Yau four folds. Nucl. Phys. B584, 69–108 (2000). [ hep-th/9906070 ]

    Google Scholar 

  63. A. Gadde, L. Rastelli, S.S. Razamat, W. Yan, The 4d superconformal index from q-deformed 2d Yang-Mills. Phys. Rev. Lett. 106, 241602 (2011). [ arXiv:1104.3850 ]

  64. J.L. Harer, Pencils of Curves on 4-Manifolds (ProQuest LLC, Ann Arbor, MI, 1979). Thesis (Ph.D.)-University of California, Berkeley

    Google Scholar 

  65. A. Hanany, E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B492, 152–190 (1997). [ hep-th/9611230 ]

  66. K. Hori, J. Walcher, D-branes from matrix factorizations. C. R. Phys. 5, 1061–1070 (2004). [ hep-th/0409204 ]

    Google Scholar 

  67. M. Itoh, Moduli of half conformally flat structures. Math. Ann. 296 (4), 687–708 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  68. C.V. Johnson, Heterotic coset models. Mod. Phys. Lett. A10, 549–560 (1995). [ hep-th/9409062 ]

    Google Scholar 

  69. V.G. Kac, D.H. Petersen, Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53 (2), 125–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Kapustin, N. Saulina, Surface operators in 3d topological field theory and 2d rational conformal field theory, in Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. Proceedings of Symposia in Pure Mathematics, vol. 83 (American Mathematical Society, Providence, 2011), pp. 175–198

    Google Scholar 

  71. A. Kapustin, N. Saulina, Topological boundary conditions in abelian Chern-Simons theory. Nucl. Phys. B845, 393–435 (2011). [ arXiv:1008.0654 ]

    Google Scholar 

  72. A. Kapustin, E. Witten, Electric-magnetic duality and the geometric Langlands program. Commun. Num. Theor. Phys. 1, 1–236 (2007). [ hep-th/0604151 ]

    Google Scholar 

  73. A. Kapustin, B. Willett, Wilson loops in supersymmetric Chern-Simons-matter theories and duality (2007). [ arXiv:1302.2164 ]

  74. T. Kitao, K. Ohta, N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p,q) - five-brane. Nucl. Phys. B539, 79–106 (1999). [ hep-th/9808111 ]

  75. R. Lockhart, Fredholm, Hodge and Liouville theorems on noncompact manifolds. Trans. Am. Math. Soc. 301 (1), 1–35 (1987)

    Article  MathSciNet  Google Scholar 

  76. F. Laudenbach, V. Poénaru, A note on 4-dimensional handlebodies. Bull. Soc. Math. Fr. 100, 337–344 (1972)

    MathSciNet  MATH  Google Scholar 

  77. N. Marcus, The other topological twisting of N=4 Yang-Mills. Nucl. Phys. B452, 331–345 (1995). [ hep-th/9506002 ]

    Google Scholar 

  78. M. Mackaay, Spherical 2-categories and 4-manifold invariants. Adv. Math. 143 (2), 288–348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  79. J. Minahan, D. Nemeschansky, C. Vafa, N. Warner, E strings and N=4 topological Yang-Mills theories. Nucl. Phys. B527, 581–623 (1998). [ hep-th/9802168 ]

    Google Scholar 

  80. I.V. Melnikov, C. Quigley, S. Sethi, M. Stern, Target spaces from Chiral gauge theories. J. High Energy Phys. 1302, 111 (2013). [ arXiv:1212.1212 ]

  81. R.A. Norman, Dehn’s lemma for certain 4-manifolds. Invent. Math. 7, 143–147 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  82. H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody Algebras. Duke Math. 76, 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  83. S. Nawata, P. Ramadevi, Zodinmawia, X. Sun, Super-A-polynomials for twist knots. J. High Energy Phys. 1211, 157 (2012). [ arXiv:1209.1409 ]

  84. K. Ohta, Supersymmetric index and s rule for type IIB branes. J. High Energy Phys. 9910, 006 (1999). [ hep-th/9908120 ]

    Google Scholar 

  85. M. Oshikawa, I. Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line. Nucl. Phys. B495, 533–582 (1997). [ cond-mat/9612187 ]

    Google Scholar 

  86. T. Okazaki, S. Yamaguchi, Supersymmetric boundary conditions in 3D N = 2 theories, in String-Math 2013. Proceedings of Symposia in Pure Mathematics, vol. 88 (American Mathematical Society, Providence, 2014), pp. 343–349

    Google Scholar 

  87. H. Pfeiffer, Quantum general relativity and the classification of smooth manifolds (2004). [ gr-qc/0404088 ]

  88. F. Quinn, Ends of maps. I. Ann. Math. (2) 110 (2), 275–331 (1979)

    Google Scholar 

  89. F. Quinn, Ends of maps. III. Dimensions 4 and 5. J. Differ. Geom. 17 (3), 503–521 (1982)

    Google Scholar 

  90. T. Quella, V. Schomerus, Symmetry breaking boundary states and defect lines. J. High Energy Phys. 0206, 028 (2002). [ hep-th/0203161 ]

    Google Scholar 

  91. R. Rohm, Topological defects and Differential structures. Ann. Phys. 189, 223 (1989)

    Article  MathSciNet  Google Scholar 

  92. N. Saveliev, Fukumoto-Furuta invariants of plumbed homology 3-spheres. Pac. J. Math. 205 (2), 465–490 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  93. J. Sladkowski, Exotic smoothness and astrophysics. Acta Physiol. Pol. B40, 3157–3163 (2009). [ arXiv:0910.2828 ]

  94. A. Smilga, Witten index in supersymmetric 3d theories revisited. J. High Energy Phys. 1001, 086 (2010). [ arXiv:0910.0803 ]

  95. N. Seiberg, E. Witten, Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19–52 (1994). [ hep-th/9407087 ]

    Google Scholar 

  96. C. Vafa, E. Witten, A strong coupling test of S duality. Nucl. Phys. B431, 3–77 (1994). [ hep-th/9408074 ]

    Google Scholar 

  97. E. Witten, Elliptic genera and quantum field theory. Commun. Math. Phys. 109, 525 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  98. E. Witten, Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  99. E. Witten, The Verlinde algebra and the cohomology of the Grassmannian (1993). [ hep-th/9312104 ]

  100. E. Witten, Phases of N=2 theories in two-dimensions. Nucl. Phys. B403, 159–222 (1993). [ hep-th/9301042 ]

  101. E. Witten, Monopoles and four manifolds. Math. Res. Lett. 1, 769–796 (1994). [ hep-th/9411102 ]

    Google Scholar 

  102. N. Warner, Supersymmetry in boundary integrable models. Nucl. Phys. B450, 663–694 (1995). [ hep-th/9506064 ]

    Google Scholar 

  103. E. Witten, Five-brane effective action in M theory. J. Geom. Phys. 22, 103–133 (1997). [ hep-th/9610234 ]

    Google Scholar 

  104. E. Witten, Toroidal compactification without vector structure. J. High Energy Phys. 9802, 006 (1998). [ hep-th/9712028 ]

    Google Scholar 

  105. E. Witten, Supersymmetric index of three-dimensional gauge theory, in The Many Faces of the Superworld (World Scientific, River Edge, 2000), pp. 156–184

    MATH  Google Scholar 

  106. E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry, in From Fields to Strings: Circumnavigating Theoretical Physics, vol. 2 (World Scientific, Singapore, 2005), pp. 1173–1200

    Google Scholar 

  107. E. Wong, I. Affleck, Tunneling in quantum wires: a boundary conformal field theory approach. Nucl. Phys. B417, 403–438 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank F. Quinn, D. Roggenkamp, C. Schweigert, A. Stipsicz, and P. Teichner for patient and extremely helpful explanations. We also thank T. Dimofte, Y. Eliashberg, A. Kapustin, T. Mrowka, W. Neumann, T. Okazaki, E. Sharpe, C. Vafa, J. Walcher, and E. Witten, among others, for a wide variety of helpful comments. The work of A.G. is supported in part by the John A. McCone fellowship and by DOE Grant DE-FG02-92-ER40701. The work of S.G. is supported in part by DOE Grant DE-FG03-92-ER40701FG-02 and in part by NSF Grant PHY-0757647. The work of P.P. is supported in part by the Sherman Fairchild scholarship and by NSF Grant PHY-1050729. Opinions and conclusions expressed here are those of the authors and do not necessarily reflect the views of funding agencies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendix 1: M5-Branes on Calibrated Submanifolds and Topological Twists

We study the twisted compactification of 6d (2, 0) theory on a four-manifold M 4. In each of the cases listed in Table 5, such compactification produces a superconformal theory T[M 4] in the two non-compact dimensions. Via the computation of the T 2 partition function explained in the main text, the cases (a)–(c) correspond to previously studied topological twists of \(\mathcal{N} = 4\) super-Yang-Mills which, in turn, are summarized in Table 6.

Table 5 Supersymmetric M5 brane compactifications on a negatively curved 4-manifold M 4
Table 6 Topological twists of \(\mathcal{N} = 4\) super-Yang-Mills

Specifically, in the first case (a) the \(\mathcal{N} = 4\) SYM is thought of as an \(\mathcal{N} = 2\) gauge theory with an extra adjoint multiplet and the Donaldson–Witten twist [Wit88]. Its path integral localizes on solutions to the non-abelian monopole equations. The untwisted rotation group of the DW theory is then twisted by the remaining SU(2) symmetry to obtain the case (b). This twist (a.k.a. GL twist) was first considered by Marcus [Mar95] and related to the geometric Langlands program in [KW07]. The last case (c) is of most interest to us as it corresponds to (0, 2) SCFT in 2d. On a 4-manifold M 4, this twist is the standard Vafa–Witten twist [VW94].

Appendix 2: Orthogonality of Affine Characters

The Weyl–Kac formula for affine characters of \(\widehat{\mathfrak{s}\mathfrak{u}}(2)_{k}\) is

$$\displaystyle{ \chi _{\lambda }^{\widehat{\mathfrak{s}\mathfrak{u}}(2)_{k} }(q,a) = \frac{\Theta _{\lambda +1}^{(k+2)}(a;q) - \Theta _{-\lambda -1}^{(k+2)}(a;q)} {\Theta _{1}^{(2)}(a;q) - \Theta _{-1}^{(2)}(a;q)} }$$
(267)

where

$$\displaystyle{ \Theta _{\lambda }^{(k)}(a;q):= e^{-2\pi ikt}\sum _{ n\in \mathbb{Z}+\lambda /2k}q^{kn^{2} }a^{kn} = e^{-2\pi ikt}q^{ \frac{\lambda ^{2}} {4k} }\sum _{n}q^{kn^{2}+\lambda n }a^{kn+\lambda } }$$
(268)

Using the Weyl–Kac denominator formula the character can be rewritten as

$$\displaystyle{ \chi _{\lambda }^{\widehat{\mathfrak{s}\mathfrak{u}}(2)_{k} }(q,a) = \frac{e^{-2\pi i(k+2)t}q^{ \frac{(\lambda +1)^{2}} {4(k+2)} }\sum _{n}q^{(k+2)n^{2} }a^{(k+2)n}(q^{(\lambda +1)n}a^{(\lambda +1)} - q^{-(\lambda +1)n}a^{-(\lambda +1)})} {a^{-1}(q;q)\theta (a^{2};q)}. }$$
(269)

Consider the integral

$$\displaystyle\begin{array}{rcl} & & \oint \frac{da} {2\pi ia}(q;q)_{\infty }^{2}\theta (a^{2};q)\theta (a^{-2};q)\chi _{\lambda }^{\widehat{\mathfrak{s}\mathfrak{u}}(2)_{k} }(q,a)\chi _{\lambda '}^{\widehat{\mathfrak{s}\mathfrak{u}}(2)_{k} }(q,a) \\ & & \quad = e^{-2\pi i(k+2)t}q^{ \frac{(\lambda +1)^{2}} {4(k+2)} + \frac{(\lambda '+1)^{2}} {4(k+2)} } \\ & & \qquad \times \sum _{n,m}\left [q^{(k+2)(n^{2}+m^{2})+(\lambda +1)n+(\lambda '+1)m }\oint \frac{da} {2\pi ia}a^{(k+2)(n+m)+(\lambda +1)+(\lambda '+1)}\right. \\ & & \qquad - q^{(k+2)(n^{2}+m^{2})+(\lambda +1)n-(\lambda '+1)m }\oint \frac{da} {2\pi ia}a^{(k+2)(n-m)+(\lambda +1)-(\lambda '+1)} \\ & & \qquad - q^{(k+2)(n^{2}+m^{2})-(\lambda +1)n+(\lambda '+1)m }\oint \frac{da} {2\pi ia}a^{(k+2)(-n+m)-(\lambda +1)+(\lambda '+1)} \\ & & \qquad + q^{(k+2)(n^{2}+m^{2})-(\lambda +1)n-(\lambda '+1)m }\oint \frac{da} {2\pi ia}a^{(k+2)(-n-m)-(\lambda +1)-(\lambda '+1)} \propto \delta _{\lambda,\lambda '}{}\end{array}$$
(270)

This shows that \(\widehat{\mathfrak{s}\mathfrak{u}}(2)_{k}\) characters are orthogonal with respect to the measure

$$\displaystyle{ (q;q)_{\infty }^{2}\theta (a^{2};q)\theta (a^{-2};q) }$$
(271)

but this measure is exactly the index of SU(2) (0, 2) vector multiplet. The orthogonality of \(\hat{\mathfrak{u}}(1)_{k}\) characters can be verified in a similar way. We conjecture that \(\widehat{\mathfrak{s}\mathfrak{u}}(N)_{k}\) (\(\hat{\mathfrak{u}}(N)_{k}\)) characters are orthogonal with respect to SU(N) (U(N)) vector multiplet measure as well.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gadde, A., Gukov, S., Putrov, P. (2016). Fivebranes and 4-Manifolds. In: Ballmann, W., Blohmann, C., Faltings, G., Teichner, P., Zagier, D. (eds) Arbeitstagung Bonn 2013. Progress in Mathematics, vol 319. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-43648-7_7

Download citation

Publish with us

Policies and ethics