Skip to main content

Kazhdan–Lusztig Conjectures and Shadows of Hodge Theory

  • Chapter
  • First Online:
Arbeitstagung Bonn 2013

Part of the book series: Progress in Mathematics ((PM,volume 319))

Abstract

We give an informal introduction to the authors’ work on some conjectures of Kazhdan and Lusztig, building on work of Soergel and de Cataldo–Migliorini. This article is an expanded version of a lecture given by the second author at the Arbeitstagung in memory of Frederich Hirzebruch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due, no doubt, to the influence which their work has had on the authors.

  2. 2.

    Although all the R-modules will factor through R∕(R + W), we prefer the ring R for philosophical reasons. When W is infinite, the ring R∕(R + W) is infinite dimensional, as R W has the “wrong” transcendence degree, and the Chevalley theorem does not hold. The ring R behaves in a uniform way for all Coxeter groups, while the quotient ring R∕(R + W) does not.

  3. 3.

    W. Soergel pointed out that this is a bad name, as it has nothing whatsoever to do with coinvariants.

References

  1. A. Arabia, Correspondance de Springer. Preprint (2006) http://www.institut.math.jussieu.fr/?arabia/math/Pervers.pdf

  2. A. Beĭlinson, J. Bernstein, P. Deligne, Faisceaux pervers, in Analyse et topologie sur les espaces singuliers, I (Luminy, 1981). Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), pp. 5–171

    Google Scholar 

  3. G. Barthel, J.-P. Brasselet, K.-H. Fieseler, L. Kaup, Hodge-Riemann relations for polytopes. A geometric approach, in Singularity theory. Proceedings of the 2005 Marseille singularity school and conference, CIRM, Marseille, France, January 24–February 25, 2005. Dedicated to Jean-Paul Brasselet on his 60th birthday (World Scientific, Singapore, 2007), pp. 379–410

    Google Scholar 

  4. I.N. Bernšteĭn, I.M. Gel′fand, S.I. Gel′fand. Schubert cells, and the cohomology of the spaces GP. Uspehi Mat. Nauk 28 (3(171)), 3–26 (1973)

    Google Scholar 

  5. P. Bressler, V.A. Lunts, Intersection cohomology on nonrational polytopes. Compos. Math. 135 (3), 245–278 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Borel, Introduction to middle intersection cohomology and perverse sheaves, in Algebraic Groups and Their Generalizations: Classical Methods. Summer Research Institute on Algebraic Groups and Their Generalizations, July 6–26, 1991, Pennsylvania State University, University Park, PA, USA (American Mathematical Society, Providence, 1994), pp. 25–52

    Google Scholar 

  7. N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337 (Hermann, Paris, 1968)

    Google Scholar 

  8. M. Brion, Lectures on the geometry of flag varieties (2012). arXiv:0410240

    Google Scholar 

  9. R. Bott, H. Samelson, Applications of the theory of Morse to symmetric spaces. Am. J. Math. 80, 964–1029 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  10. M.A.A. de Cataldo, L. Migliorini, The hard Lefschetz theorem and the topology of semismall maps. Ann. Sci. École Norm. Sup. (4) 35 (5), 759–772 (2002)

    Google Scholar 

  11. M.A.A. de Cataldo, L. Migliorini, The Hodge theory of algebraic maps. Ann. Sci. École Norm. Sup. (4) 38 (5), 693–750 (2005)

    Google Scholar 

  12. M. Demazure, Désingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup. (4) 7, 53–88 (1974). Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I

    Google Scholar 

  13. M.A.A. de Cataldo, L. Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Am. Math. Soc., New Ser. 46 (4), 535–633 (2009)

    Google Scholar 

  14. M. Dyer, Representation theories from Coxeter groups, in Representations of Groups. Canadian Mathematical Society Annual Seminar, June 15–24, 1994, Banff, Alberta, Canada (American Mathematical Society, Providence, 1995), pp. 105–139

    Google Scholar 

  15. M. Dyer, Modules for the dual nil Hecke ring (2009). Preprint

    Google Scholar 

  16. B. Elias, G. Williamson, The Hodge theory of Soergel bimodules. Ann. Math. (2012, to appear). arXiv:1212.0791

    Google Scholar 

  17. P. Fiebig, The combinatorics of Coxeter categories. Trans. Am. Math. Soc. 360 (8), 4211–4233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Goresky, R. MacPherson, Intersection homology theory. Topology 19, 135–165 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Goresky, R. MacPherson, Intersection homology. II. Invent. Math. 72, 77–129 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. H.C. Hansen, On cycles in flag manifolds. Math. Scand. 33, 269–274 (1974) (1973)

    Google Scholar 

  21. H. Hiller, Geometry of Coxeter groups. Research Notes in Mathematics, vol. 54 (Pitman Advanced Publishing Program, Boston, 1982), p. 213

    Google Scholar 

  22. J.E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, vol. 29 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  23. K. Karu, Hard Lefschetz theorem for nonrational polytopes. Invent. Math. 157 (2), 419–447 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.L. Kleiman, The development of intersection homology theory. Pure Appl. Math. Q. 3 (1), 225–282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Libedinsky, Équivalences entre conjectures de Soergel. J. Algebra 320 (7), 2695–2705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Rietsch, An introduction to perverse sheaves, in Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Proceedings from the 10th International Conference on Algebras and Related Topics, ICRA X, Toronto, Canada, July 15–August 10, 2002 (American Mathematical Society (AMS), Providence, 2004), pp. 391–429

    Google Scholar 

  27. M. Saito, Introduction to mixed Hodge modules. Théorie de Hodge, Actes Colloq., Luminy/Fr. 1987. Astérisque 179–180 (1989), pp. 145–162

    Google Scholar 

  28. W. Soergel. Kategorie \(\mathcal{O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc., 3 (2), 421–445 (1990)

    MathSciNet  Google Scholar 

  29. W. Soergel, Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen. J. Inst. Math. Jussieu 6 (3), 501–525 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geordie Williamson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elias, B., Williamson, G. (2016). Kazhdan–Lusztig Conjectures and Shadows of Hodge Theory. In: Ballmann, W., Blohmann, C., Faltings, G., Teichner, P., Zagier, D. (eds) Arbeitstagung Bonn 2013. Progress in Mathematics, vol 319. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-43648-7_5

Download citation

Publish with us

Policies and ethics