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Abstract. We present a novel approach for automated incremental ver-
ification that employs both reusable and relational specifications of soft-
ware to incrementally verify pairs of programs with possibly nested loops.
It analyzes two programs, P - the one already verified, and Q - the one
needed to be verified, and proceeds by detecting an abstraction αP of
P and a simulation ρ, such that αP simulates Q via ρ. The key idea
behind our simulation synthesis is to drive construction of both αP and
ρ by the safe inductive invariants of P , thus guaranteeing the property
preservations by the results. Finally, our approach allows effective lifting
of the safe inductive invariants of P to Q using only αP and ρ. Based
on our evaluation, in many cases when the absolute equivalence between
programs cannot be proven, our approach is able to establish the property
directed equivalence, confirming that the program Q is safe.

1 Introduction

Software development is a continuous process that repeatedly iterates between
the stages of implementing a program and checking its safety. To satisfy quality
standards, a software product should pass through a myriad of intermediate
verification stages, each of which assures safety of a particular change against its
baseline version. One of the most successful techniques to verify isolated software
versions fully automatically and exhaustively is Model Checking.

Without detracting from the merits of the recent model checking solutions,
there is a demand for new methods to make other steps in the typical “verify-
bugfix-verify” workflow automated and exhaustive. In particular, there is a clear
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need for new techniques that would make the software analysis more efficient
by (1) finding a reusable specification of an already verified program version to
be used while verifying another program version; and (2) finding a relational
specification between program versions that describes how the versions relate
to each other. When discovered, these specifications enable formal analysis of
sequences of program versions called Formal Incremental Verification (FIV) and
can be used for various tasks such as upgrade checking, compositional (modular)
verification, change impact calculation, program repair, etc.

Model checkers for the programs with unbounded (and possibly nested) loops
reduce the verification tasks to finding safe inductive invariants. Such invariants
over-approximate all safe behaviors of the program and constitute so called proof
certificates. Since the problem of inferring proofs is known to be undecidable in
general [29], individual model-checking solutions are not guaranteed to deliver an
appropriate invariant. On the other hand, in cases if model checking succeeded,
the synthesized proof provides an important reusable specification that comes in
handy whenever the program gets modified. In this paper, we address a challenge
of migrating proofs across the different program versions.

Simulation is known to be the most general mapping to transfer proofs
between program versions [17,26,27]. However, discovering a simulation relation
is difficult and usually requires a manual guidance. One of the recent promising
approaches for the simulation synthesis is SimAbs introduced in [16]. Despite
providing a fully automated schema, it is unable to find simulations for pairs of
program versions obtained after non-trivial program transformations. We exper-
imented with SimAbs and observed that it discovered precise simulations only
in 9 % of cases1, while in the rest it either provided an abstract simulation (i.e.,
an abstraction of the already verified program version that simulates the pre-
cise modified program version) or diverged. In general, abstract simulations are
not applicable for migrating proofs, since the delivered abstraction might not
preserve all important safety properties of the verified program version.

In this paper, for the task of migrating proofs, we show that the precise
simulation relation between program versions is not even needed. Instead, it is
enough to deal with abstract simulations, but created in a particular way. It is
crucial to ensure that the given invariant is safe for the delivered abstraction. For
this reason, we propose to guide the abstraction generation by the proofs. If a
simulation for such a proof-based abstraction is found then the proof can be lifted
directly. We present an algorithm called ASSI (stands for Abstract Simulation
Synthesis with Invariants) and an algorithm called PDE (stands for Property
Directed Equivalence) that perform such reasoning completely automatically.

A distinguishing feature of ASSI and PDE is the ability to migrate the
invariants through abstractions even if the abstractions do not preserve safety.
PDE attempts to lift as much information from the invariant as possible and
then strengthens it using a Horn-clause-based unbounded model checker.

We contribute the implementation of ASSI and PDE on the top of the
LLVM-based model checker UFO [1] and provide extensive evaluation of

1 See Sect. 6 for more details.
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non-trivial LLVM-optimizations. In the same experimental setting as for
SimAbs, ASSI discovered non-trivial abstract simulations in 82 % of cases, that
further allowed PDE to migrate the proofs completely (34 %) or at least partially
(48 %). Guided by the proofs, ASSI outperformed SimAbs by up to 2000X. In
other words, it enabled scaling the entire simulation synthesis technology to solve
more difficult problems and to do it more efficiently.

To sum up, PDE can be seen as the first technique to effectively exploit both,
the reusable specification (by means of the proofs) and the relational specification
(by means of the abstract simulations), to incrementally verify sequences of pro-
gram versions with non-trivial loop structures and non-trivial transformations.
The most important contributions can be classified as follows:

– A concept and a formalization of the PDE framework to incremental verifi-
cation through abstract simulation and invariants.

– An algorithm ASSI for abstract simulation synthesis, designed to take the
proofs into account and consider the proof-based abstractions.

– An LLVM-based evaluation on Software Verification Competition benchmarks
that succeeds in establishing the property directed equivalence in many cases
when the absolute equivalence between programs cannot be proven. In some
other cases PDE was able to lift the proof partially and strengthen it further
by means of the model checker UFO.

The rest of the paper is structured as follows. We start with a brief overview
of the related methods (Sect. 2) followed by the background of unbounded veri-
fication (Sect. 3). Then, we formalize the underlying concepts behind simulation
synthesis (Sect. 4) and use them to build the algorithms for ASSI and PDE
(Sect. 5). Finally, we outline the evaluation of ASSI and PDE (Sect. 6) and
conclude the paper (Sect. 7).

2 Related Work

We aim at checking the property directed equivalence (i.e., equivalence of pro-
grams with respect to some common property) automatically since it has a
direct application in model checking. This is an alternative property to absolute
equivalence (i.e., equivalence of programs with respect to any possible prop-
erty) [3,12,19,21,28] that is rare in practice. The first automatic solutions to
equivalence checking date back to hardware verification. Based on BDDs and
SAT solving, the methods [5,9,30] aim at searching for a counter-example wit-
nessing inequivalence of the two circuits. Most of them exploit structural simi-
larities between the circuits that make them able to scale well with the circuit
size. The further application of equivalence checking is to prove validity of com-
piler optimizations (e.g., [3,28,33]). The basis of most of work on Translation
Validation is the idea of guessing a simulation relation between programs. Our
algorithm also guesses relations, but before using them for PDE, it formally
checks their validity with ASSI and drops those for which the check fails.
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A step towards equivalence checking of software was made in [12] that pro-
posed to check equivalence of a Verilog circuit and a C program through encoding
and solving a quantifier-free SAT formula. A more recent solution [19] employs
Bounded Model Checking [10] (BMC) to establish absolute equivalence between
C programs. The method traverses the call graph bottom-up and separately
checks whether identity of inputs implies identity of outputs for each pair of
matched (e.g., by type annotation) functions, while all the nested calls are
abstracted away using the same uninterpreted functions. A similar but language-
agnostic approach is implemented in the SymDiff tool [21].

The problem of checking non-absolute equivalence between programs (also
referred to as incremental verification) was addressed in a number of works,
e.g. [2,4,7,13,15,18,24,31,34]. The main motivating idea behind this line of
research is the ability of reusing efforts between verification runs, thus achieving
performance speedup compared to verification of programs in isolation. eVol-
Check [31] extracts the over-approximating function summaries from one pro-
gram satisfying the given property and then re-checks if summaries still over-
approximate function behavior in another program. However, eVolCheck is
based on BMC and relies on the user-provided bounds for loops and recursive
function calls. Unbounded incremental verifier OptVerify [15] is designed to
lift inductive invariants across program transformations using a guessed vari-
able mapping. Contrary to our approach, OptVerify can be applied only to
programs sharing the same loop-structure. A similar and generalized approach
for CEGAR-based verification was proposed in [7]. It stores the level of abstrac-
tion needed to prove safety of one program (e.g., which predicates to use in
predicate analysis). The predicates are then transferred and adapted to another
program to obtain the initial level of abstraction from which the analysis starts
(not from scratch). Note that none of the mentioned techniques relies on auto-
matically derived relational specifications (like a mapping between variables or
a type annotation) so they all require re-validating the artifacts migrated from
the verified programs. In contrast, the technique presented in this paper benefits
from using certified simulation relations between programs, thus confirming that
the migrated invariants are always sound.

Alternatively, there are approaches [25,34] to reason not only about dif-
ferences between behaviors, but also to analyze differences between proper-
ties in different programs. The technique called Verification Modulo Versions
(VMV) [25] transforms assertions from one program into assumptions for another
program. VMV then tries to find (or prove absence of) bugs that are present
only in the latter program. The technique called Directed Incremental Symbolic
Execution (DISE) [34] is driven by the change impact which in fact is the pro-
gram slice obtained by symbolic execution of the syntactic delta between the
programs. The change impact is, however, property-independent, so DISE still
requires further analysis whether the requested properties hold or do not in
both programs. PDE is also able to calculate the change impact as a side effect
of incremental verification. In contrast, our change impact is always property-
dependent that would make it potentially useful to identify program locations
responsible for the particular property violations.
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3 Programs, Abstractions and Proofs

In this paper, we consider “large-block” encoding (LBE) [6] of programs that
allows representing complex control-flow graphs compactly. A program is a tuple
P = 〈Vars,CP , en, err , E, τ〉, where Vars is a set of real and boolean variables,
CP is a set of cutpoints (i.e., program locations which represent heads of loops);
en, err ∈ CP are respectively designated locations of the program entry and
the error (i.e., the violation of some property of interest); E ⊆ CP × CP is the
cutpoint-relation corresponding to the largest loop-free program fragments, and
τ : E → Expr(Vars) maps each element of E to a formula in first-order logic
that encodes a transition relation of the corresponding program fragment. We
refer to the graph 〈CP , E〉 as a Cutpoint graph (CPG) of the program P .

Throughout the paper, we consider only variables that appear as source-
and destination arguments for the edges E of the program P . In the formulas
encoding transition relations τ , the other (local) variables are implicitly exis-
tentially quantified. Let V : E → 2Vars be the function that, given a cutpoint,
returns a set of variables live at that cutpoint. We use primed notation for Vars ′

to distinguish between the source and the destination arguments of each edge.
To enable existential quantification over variables in a formula e ∈ Expr , we
explicitly declare the variable sets over which e is expressed.

The goal of formal verification is to check whether the location err is unreach-
able by any program behavior starting at the location en. One of the most com-
mon ways of proving safety of a program is to construct an inductive invariant
that over-approximates the sets of reachable states in the program, and to prove
the unreachability of err for the invariant. In the context of LBE, (safe) inductive
invariants are represented by a labeling of the cutpoints with logical formulas
such that the condition(s) of the following definition hold.

Definition 1. Given a program P , a mapping ψ : CP → Expr(Vars) is an
inductive invariant if:

ψ(en) = � (1)

∀(u, v) ∈ E .
(
ψ(u)(�x) ∧ τ(u, v)(�x, �x′) =⇒ ψ(v)(�x′)

)
(2)

ψ is a proof (or a safe inductive invariant) of P if additionally:

ψ(err)(�x′) =⇒ ⊥ (3)

In (2), ψ(u) is expressed over the source arguments of the CPG-edge (u, v),
namely �x. In contrast, ψ(v) is expressed over the destination arguments of
the CPG-edge (u, v), namely �x′. Throughout the paper, we add the following
mnemonic notation to emphasize whether (3) holds for an inductive invariant: |ψ|
(with vertical bars) to indicate that (1)–(2) hold, but (3) does not, and ψ̂ (with a
hat) to indicate that all three conditions hold. If ψ is used without this mnemonic
notation then in the current context it does not matter if (3) holds or not.

Since an inductive invariant over-approximates the sets of reachable states
for each cutpoint of a program P , it allows more behaviors of P than specified
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P0 Q0 Q1

Fig. 1. Programs P0 and Q0 and the loop-splitting optimization of Q0.
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Fig. 2. Cutpoint graphs of P0, Q0 and Q1.

Fig. 3. Transition relations τP0 , ταP0 , τβP0 and proof ̂ψ of P0.

by its transition relation τ . It can be used to represent programs that share the
CPG-structure with P , but have less accurate transition relations. We say that
such programs are the abstractions of P and describe them formally as follows.

Definition 2. Given two programs P = 〈Vars,CP , en, err , E, τ〉 and αP =
〈Vars,CP , en, err , E, τα〉, αP is an abstraction of P if for some inductive
invariant ψ of P ,

∀(u, v) ∈ E .
(
ψ(u)(�x) ∧ τ(u, v)(�x, �x′) =⇒ τα(u, v)(�x, �x′)

)
(4)

The use of an inductive invariant ψ in (4) makes the way of creating abstrac-
tions more flexible. Indeed, for each cutpoint u ∈ CP , the formula ψ(u) might
bring any additional information about the pre-states at the edge (u, v) ∈ E
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learned inductively from the dependent CPG-edges. Note that τ(u, v) might be
incomparable (and even inconsistent) with ψ(u).

The simplest way to construct a program abstraction from the given inductive
invariant ψ is to assign the transition relation of each CPG-edge by the invariant
at the post-state of that edge. Thus, an abstraction of P can be constructed
directly from ψ, and in rest of the paper we refer to it as to αψP . The following
lemma assures that αψP satisfies Definition 2.

Lemma 1. Given P = 〈Vars,CP , en, err , E, τ〉 and its invariant ψ, let αψP =
〈Vars,CP , en, err , E, τψ

α 〉 be defined as:

∀(u, v) ∈ E .
(
τψ
α (u, v)(�x, �x′) � ψ(v)(�x′)

)
(5)

Then αψP is an abstraction of P .

If ψ is not trivial (i.e., ∃u ∈ CP . ψ(u) 
= �) and some abstraction αP is
as accurate as αψP then αP provides a particular interest for incremental ver-
ification that is explained in Sect. 5. However, for the sake of completeness of
presentation, we must admit that Definition 2 also allows other types of abstrac-
tions, abstract transition relation of which does not necessarily satisfy ψ(v) for
all post-states at (u, v).

Example 1. Consider a program P0 shown in Fig. 1(a) that increments an integer
counter2 x, initially assigned to 0. The CPGP0 is shown in Fig. 2(a) and consists
of CP = {en,CP0, err} and E = {(en,CP0), (CP0,CP0), (CP0, err)}. Figure 3
shows: (1) transition relation τP0 labeling each edge in E, (2) the proof ψ̂ labeling
each cutpoint in CP , (3–4) transition relations of two abstractions αP0 and βP0

respectively. Compared to αP0, βP0 allows variable x to be equal to 13 in the
cutpoint err . ��

4 Simulation Relations in LBE with Invariants

Given a pair of programs P = 〈VarsP ,CPP , enP , errP , EP , τP 〉 and Q =
〈VarsQ,CPQ, enQ, errQ, EQ, τQ〉. A simulation relation between P and Q spec-
ifies a matching of every program behavior of Q by some program behavior
of P . In LBE, finding simulation relations is the two-steps procedure. First,
it requires finding a simulation σ at the level of CPGs (further referred to as
CPG-simulation). Second, it requires finding a simulation ρ at the level of pairs
of CPG-edges (further referred to as edge-simulation).

Definition 3. Given two programs P and Q, we say that CPGP simulates
CPGQ iff there exists a left-total relation σ : CPQ → CPP such that:

∀uQ, vQ ∈ CPQ, uP ∈ CPP . (uQ, vQ) ∈ EQ ∧ uP = σ(uQ) =⇒
∃vP ∈ CPP . (uP , vP ) ∈ EP ∧ vP = σ(vQ)

(6)

2 Here and later in the paper we assume no arithmetic overflow.
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When clear from the context, we omit the subscripts from uQ, vQ, etc.

Definition 4. Program P simulates program Q iff (1) CPGP simulates CPGQ

via some σ, and (2) for that σ and some inductive invariant ψ of P , there exists
a left-total relation ρ : CPQ × CPP → Expr(VarsQ ∪ VarsP ) such that:

∀(u, v) ∈ EQ .
(
ψ

(
σ(u)

)
(�y) ∧ ρ

(
u, σ(u)

)
(�x, �y) ∧ τQ

(
u, v

)
(�x, �x′) =⇒

∃�y′ . ρ
(
v, σ(v)

)
(�x′, �y′) ∧ τP

(
σ(u), σ(v)

)
(�y, �y′)

) (7)

For each edge (u, v) in (7), the existential quantifier in front of �y′ is served to
encode existence of a valuation of the variables in V ′

P

(
σ(v)

)
. In contrast, valu-

ations of the variables �x, �x′, �y respectively of VQ(u), VQ(v) and VP

(
σ(u)

)
are

implicitly universally quantified. Thus, for each �x and �y matched by ρ(u, σ(u))
and �x′, there should exists �y′ such that �x′ and �y′ are matched by ρ(v, σ(v)).
Additionally, the pairs �x and �x′, and �y and �y′ should belong to valid behaviors
corresponding to their transition relations τQ(u, v) and τP (σ(u), σ(v)) respec-
tively. Note that those transition-relation formulas are conjoined with the differ-
ent sides of the implication, so the validity of the ∀∃-formula means that each
behavior of τQ(u, v) is matched by a behavior of τP (σ(u), σ(v)) (but it is still
allowed to have unmatched behaviors of τP (σ(u), σ(v)). For this, the simulation
relation induced by formulas ρ(u, σ(u)) and ρ(v, σ(v)) is required to be left-total.

Whenever for a given pair of programs P and Q, there exists the pair of
relations 〈σ, ρ〉 such that P simulates Q, we write Q �〈σ,ρ〉 P , or simply Q � P
if 〈σ, ρ〉 are clear from the context.

It is important to note that our definition of simulation relation exploits an
inductive invariant ψ of P that over-approximates the sets of reachable states for
each cutpoint of P . In particular, for each CPG-edge (u, v) of Q, the condition
of Definition 4 restricts the set of pre-states of τP (σ(u), σ(v)) on ψ(σ(u)). Such
restriction is sound, since it does not drop any behavioral information of P that
can be potentially useful while constructing and checking a simulation of Q.
Furthermore, for each behavior of Q requiring to be matched by some behavior
of P , the invariant ψ reduces the search space of this matching.

Simulations are used to lift the proofs between programs. In fact, if the error
location errP is proven unreachable in P , and P simulates Q, then the error
location errQ is unreachable in Q. Interestingly, this fact can be further prop-
agated to the level of inductive invariants [22,26] making the following lemma
hold:

Lemma 2. Given programs P and Q, let ψ be a (safe) inductive invariant of P
and Q �〈σ,ρ〉 P . Consider a mapping ϕ : CPQ → Expr(VarsQ) defined for each
u ∈ CPQ such that:

ϕ(u)(�x) � ∃�y . ρ
(
u, σ(u)

)
(�x, �y) ∧ ψ

(
σ(u)

)
(�y) (8)

Then ϕ is a (safe) inductive invariant of Q.



Property Directed Equivalence via Abstract Simulation 441

Fig. 4. Simulation relation between Q0 and βP0, and lifted invariants.

Fig. 5. Simulation relation between Q1 and Q0, and lifted invariants.

Example 2. Suppose that P0 (shown in Fig. 1(a)) evolved to a “lucky” program
Q0 (shown in Figs. 1(b), 2(b)) such that the counter jumps over the value “13”:
the new variable y appeared instead of x, and the program fragment correspond-
ing to the looping edge (CP0,CP0) is replaced by if (y==12) then {y=y+2}
else {y++}. More importantly, the property to hold in Q0 is stronger than the
one in P1: in addition to be positive, y is restricted to be not equal to 13. CPGP0

and CPGQ0 are identical. Note that Q0 
� P0, Q0 
� αP0, but Q0 � βP0. Figure 4
shows: (1) transition relation τQ0 , (2) CPG-simulation between Q0 and P0 via
the identity relation σ; (3) edge-simulation between Q0 and βP0 via ρ, (4) lifted
inductive (but not safe) invariant |ϕ| labeling each cutpoint in CP of Q0, and
(5) proof ϕ̂ of Q0 obtained from |ϕ| by some strengthening procedure. ��

In order to obtain the inductive invariant |ϕ| for Example 2, we first need to
weaken ψ̂ (as in Example 1) to be an inductive invariant of βP0. Weakening can
be done, e.g., by replacing the labeling ψ̂(err) by a formula x = 13. Then |ϕ| can
be strengthened to ϕ̂ using an induction-based model checker to become safe.

Example 3. Consider a loop-splitting optimization Q1 of Q0 (shown in Figs. 1(c)
and 2(c) respectively) produced by inserting an if-conditional out of the while-
loop and a renaming of y to z. Thus, an extra loop (and an extra cutpoint CP1)
appeared in Q1, but both loops were simplified to contain only an increment
z++. Note that Q1 � Q0. Figure 5 shows: (1) transition relation τQ1 , (2) CPG-
simulation between Q1 and Q0 via σ, (3) edge-simulation between for Q1 and
Q0 via ρ, and (4) lifted inductive (and safe) invariant π̂ of Q1. ��
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In the next section we elaborate on the way of computing simulation relations
and lifting proofs, the results of which were demonstrated in Examples 2 and 3.

5 Property Directed Equivalence

Our key result is a new technique that exploits both, the reusable specification
and the relational specification, to incrementally verify pairs of programs. We
instantiate reusable specifications by the safe inductive invariants, and relational
specification by the simulation relations. To the best of our knowledge, PDE is
unique in a sense that all the competitors in the scope of FIV operate either by
reusable or by relational specifications, but not by both.

Given an abstraction αP of P and a proof ψ̂ of P , we say that αP is ψ̂-safe
iff ψ̂ is also a proof of αP . Not every abstraction of P is ψ̂-safe, but there might
exist several ψ̂-safe abstractions of P of different precision, and the most precise
one of those is P itself. Formally, it is reflected in the following definition.

Definition 5. Given a program P and a proof ψ̂, an abstraction αP =
〈Vars,CP , en, err , E, τα〉 of P is ψ̂-safe iff the following holds:

∀(u, v) ∈ E . ψ̂(u)(�x) ∧ τα(u, v)(�x, �x′) =⇒ ψ̂(v)(�x′) (9)

Definition 6. Programs P and Q are ψ̂-equivalent iff there exists another pro-
gram R such that P � R, Q � R, and ψ̂ is a proof of R.

Note that Definition 6 allows R to be either P or Q, in cases when ψ̂ is a proof
of P or Q, respectively. Similarly, R is allowed to be an abstraction of P or Q.

Example 4. Programs P0 and Q0 (shown in Fig. 1(a) and (b) respectively) are
not ψ̂-equivalent, since we cannot find a ψ̂-safe abstraction of P0 (αP0 is ψ̂-
safe, but Q0 
� αP0, and βP0 is not ψ̂-safe). Contrary to them, Q0 and Q1

(shown in Fig. 1(b) and (c) respectively) are ψ̂-equivalent, since we have shown
in Example 3 that Q1 � Q0. ��

The FIV-problem for P , Q and ψ̂ can be formulated as establishing a ψ̂-
equivalence between P and Q. In this paper, we want to provide not only a
generic, but also an efficient solution to the FIV-problem. One crucial obstacle
on the way towards efficiency is that the simulation synthesis in general requires
more efforts for solving than needed to verify Q from scratch. However, PDE
does not require Q to be simulated by the precise program P via some total
〈σ, ρ〉. Instead, PDE aims at finding a ψ̂-safe abstraction αP that simulates Q
via some abstract 〈σ, ρα〉. Detecting ρα is expected to be easier than detecting
ρ and to have more chances to converge.

Theorem 1. Given programs P , αP and Q, let ψ̂ be a proof of P , and αP be
a ψ̂-safe abstraction of P . If Q � αP then P and Q are ψ̂-equivalent.

The tie that binds the abstraction and the simulation in Theorem1 is the
proof ψ̂. In practice, synthesis of αP and 〈σ, ρα〉 benefits from the guidance by
ψ̂. Furthermore, when discovered, 〈σ, ρα〉 is directly used to migrate ψ̂ from P
to Q. In the rest of the section, we elaborate on these routines in more detail.
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5.1 Simulation Synthesis

In our previous work [16], we presented SimAbs, the first algorithm to synthe-
size simulation relations completely automatically. Given programs P and Q,
SimAbs attempts to deliver a total simulation relation3 〈σ, ρ〉 between P and
Q such that Q �〈σ,ρ〉 P . If such concrete simulation cannot be found, SimAbs
iteratively performs abstraction-refinement reasoning to detect an abstract sim-
ulation, i.e., an abstraction αP of P that simulates Q via some 〈σ, ρα〉.

However, the results of SimAbs are not always useful for PDE, since it does
not provide any guarantees of the strength and the property preservation of αP .
In particular, SimAbs can unadvisedly abstract away some important details
of P , so αP becomes not ψ̂-safe, and Theorem 1 becomes inapplicable. In this
section, we present a novel algorithm ASSI that guides the simulation discovery
by the invariants of P . Furthermore, ASSI supports a more general case when
CPGQ �σ CPGP , and σ is not necessarily the identity relation. We outline
ASSI and highlight its distinguishing features in Algorithm1.

Synthesizing a CPG-simulation. The algorithm starts (lines 2–9) with synthesiz-
ing a CPG-simulation σ. It maintains a temporary graph G which is expected to
be equivalent to CPGP and by the end of the algorithm to become a supergraph
of CPGQ. Thus, G is initiated by CPGP , and in the first iteration, ASSI checks
whether G is a supergraph of CPGQ. If the check succeeds, CPGP simulates
CPGQ via identity, and ASSI directly proceeds to synthesizing ρ.

If G is not a supergraph of CPGQ then ASSI attempts to grow G by intro-
ducing redundant nodes and edges, thus ensuring that G remains equivalent to
CPGP . The method CloneLoops has a relatively straightforward meaning: it
finds a node in G with a looping edge (u, u), creates a new node u′ and an
edge (u′, u′). Finally, it clones all the outgoing edges of u: (u, v) to (u′, v) and
all incoming edges of u: (v, u) to (v, u′). The information that u′ obtains after
copying u is book-kept and further used to recurrently create σ.

Checking whether one graph is a supergraph of another one is reduced to
checking CPG-simulation via the identity relation and in turn to checking valid-
ity of the ∀∃-formula (6). However, in the worst-case scenario, the procedure of
cloning loops may keep iterating forever. Therefore, in practice, it makes sense
to bound the iterations either by using some maximal number of cloned loops
or by a timeout (method CanGrow).

The algorithm gets another challenge when Q has multiple loops that would
require cloning different loops in a branch-and-bound manner. In general, it may
lead to establishing multiple possible CPG-simulations, and each of those could
be used to further establish its own edge-simulation ρ. To simplify presenta-
tion, we do not consider this case in the paper and assume that it is a rather
engineering question of enhancing ASSI with backtracking to support multiple
simulations.

3 σ is limited to be the identity relation in the original algorithm.
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Algorithm 1. ASSI (Q,P, ψ)

Input: programs Q and P , inductive invariant ψ of P
Output: abstraction αP , relation 〈σ, ρα〉 such that Q �〈σ,ρα〉 αP
Data: universal abstraction U, temporary graph G

1 G ← CPGP ;
2 while (�) do � Synthesize σ

3 if (isSupergraph(G,CPGQ)) then � Wait until G is big enough

4 σ ←GrowingHistory(CPGP , G); � Restore all changes in G since CPGP

5 break; � And go to line 10

6 if (CanGrow(G)) then � If G does not cover CPGQ

7 G ← CloneLoops(G); � Try growing G by cloning loops

8 else � Until no more loops can be cloned

9 return U, ∅; � Or a timeout is exceeded

10 while (�) do � Use σ to synthesize ρ

11 ρ ← Guess(P, Q, σ); � Guess some relation ρ over variables at each cutpoint

12 if (Q �〈σ,ρ〉 P ) then � Use ρ and σ in (7) and check ∀∃-validity
13 return P, 〈ρ, σ〉; � If ρ is an edge-simulation then the algorithm terminates

14 else � If not, iteratively replace P by some of its abstractions:

15 P ← Abstract(P, ψ); � Try αψ first, then αψ∃

Algorithm 2. PDE (P,Q, ψ̂)

Input: Programs P and Q, proof ̂ψ of P

Output: Verification result res ∈ {Safe, Buggy}, proof ϕ̂ of Q

1 αP, 〈σ, ρα〉 ← ASSI (Q, P, ̂ψ); � Find αP such that Q � αP

2 if (isPsiSafe(αP, ̂ψ)) then � Check if (9) holds

3 return 〈Safe, ∃〈σ, ρα〉̂ψ〉; � If αP is ̂ψ-safe then lift the proof completely (Theorem1)
4 else � If not, attempt to lift the proof partially

5 |ψ| ← Weaken(̂ψ); � Weaken ̂ψ to |ψ| such that |ψ| is inductive for αP
6 |ϕ| ← ∃〈σ, ρα〉|ψ|; � Lift |ψ| to |ϕ| such that |ϕ| is inductive for Q (Lemma 2)
7 return Verify(Q, |ϕ|); � Strengthen |ϕ| to become safe for Q (if possible)

Synthesizing an edge-simulation. The further reasoning of ASSI (lines 10–15)
proceeds by finding an edge-simulation ρ. Note that at this point σ is already
synthesized, and each pair of CPG-edges is fixed due to valid ∀∃-formula (6).
Now, ASSI has to iteratively decide validity of another set of ∀∃-formulas (7).
Each such formula requires a guessed relation ρ over live variables at each pair
of cutpoints matched by σ. ASSI makes a guess based on similarity (ideally,
equality) of the variable names.

In cases when there is an invalid formula among (7), ASSI attempts to
lower the precision of P by abstracting some (preferably, minimal amount of)
details away. Intuitively, the goal is to weaken τP which is placed on the right-
hand-side of the ∀∃-formula such that the formula becomes valid. In general,
ASSI is parametrized by the method Abstract which performs such weakening
automatically.
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Due to an infinite number of possible abstractions, an arbitrary chosen imple-
mentation of Abstract might not converge. The most distinguishing feature of
ASSI compared to SimAbs, is that it guides the whole process of edge-simulation
synthesis by invariants. That is, an invariant ψ is not only plugged into the for-
mulas (7), but also used to create the abstraction αψP (defined in Lemma 1). In
practice, αψP dramatically weakens τP , and ASSI earns much higher number of
valid ∀∃-formulas than SimAbs earns from the existential abstraction α∃P [11].
The latter simply treats some program variables nondeterministically and does
not change the transition relation itself.

Since depending on the semantic delta between P and Q, the simulation
check between Q and αψP is still not guaranteed to succeed. In such cases, the
other variants of Abstract (e.g., the existential abstraction α∃) might come in
handy. In our implementation, we apply α∃ to the result of a previous application
of α

̂ψ, thus delivering not ψ̂-safe abstractions of P (denoted α
̂ψ∃P ).

Contrary to SimAbs, ASSI lacks a so called Skolem-based refinement that
would attempt strengthening of abstract simulations, but still would not guar-
antee any success. But since ASSI is designed to deal with PDE, a necessary
strengthening is performed on the level of proof generation. In the next Sect. 5.2,
we show how weak abstractions could be still useful for lifting proofs partially.

5.2 Lifting Proofs Completely and Partially

The main practical importance of PDE is that it allows lifting a proof ψ̂ of
program P directly to a proof ϕ̂ of program Q if there exists a ψ̂-safe abstraction
of P that simulates Q (recall Theorem 1). In such a case, no additional analysis
of Q is required unless one wants to eliminate existential quantifiers from the
adapted proof. However, if the conditions of Theorem1 are not met, we are
still interested in accelerating the verification process for Q. In particular, if the
detected abstraction αP of P is not ψ̂-safe, we still may be able to lift some (not
safe, but) inductive invariant to be further strengthened by a Horn-clause-based
model checker.

We address the problem of verifying Q using P and ψ̂. Our solution is outlined
in Algorithm 2. PDE proceeds as follows. First (line 1) it invokes the two-steps
procedure of ASSI: (1) obtaining a relation σ between cutpoints of P and Q
via iterative growing of CPGP and checking validity of the implication (6); (2)
discovering an abstraction αP of P and a relation ρα such that Q �〈σ,ρα〉 αP .

The discovered abstraction αP is then checked for being ψ̂-safe (line 2).
This is done by deciding validity of a set of implications (9) for each edge of
CPGP . If this check succeeds then the simulation relation ρα discovered by
means of ASSI is combined with ψ̂ using existential quantification to obtain an
inductive invariant ∃〈σ, ρα〉ψ̂ (a shortcut for the invariant defined in Lemma 2).
By Theorem 1, ∃〈σ, ρα〉ψ̂ is also a safe inductive invariant, which entails that
the program Q is safe.

If the abstraction αP delivered by ASSI is not ψ̂-safe then ρα cannot be
directly used to lift invariants. But since P � αP via the identity relation, ψ̂
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can be weakened to become an inductive invariant |ψ| of αP (line 5). Method
Weaken can implement different methods including simple generation of the
strongest postcondition (as in Example 5), or a counter-example-guided inductive
weakening (method MkInd [15]) that constructs an inductive invariant out of a
set of conjunctions of candidate formulas (also referred to as lemmas).

MkInd performs inductive weakening using an incremental SMT solver.
MkInd assumes that each candidate invariant is represented by a conjunction
of lemmas, and the weakening by itself is performed by dropping some lemmas
from this conjunction. MkInd iterates over the set of CPG-edges in the Weak
Topological Ordering [8] (in which inner loops are traversed before outer loops).
For each edge, MkInd checks whether ψ̂ is inductive (i.e., formula (2) holds). If
the check for some edge (u, v) fails, MkInd uses a counter-example provided by
the SMT solver to identify all lemmas to be dropped from ψ̂(v). Afterwards, the
check is propagated to all the CPG-edges (v, w) outgoing from v. Effectiveness of
MkInd requires the sets of candidate invariants to contain many small lemmas.

Example 5. Consider programs P0 and Q0 (shown in Fig. 1(a) and (b) respec-
tively). Suppose, P0 is verified and has a proof ψ̂ (shown in Fig. 3). Let us show
how PDE operates in order to derive the proof ϕ̂ of Q0 (envisioned in Fig. 4).
First, PDE invokes ASSI to iteratively abstract P0, e.g., to αP0 and to βP0

(both shown in Fig. 3) and check whether the abstraction simulates Q0: the for-
mer does not, but the latter does. Second, PDE confirms that βP0 is not ψ̂-safe
and thus attempts to lift the proof partially.

The next step is to do Weaken and to obtain the inductive invariant |ψ| of
βP0. For this, PDE exploits the efforts spent on checking that βP0 is not ψ̂-safe.
In particular, for all CPG-edges for which that check succeeded, the invariants
at the pre- and post-states remain the same as specified by ψ̂ (i.e., ψ̂(CP0) =
|ψ|(CP0)). But ψ̂ is broken for the edge (CP0, err), i.e., the implication (x ≥
0) ∧ (

(x < 0) ∨ (x = 13)
)

=⇒ ⊥ is invalid. This means that ⊥ is too strong to
label err in |ψ|, and a weaker formula should be discovered. Following MkInd,
the labeling |ψ| of cutpoint err would be aggressively assigned to �, which would
in turn require re-verification of Q0 from scratch.

Alternatively, it can be assigned to |ψ|(err) = (x = 13), which is the
strongest postcondition for τβP0(CP0, err) = (x < 0) ∨ (x = 13) and precon-
dition |ψ|(CP0) = (x ≥ 0). It is easy to see that |ψ| constitutes an inductive
invariant |ψ| of βP0. Finally, |ψ| is lifted to become inductive invariant |ϕ| (shown
in Fig. 4) of Q0 using the already established abstract simulation ρα. ��

The last bit in PDE is done by method Verify (line 7). At that stage, the
partially lifted invariant ∃〈σ, ρα〉|ψ| needs to be strengthened to finally become a
proof of Q. Method Verify can exploit an off-the-shelf model checker as long as
it is able to fight against the following two challenges. First, the model checker
should deal with induction and avoid re-verifying Q from scratch. Second, the
model checker should deal with existentially quantified variables of P and avoid
expensive quantifier elimination.
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5.3 Finding Inductive Invariants Without Quantifier Elimination

In this section, we focus on method Verify that strengthens an inductive invari-
ant ∃〈σ, ρα〉ψ for PDE. The key idea is based on the fact that adding invariants
to the transition relation does not affect any behaviors of the program. In a
nutshell, the invariants are extra constraints about pre- and post-states of each
CPG-edge (u, v) ∈ E.

Given (u, v) ∈ E and τ : E → Expr(V (u)∪V ′(v)), let τ̂ : E → Expr(V (u)∪
V ′(v)) denote the relation constrained by the invariants ∃〈σ, ρα〉ψ, i.e.:

τ̂(u, v) = ∃�y . ρα

(
u, σ(u)

)
(�x, �y) ∧ ψ(u)(�y) ∧ τ(u, v)(�x, �x′)∧

∃�y′ . ρα

(
v, σ(v)

)
(�x′, �y′) ∧ ψ(v)(�y′)

(10)

It is easy to see that a program Q̂ = 〈Vars,CP , en, err , E, τ̂〉 is equivalent
to program Q = 〈Vars,CP , en, err , E, τ〉, and the proof ψ̂ of Q is sufficient for
Q̂. However, the opposite is not true, i.e., a proof ψ̂ of Q̂ might not be sufficient
for Q.

Theorem 2. Given Q and inductive invariant ∃〈σ, ρα〉ψ of Q, let Q̂ be as
in (10). If ϕ̂ is the proof of Q̂ then ϕ = ϕ̂ ∧ ∃〈σ, ρα〉ψ is the proof of Q.

Method Verify reduces the task of obtaining ϕ̂ to solving a system of
Constrained Horn Clauses [20]. This system consists of the rules that have a
form (1), (2) or (3). The quantifier elimination is done lazily inside the solving
engine. Note that such a model-checking approach is also applicable in cases
when ∃〈σ, ρα〉ψ is not only inductive, but also safe. If so, a constant mapping
ϕ̂(u, v) = � for any (u, v) is a solution for the Horn system, and solving termi-
nates immediately.

5.4 Calculating the Change Impact

In case when PDE (and in turn Verify) cannot prove safety (i.e., fails to
strengthen the inductive invariant), it generates a so called change impact – an
indication whether the change of the code in a particular edge of the CPGP

broke the proof. Change impact can be calculated cheaply as a by-product of
checking whether an abstraction αP of P is ψ̂-safe for the proof ψ̂.

Definition 7. Given P , Q, a proof ψ̂ of P and abstraction αP of P such that
Q �〈σ,ρα〉 αP , the change impact δ of program Q is a mapping δ : EQ → {�,⊥}
such that for each (u, v) ∈ EQ :

δ(u, v) ≡
{

� if ψ̂
(
σ(u)

)
(�x) ∧ τα

(
σ(u), σ(v)

)
(�x, �x′) =⇒ ψ̂

(
σ(v)

)
(�x′)

⊥ else
(11)

If calculated this way, the change impact is precise enough to indicate
all CPG-edges that are responsible for a property violation. Together with a
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counter-example witnessing the property violation, the change impact is a step
towards shrinking the search space of a possible bugfix.

Let us denote the set of edges Δ = {(u, v) ∈ EQ | δ(u, v) = ⊥}. In order
to fix the given bug, the encoding τ of some of the CPG-edges from Δ must
be rewritten, but the encoding τ of the edges in EQ \ Δ can remain unchanged.
In other words, program Q can be used to create a partial program QΔ that
preserves the encoding of the edges EQ \ Δ and contains holes to represent
the absence of the encoding of Δ. Then, such a partial program QΔ is given
as input to a program synthesizer, such as Sketch [32] to automatically find
instantiations of the holes. In our future work we plan to integrate an automatic
program repairer with PDE.

6 Evaluating ASSI and PDE

We built PDE on the top of the model checker UFO [1] and the simulation syn-
thesizer SimAbs. UFO relies on LLVM to create verification conditions for the
input programs that involves inlining procedures, lowering memory to registers,
extracting a CPG-representation. UFO synthesizes a proof by running the PDR
engine [23] implemented in Z3 [14].

We evaluate ASSI and PDE for benchmarks from SVCOMP4. We focus our
attention only on safe programs, i.e., those for which it is possible to generate a
proof ψ̂. We further consider a program transformation from an original version
P to a transformed version Q. Finally, we use ψ̂ to (1) find an abstraction αP

of P that simulates Q via some ρα, (2) check whether αP is ψ̂-safe, and (3) use
ψ̂ and ρα to incrementally verify Q.

One of the essential applications of discovering simulation relations is proving
correctness of program optimizations. The users often perform optimizations
and refactoring manually, and usually end up with the semantically different
programs. Similarly, optimizations are performed silently, by compilers. PDE
is insensitive to the source of program transformation and could be applicable
to both types of optimizations. In our experiments, we focused on compiler
optimizations, as a larger base of benchmarks.

For evaluation, we used two non-trivial LLVM-optimizations: indvars and
licm. The indvars (stands for Canonicalize Induction Variables) transforms the
loops to have a single canonical induction variable initially assigned to zero and
being incremented by one. The licm (stands for Loop Invariant Code Motion)
detects loop invariants and moves them outside of the loop body. Note that
the combination of these optimizations is aggressive, and does not necessarily
preserve the loop structure of the given program. We considered 115 programs,
for which UFO is able to discover a proof ψ̂ within a given timeout of 700 s, and
the correspondent LLVM-optimizations. The size of the programs ranges from
91 to 2904 lines of code, and the syntactic delta between versions ranges from 3
to 345 instructions.

4 Software Verification Competition, http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/
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Fig. 6. Simulation synthesis by ASSI+ compared to SimAbs.

Evaluating ASSI. We compared our novel algorithm ASSI+ with SimAbs
(Fig. 6). In our experiment5, SimAbs delivers precise simulations only in 13
cases, and this result can be interpreted as the absolute equivalence between the
original and the optimized programs. In 38 more cases, SimAbs ended up with
an abstraction of P that simulates Q In the remaining 64 cases, SimAbs exceeds
the timeout or diverged.

In contrast to SimAbs, ASSI+ adds ψ̂ to the low-level ∀∃-formulas and
manipulates directly with the ψ̂-safe abstraction α

̂ψP of P . These two improve-
ments made the low-level ∀∃-formulas smaller, as encoding of the original transi-
tion relation of P got replaced by more compact formulas representing ψ̂. All 115
experiments terminated. There were 39 ψ̂-safe abstractions (i.e., that are used to
adapt the proof completely); 55 weaker abstractions (i.e., that are used to adapt
the proof at least partially), and only 21 abstractions were trivial (i.e., too weak
to adapt any invariant). Performance-wise, ASSI+ was in order of magnitude
faster than SimAbs, and in some cases outperformed its competitor by 2000X.

One can observe an interesting phenomenon that despite ASSI+ never deliv-
ers concrete simulations, it is in general more precise than SimAbs. It can be
explained by the fact that ASSI+ is able to safely ignore some details of P that
can break simulation synthesis in SimAbs. It is important to note that in cases
when αP is trivial, ASSI+ does not produce big overhead. In our experiments,
the running time for such scenarios is less than 10 s.

Evaluating PDE. We compared the performance of PDE with the performance
of the model checker UFO that verifies the optimized program from scratch
(shown in the upper chart of Fig. 7). Provided with the proof and the abstract
simulation, PDE outperformed UFO in 90 out of 115 cases. In the remaining
cases, the performed optimizations dramatically simplified the program so it
became easier to verify the optimized program from scratch.
5 Full results are available at http://www.inf.usi.ch/phd/fedyukovich/niagara.

http://www.inf.usi.ch/phd/fedyukovich/niagara
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Fig. 7. Verification by PDE (with and without ASSI+) compared to UFO.

Both simulation discovery and incremental verification (ASSI + PDE) were
faster than UFO in 60 cases (shown in the lower chart of Fig. 7). This includes 1
case in which UFO exceeded timeout (i.e., PDE solved the problems that cannot
be solved by UFO). In future, as a possible performance improvement, we may
run ASSI + PDE and UFO in parallel, and terminate both processes whenever
one of them returned a result. Thus, we can exploit benefits of incremental and
non-incremental verification at the same time.

To summarize our case studies, we must mention that being an SMT-based
framework, PDE currently supports only Linear Rational Arithmetic that makes
it difficult to evaluate programs handling arrays, floating point arithmetic, bit-
vectors and so on. PDE shown its potential to be the first working framework
that is able to connect reusable and relational specifications of the versioned
software, and we envision multiple improvements of its workflow in future.
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7 Conclusion

In this paper, we formalized the concept of PDE that allows migrating safe
inductive invariants across program transformations. We presented an algorithm
ASSI for simulation relation synthesis with invariants and an algorithm PDE
to address the FIV-problem using ASSI. We evaluated ASSI and PDE on the
benchmarks from SVCOMP and LLVM-optimizations. It confirmed that in many
cases when the absolute equivalence between programs cannot be proven, our
approach is able to establish the property directed equivalence. In cases when the
proof can be lifted only partially, our approach allows its further strengthening
by means of a Horn-clause-based model checker.
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