
Chapter 9
Evolution of the BCL-2-Regulated
Apoptotic Pathway

Abdel Aouacheria, Emilie Le Goff, Nelly Godefroy
and Stephen Baghdiguian

Abstract The mitochondrion descends from a bacterium that, about two billion
years ago, became endosymbiotic. This organelle represents a Pandora’s box whose
opening triggers cytochrome-c release and apoptosis of cells from multicellular
animals, which evolved much later, about six hundred million years ago. BCL-2
proteins, which are critical apoptosis regulators, were recruited at a certain time
point in evolution to either lock or unlock this mitochondrial Pandora’s box. Hence,
particularly intriguing is the issue of when and how the “BCL-2 proteins–mito-
chondria–apoptosis” triptych emerged. This chapter explains what it takes from an
evolutionary perspective to evolve a BCL-2-regulated apoptotic pathway, by
focusing on the events occurring upstream of mitochondria.

9.1 Introduction

It is in the form of cells that life has continued over generations for billions of years.
Most of the time, these building blocks of life are defined as self-replicating ele-
ments, overlooking the fact that cells endowed with the ability to self-destruct were
described in all branches of the tree of life (Bozhkov and Lam 2011; Dwyer and
Winkler 2013; Kerr et al. 1972; Madeo et al. 1997). In multicellular animals
(metazoans), organismal success and complexity are built upon the silent destruc-
tion and rapid removal of cells through a genetically encoded cell death process
called apoptosis. This form of active (or programmed) cell death functions to sculpt
shapes, optimize functions and eliminate damaged, superfluous, or harmful cells
from the body, thus playing crucial roles in animal development and homeostasis.
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Adding to its importance as a physiological phenomenon, apoptosis dysregulation
is involved in a wide range of diseases such as cancer (Czabotar et al. 2014; Elmore
2007). Studies on vertebrate cells have revealed the existence of two major apop-
totic pathways: the extrinsic pathway initiated by the ligation of death receptors by
extracellular ligands at the surface of target cells and the intrinsic (mitochondrial or
BCL-2-regulated) pathway, which can be stimulated by a plethora of signals (e.g.,
DNA damage, endoplasmic reticulum stress, hypoxia, growth factor deprivation,
and developmental cues) (Czabotar et al. 2014; Tait and Green 2013).

The BCL-2-regulated apoptotic pathway is initiated through transcriptional
and/or post-transcriptional activation of so-called BH3-only proteins, which form a
disparate group of proteins traditionally considered as sensors of cellular stress and
damage (Doerflinger et al. 2015; Shamas-Din et al. 2011). In response to distinct
upstream signaling events, some of these death effectors (i.e., BIM, PUMA, tBID)
serve as ligands to activate the pro-apoptotic BCL-2 family members BAX and
BAK through direct interaction, while all of them can activate BAX/BAK indirectly
by binding to and inhibiting the prosurvival BCL-2 homologous proteins. Once
activated through a complex multi-step process, BAX and BAK are thought to
homo-oligomerize and form (or participate to) pores in the mitochondrial outer
membrane (Tait and Green 2013; Volkmann et al. 2014; Westphal et al. 2014).
These oligomeric pores cause the release of mitochondrial intermembrane space
proteins, including cytochrome-c (cyt-c), in the cytosol (in a process termed
MOMP, for mitochondrial outer membrane permeabilization). Leaked cyt-c then
triggers the activation of a family of death proteases called caspases through a
well-defined post-mitochondrial pathway (which will not be reviewed here).
Prosurvival BCL-2 proteins can inhibit BAX-BAK activity through one or more
possible mechanisms: sequestration of the “direct activator” BH3-only proteins
(Llambi et al. 2011) or local inhibition of BAX (and BAK) at the mitochondrial
outer membrane level (via inhibitory complex formation, oligomer disassembly,
and/or retrotranslocation to the cytosol) (Billen et al. 2008a; Edlich et al. 2011;
Subburaj et al. 2015). The “sensitizer” BH3-only proteins can neutralize the pro-
survival BCL-2 proteins through direct binding, thus releasing the direct activators
to promote BAX-BAK activation and apoptosis. An important concept that emerges
from this mechanistic description is that the BCL-2-regulated pathway appears to be
organized in a hierarchical manner, from cellular sentinels (BH3-only proteins) to
the BCL-2/BAX apoptotic switch controlling cytosolic release of mitochondrial
apoptogenic factors (Fig. 9.1). The next sections will address evolutionary per-
spectives on all three categories of constituents, with a particular emphasis on
BCL-2 homologous proteins [aka BCL-2 family members, see https://bcl2db.ibcp.
fr/BCL2DB/BCL2DBNomenclature for an explanation of nomenclature
(Aouacheria 2014; Rech de Laval et al. 2014)].
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9.2 Mitochondrial Intermembrane Space Proteins

The output of MOMP corresponds to the cytosolic release of mitochondrial
apoptogenic proteins normally sequestered within the intermembrane space. The
following five death-promoting factors have received significant characterization:
cyt-c, apoptosis-inducing factor (AIF), second mitochondrial activator of caspases
(Smac)/Diablo, Omi/HtrA2 and endonuclease G (endoG). During apoptosis, cyt-c
directly induces caspase activation whereas Smac/Diablo and Omi/HtrA2 neutralize

Fig. 9.1 Simplified representation of the mitochondrial apoptotic pathway. Mitochondrial outer
membrane permeabilization (MOMP) constitutes the pivotal event in the mitochondrial or
BCL-2-regulated intrinsic death pathway and results in the release of cytochrome-c (cyt-c) and
other mitochondrial apoptogenic factors from the mitochondrial intermembrane space to the
cytosol. Once in the cytoplasm, cyt-c activates a family of death proteases called caspases that
leads to the cleavage of a myriad of cellular substrates, causing cell demise. This pathway is
initiated by activation of BH3-only proteins which serve as ligands to activate proapoptotic BCL-2
family members (e.g., BAX) through direct interaction or by binding to and inhibiting prosurvival
BCL-2 homologous proteins (like BCL-2). Once activated, BAX homo-oligomerizes and forms
pores in the mitochondrial outer membrane which cause the release of apoptogenic factors. Among
these apoptogenic proteins, cytochrome-c, Omi/HtrA2, and SMAC/Diablo promote
caspase-dependent cell death, whereas AIF and endoG induce caspase-independent cell death.
Gene products are colored by their phyletic distribution (inset, see text for details)
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the inhibition of caspase activation (Lorenzo and Susin 2004; Saelens et al. 2004).
AIF and endoG translocates to the nucleus to trigger caspase-independent DNA
fragmentation (Arnoult et al. 2003; Cregan et al. 2004). All of these mitochondrial
factors are encoded in the nucleus. Cyt-c and AIF have the widest phylogenetic
distribution as they are found both in prokaryotes (Archaea, bacteria) and
eukaryotes including protists, plants, fungi, and animals. Omi/HtrA2 and endoG
also display a wide phylogenetic pattern and are present in all kingdoms of life
except Archaea. Based on this, it seems reasonable to infer that these four mito-
chondrial apoptogenic proteins represent endosymbiotic acquisitions from the
mitochondrial ancestor. In contrast, Smac/Diablo orthologues are only present in
vertebrate species, suggesting a late phylogenetic origin. Interestingly, most of
these mitochondrial intermembrane space proteins can act as “pencils–erasers”:
cyt-c, for instance, has a vital daily job in respiration (as an essential electron
carrier) and becomes cytotoxic only when its gets to the cytosol (Garrido and
Kroemer 2004). AIF was also suggested to exert vital normal functions (possibly
pertaining to its oxidoreductase activity) (Porter and Urbano 2006; Vahsen et al.
2004; Sorrentino et al. 2015). EndoG may be involved in DNA recombination and
repair in addition to proliferation (Buttner et al. 2007; Huang et al. 2006). These
examples illustrate an important but often neglected aspect of many apoptotic
players: their polyfunctional nature. Pleiotropy is backed by a peculiar subcellular
compartmentation, i.e., sequestration of conditionally toxic proteins in a normally
non-accessible subcellular compartment (the mitochondrial intermembrane space).
The molecular determinants underlying the apoptotic and non-apoptotic functions
have been deciphered for cyt-c and AIF (Cheung et al. 2006; Hao et al. 2005) but
await characterization for the other mitochondrial factors.

9.3 BCL-2 Homologous Proteins

BCL-2 family proteins control apoptosis upstream of the release of mitochondrial
apoptogenic proteins and subsequent activation of caspases. This family of proteins
comprises anti-apoptotic BCL-2 and pro-apoptotic BAX and their respective
homologs. Our previous phylogenomic studies have revealed that BCL-2 homol-
ogous genes were restricted to metazoan species (and some animal viruses) and
absent in fully sequenced genomes from Archaea, Eubacteria, Viridiplantae, Fungi,
and other unicellular Eukaryota (Aouacheria et al. 2005), suggesting that this family
arose in the metazoan stem. Logically, BCL-2 homologs are not found in the fully
sequenced genomes of the choanoflagellate Monosiga brevicollis and the filasterean
Capsaspora owczarzaki (King et al. 2008; Suga et al. 2013). Therefore, BCL-2
homologs most probably evolved only about 600 or 700 MYA and do not trace
their origin back to the mitochondrial ancestor, their appearance being concomitant
to the emergence of metazoan multicellularity.

Previous analysis indicated that gene duplication (for instance in marine inver-
tebrates and fishes) and loss (e.g., in nematodes) played a prominent role in the
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evolution of the BCL-2 family and contributed to the generation of lineage-specific
diversity. Six representatives are present in the demosponge Amphimedon
queenslandica (Srivastava et al. 2010), four in the placozoan Trichoplax adhaerens
(Srivastava et al. 2008), nine in the cnidarian Hydra vulgaris (Lasi et al. 2010), ten
in the zebrafish Danio rerio (Kratz et al. 2006), and fourteen in the humans
(Aouacheria et al. 2005), whereas the worm Caenorhabditis elegans has a unique
BCL-2-like gene (called CED-9) (Hengartner and Horvitz 1994) and the fruit fly
(Drosophila melanogaster) only a pair of homologs (known as Buffy and Debcl)
(Clavier et al. 2015). Thus, the BCL-2 gene complement of extant metazoans is not
a mere function of organismal complexity but include differential gene expansion
and loss across lineages. As a result, BCL-2 homologous genes are present in
multiple paralogs showing substantial sequence divergence and BH (BCL-2
Homology) motif arrangements (Aouacheria et al. 2005; Aouacheria et al. 2013;
Guillemin et al. 2009) (see Fig. 9.2). Phylogenetic reconstruction indicates that, in
vertebrates, BCL-2 homologs segregate into three major clades: BCL-2-like,
BAX-like, and BID-like members (Aouacheria et al. 2013). BCL-2-like and
BAX-like members correspond to prosurvival and pro-apoptotic proteins, respec-
tively, while BID-like members form a divergent group of proteins with diverse
activities toward apoptosis. Within this last group, BPR/BCL2L12 is an
anti-apoptotic protein (shown to reside in the nucleocytoplasmic compartment
rather than mitochondria) (Stegh and DePinho 2011), BFK/BCL2L15 is poorly
characterized but may constitute a pro-apoptotic protein (Coultas et al. 2003), and
BCL-G/BCL2L14 appears to be neutral against apoptosis (Tischner and Villunger
2012). BCL-2 family members have been reported in multiple invertebrate species,
including sponges, cnidarians, echinoderms, and mollusks (see Table 9.1), and
many more are predicted [e.g., in Trichoplax adhaerens (Srivastava et al. 2008),
Ciona intestinalis (Terajima et al. 2003), Bombyx mori (Zhang et al. 2010), Apis
mellifera (Dallacqua and Bitondi 2014), and Octopus vulgaris (Castellanos-
Martinez et al. 2014)]. Unfortunately, only a small proportion of these proteins have
been fully characterized in an experimental way. Although there have been
numerous published phylogenetic studies, none of them has addressed the full
diversity of BCL-2 family members in invertebrates and a robust, comprehensive
phylogenetic analysis is not yet available.

Since most bcl-2 family genes and proteins share commonalities in structure
(e.g., an intron dividing the BH2 motif, and a similar “helical bundle” tridimen-
sional fold—see Fig. 9.3), it appears likely that the diversity of metazoan BCL-2
genes was generated from a single precursor. The origin and functions of this
ancestral BCL-2 protein are unknown. The early discovery that BCL-2 homologous
proteins bear structural resemblance (analogy) to microbial toxins like colicins or
the translocation domain of diphtheria toxin (Muchmore et al. 1996) has led to the
speculation that they might have been acquired by horizontal gene transfer from the
bacterial world. However, a set of viral proteins structurally related to BCL-2 (but
functionally divergent) were recently characterized (Graham et al. 2008; Neidel
et al. 2015), suggesting that the hypothesis of a viral origin for the founder gene
should also be considered (Fig. 9.3). Whatever their origins, it seems reasonable to
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infer that the appearance of BCL-2 proteins might have been instrumental to the
emergence of metazoan multicellularity, through the recruitment of mitochondria to
a cell death program enabling tissue differentiation and homeostasis. However, the
opposite assertion could also be true, namely recruitment of BCL-2 family proteins
into a mitochondrial death program as a consequence of animal multicellularity.
This issue is particularly interesting because in addition to their daily job in
apoptosis, BCL-2 proteins have been shown to exert physiological, non-apoptotic
functions such as regulation of mitochondrial dynamics, metabolism, DNA damage
response, calcium homeostasis, general autophagy, and mitophagy (Pattingre et al.
2005; Alavian et al. 2011; Autret and Martin 2009; Chen et al. 2011; Chen and
Pervaiz 2007; Gross 2006; Hardwick and Soane 2013; Hollville et al. 2014;
Karbowski et al. 2006; Laulier and Lopez 2012; Murakawa et al. 2015; Perciavalle
et al. 2012; Pinton and Rizzuto 2006; Wang et al. 2013). These findings suggesting
that the function of BCL-2 proteins is pleiotropically linked to prosurvival traits in
extant metazoan species raise the possibility that the ancestral function of BCL-2
proteins was unrelated to apoptosis regulation and that these proteins were exapted
from an ancestor with an originally different function.

Evolutionary information is scarce about the beginnings of paralog divergence in
the family and about how the repertoire of BCL-2 family genes evolved in the
different metazoan lineages. Evidence of conserved colinearity (i.e., relict linkage)
was gathered for the divergent BCL-2 homologs BID and BCL2L13 in vertebrate
genomes (Aouacheria et al. 2005), providing information about the time when the
cross talk between the intrinsic and extrinsic apoptosis pathways—which is
mediated by BID—evolved. An early duplication involving these genes at the
invertebrate-to-vertebrate transition, followed by two further duplications gave rise
to the BID-like clade characterized by the absence of the C-terminal transmembrane
segment (TM) (Aouacheria et al. 2013), illustrating the fact that many gene
(sub) family expansions probably originally occur as tandem or proximal dupli-
cations (Charon et al. 2012; Fan et al. 2008; Srivastava et al. 2008). In the case of
BCL2A1/BFL-1, a prosurvival BCL-2 homolog which appears to be found only in
mammals, the exon encoding this TM segment has been replaced by a heterologous
sequence, possibly as a result of duplication and shuffling events (Ko et al. 2007).
BID, BCL2L13, and BCL2A1 correspond to phylogenetically recent innovations in
metazoans, but other BCL-2 family genes are of more ancient origin such as
proapoptotic BAK and prosurvival BCL2L1 (BCL-xL), for which close or

b Fig. 9.2 BH motif composition in BCL-2 homologous proteins and BH3-containing proteins.
Schematic representation and BH motif composition of BCL-2 homologous proteins (including
BCL-2-like, BAX-like and BID-like subgroups), canonical BH3-only proteins and other reported
BH3-containing proteins (with UniProtKB accession numbers). Light shades depicted BH motif is
uncertain. Total amino acid (aa) number is indicated for proteins that were not drawn to scale.
Abbreviations for non-human proteins: Ce Caenorhabditis elegans; Dm Drosophila melanogaster;
NDV Newcastle disease virus; Mm Mus musculus; HCV hepatitis C virus; Pl Photorhabdus
luminescens; Sp Schizosaccharomyces pombe; SARS-CoV human SARS coronavirus; Sc
Saccharomyces cerevisiae; HHV8 Human herpesvirus 8 (Kaposi’s sarcoma-associated
herpesvirus)
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Table 9.1 Reported invertebrate BCL-2 proteins

Species Reference Gene/protein
(Acc. °)

Motif composition (as
published)

Function

Echinodermata
Strongylocentrotus
purpuratus

Robertson et al.
(2006)

SPU_024469
SPU_006124
SPU_021416
SPU_001916
SPU_016028
SPU_014028
SPU_010641
SPU_010786
SPU_017154

BH4
TM
TM
BH3, TM
BH3, TM
BH3, TM

Arthropoda
Apis mellifera Dallacqua and

Bitondi (2014)
Ambuffy
(A0A088ACI8)

BH1-4, TM

Bombyx mori Pan et al. (2014) Bmbuffy
(E9JEG2)

BH1-3, TM Anti

Drosophila
melanogaster

Quinn et al.
(2003)
Colussi et al.
(2000)

Buffy (Q8T8Y5)
Debcl (Q9V9C8)

BH1-3, TM
BH1-3, TM

Anti
Pro

Mollusca
Ruditapes
philippinarum

Lee et al. (2013) RpBCL-2A
(KC506418)
RpBCL-2B
(KC506419)

BH1-4, TM
BH1-3, no TM

Mytilus
galloprovincialis

Estevez-Calvar
et al. (2013)

Bcl2
(KC545829)
Bax (KC545830)

BH1-4, TM
BH1-3, TM

Chlamys farreri Qi et al. (2015) CfBcl-2
(KJ611244)
CfBax
(KJ620057)

CfBcl-2: BH4, BH3,
BH1, BH2, no TM
CfBax: BH3, BH1,
BH2, no TM

Crassostrea
hongkongensis

Xiang et al.
(2015)

ChBax
(KM262836)
ChBak
(KM262837)

BH3, BH1, BH2, TM

Nematoda
Caenorhabditis
elegans

Hengartner and
Horvitz (1994)

P41958 BH1-4, TM Anti

(continued)
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Table 9.1 (continued)

Species Reference Gene/protein
(Acc. °)

Motif composition (as
published)

Function

Platyhelminthes
Schmidtea
mediterranea

Bender et al.
(2012)

Smed-Bak-1
(JN621808)
Smed-Bak-2
(JN621809)
Smed-bak-3
(JN621810)
Smed-bok-2
(JN621814)
Smed-bcl2-1
(FJ807655)
Smed-bcl2-3
(JN621816)

Pro

Schistosoma
mansoni

Lee et al. (2011) sjA/smA
sjB /smB
sjBcl2/2
smBcl2/2
sjBcl2/1
smBcl2/1
sjC /smC
sjD

BH1-4, TM
BH1-4, TM
BH1-4, TM
BH1-4, no TM
BH1
BH1
BH3
BH3

Anti
Pro
Pro

Cnidaria
Aiptasia pallida Dunn et al.

(2006)
ABHP
(DQ211980)

BH1, BH2, no TM

Stylophora
pistillata

Kvitt et al.
(2011)

StyBcl-2-like
(EU715319)

BH1-4, TM

Hydra
magnipapillata

Lasi et al.
(2010)

HyBak-like 1
(EF104645)
HyBak-like 2
(EU035760)
HyBcl-2-like 1
(EF104646)
HyBcl-2-like 2
(EF104647)
HyBcl-2-like 3
(EU035765)
HyBcl-2-like 4
(EU035764)
HyBcl-2-like 5
(EU035763)
HyBcl-2-like -6
(EU035762)
HyBcl-2-like 7
(EU035761)
HyBH3-only 1
(hma2.230679)

BH1-3, TM
BH1-3, TM
BH1-4, TM
BH1-4, TM
BH1-4, TM
BH1-4, TM
BH1-4, TM
BH1-4, TM
BH1-4, TM
BH3
BH3
BH3
BH3

Pro
Pro
Anti
Anti
Anti
Anti
Slightly
pro
Anti
Anti
ND
Pro
Neutral
Neutral

(continued)
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divergent homologs, respectively, can be found in early-branching metazoans
(Srivastava et al. 2010; Wiens et al. 2001; Wiens et al. 2000).

Particularly, intriguing is the issue of how opposite activities evolved in proteins
that share a similar 3D structure, as do BCL-2-type and BAX-type proteins. The
precise molecular determinants that underpin the extreme functional divergence

Table 9.1 (continued)

Species Reference Gene/protein
(Acc. °)

Motif composition (as
published)

Function

HyBH3-only 2
(hma2.221399)
HyBH3-only 3
(hma2.218794)
HyBH3-only 4
(hma2.224514)

Porifera
Geodia cydonium Wiens et al.

(2001)
BHP2-GC
(AJ293508)

BH1, BH2, TM Anti

Geodia cydonium
Suberites
domuncula

Wiens et al.
(2000)

BHP1_GC
(CAB97129)
BHP1_SD
(CAB97205)

BH1, BH2, TM

Lubomirskia
baicalensis

Wiens et al.
(2006)

BAK-2_LUBAI
(CAJ12144)
BCL-2a_LUBAI
(CAJ12145)

BH3, BH2, TM
BH1-4, TM

Fig. 9.3 Structural similarity
between BCL-2 homologs
and microbial proteins.
Ribbon diagrams of
anti-apoptotic protein
BCL-xL (PDB code: 1maz),
proapoptotic protein BAX
(1f16), diphtheria toxin
translocation domain (1ddt),
and myxoma virus
antiapoptotic protein M11L
(2jbx). These proteins form a
compact α-helical bundle with
a pair of central helices (in
cyan) surrounded by other
(mainly amphipathic) helices.
The figure was made with
PyMol

146 A. Aouacheria et al.



between structural homologs of the BCL-2 family are not completely understood.
Distinct regions of the BCL-2 domain were shown to be involved in the functional
dichotomy between pro- and anti-apoptotic members: the BH4 region (which is
often located in the first α-helix) (Borner et al. 1994; Lee et al. 1996), the BH3
motif (Lee et al. 2014), and the α5-α6 helical hairpin motif (often referred to as a
“pore-forming” domain) (Bleicken et al. 2013; Guillemin et al. 2010). However,
subtle differences are scattered along the entire protein domain of pro- and
anti-apoptotic BCL-2 proteins and it is expected that various sites may contribute to
their antagonist actions on cell survival. A prime difference between BAX-type and
BCL-2-type proteins might be related to the ability of proapoptotic homologs to
self-assemble by forming dimers and higher order oligomers (Subburaj et al. 2015;
Westphal et al. 2014), and of the prosurvival ones to inhibit these association
processes in the context of the mitochondrial membrane by behaving like chain
terminators, i.e., dominant negative forms (Reed 2006; Westphal et al. 2014). If this
scenario is correct, then what distinguishes both types of proteins should be looked
for in contact interfaces (with partners and/or lipids) in addition to isolated regions,
bearing in mind that those interactions can be “cloudy” and involve distant residues.
An alternative view may be that the separation between BCL-2-like and BAX-like
family members has been overstated and that some kind of dualistic thinking is at
work that somehow hides the partly artificial nature of the pro- versus anti-apoptotic
dichotomy. This alternative scenario is not without support from a variety of
experimental data, including the demonstration that (i) most prosurvival BCL-2
family proteins can be converted into death factors following proteolytic cleavage
(Cheng et al. 1997; Clem et al. 1998; Kucharczak et al. 2005; Michels et al. 2004;
Xue and Horvitz 1997); (ii) proapoptotic isoforms can be produced by alternative
splicing of prosurvival bcl-2-like genes (Bae et al. 2000; Boise et al. 1993);
(iii) pro-apoptotic BAK or BAK proteins can behave as prosurvival factors in
specific cellular contexts or cell types (Kiefer et al. 1995; Lewis et al. 1999); and
(iv) a number of BCL-2 family members were characterized both as pro- and
anti-apoptotic factors (e.g., BCL2L10, BOK, and Bcl-rambo/BCL2L13) (Lee et al.
2001; Song et al. 1999; Aouacheria et al. 2001; Inohara et al. 1998; Ke et al. 2001;
Zhang et al. 2001; Jensen et al. 2014). Hence, the scission between prosurvival and
proapoptotic BCL-2 family members might be less definitive and clear than cur-
rently assumed.

9.4 BH3-Only Proteins

BCL2 homologous proteins act as receptors for BH3-only proteins, which are
structurally unrelated proapoptotic molecules. In response to death signals,
BH3-only proteins either inhibit the BCL-2-like apoptosis inhibitors or activate the
BAX-like death activators. These proteins therefore form a signal-processing layer
that connects onto the BCL-2/BAX core machinery the various inputs telling the
cell either to survive or to commit suicide. Synthetic peptides encompassing the
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BH3 motif of various BH3-only proteins were shown to bind with high affinities to
a hydrophobic groove at the surface of prosurvival BCL-2 homologous proteins
(Petros et al. 2000). Following this finding, BH3-mimetic drugs were developed
that rapidly entered clinical trials as anticancer agents (Davids and Letai 2012).
Given their key roles, the discovery of novel BH3-only proteins has represented and
continues to represent a critical endeavor in the cell death field. Historically, this
protein group contained nine non-homologous proteins discovered in the “1990s
and early 2000s” (BIM, BMF, PUMA, NOXA, BAD, HRK, BIK, EGL1, and BID,
herein termed “canonical” BH3-only proteins), which were sometimes erroneously
appended to the protein family of BCL-2 homologs. In fact, only BID qualifies both
as a BH3-only protein, as it contains a single BH3 motif, and as a BCL-2
homologous protein, because it shares a similar 3D structure with BCL-2 and BAX
(Billen et al. 2008b; Chou et al. 1999; McDonnell et al. 1999). Current models of
apoptosis regulation and a majority of review articles exclusively focus on the
proapoptotic activity of these nine BH3-only proteins, ignoring the fact that the
number of claimed BH3-only proteins has dramatically increased to reach a total
of *40 (Aouacheria et al. 2015; Aouacheria et al. 2013) (Fig. 9.2). Contrary to the
other BH motifs that were only detected in BCL-2 homologous proteins, BH3
motifs are now found in a gamut of folded (e.g., BCL-2) and unstructured protein
domains [note that, except BID, all BH3-only proteins are intrinsically disordered
proteins (Barrera-Vilarmau et al. 2011; Craxton et al. 2012; Hinds et al. 2007;
Rogers et al. 2013; Yan et al. 2004)], bringing the grand total number of reported
BH3 sequences to more than 60 unique instances. As a result, the evolutionary
histories of BH3 motifs are singular, inherently coupled to the evolution of the
proteins that harbor them, and therefore difficult to disentangle collectively.
Depending on the case, evolution of BH3 motifs can be attributed to homologous
processes (e.g., duplication divergence of BCL-2 family genes) or homoplastic
mechanisms (e.g., random coincidence or convergence, as in the case of the E3
ubiquitin ligase MULE and the insecticidal toxin Mcf1, among many other putative
instances). Interestingly, inspection of gene structures suggests that transfer events
(e.g., exon shuffling) could also be involved, as illustrated by the relatively high
similarity of the BCL-2 homolog BAK and the BH3-only gene BIK in their BH3
regions (Aouacheria et al. 2015).

The reason that explains this complicated situation has its root in the very nature
of the BH3 motif, whose sequence signatures are diverse and of low complexity
(i.e., very predictable) (Aouacheria et al. 2013). Following on this observation, we
recently advanced the argument that the BH3 motif meets the criteria for classifi-
cation as a short linear motif (SLiM) or a molecular recognition element/feature
(MoRE/MoRF) involved in protein–protein interactions between structured
domains (e.g., globular domains of the BCL-2 type) and between structured
domains and intrinsically disordered proteins (as exemplified by the interaction
between canonical BH3-only proteins and BCL-2-like or BAX-like proteins).
Rather than considering the BH3 as an apoptotic motif per se, this novel conceptual
framework poses this motif as a versatile and evolutionary plastic module associ-
ated with binding events in various branches of the tree of life, within metazoans
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but also probably outside the animal kingdom as well. Future experiments will have
to (i) assess the prevalence of BH3 motifs in proteins from non-metazoan species,
(ii) unravel the identity of their putative receptors, and (iii) determine their possible
roles in the biology of the cognate organisms.

9.5 Conclusion

To sum up, the BCL-2-regulated apoptotic pathway (a metazoan synapomorphy)
emerged as the result of the interplay between an eukaryotic organelle (the mito-
chondrion) sequestrating proteins which have both vital and proapoptotic roles, a
membranotropic structural domain (the BCL-2 globular fold) able to convey
opposite activities toward cell survival and cell death, and a short and evolutionary
plastic module (BH3) mediating protein–protein interactions. It is likely that
acquisition of a proto-bcl-2 gene occurred only once during the evolution of the first
multi-celled animals, followed by vertical evolutionary descent, lineage-specific
diversification, and gene losses, contributing to the numerous morphological and
lifestyle features of animals. Although sequences are “documents of evolutionary
history” [in reference to Zuckerkandl and Pauling (1965)], it is hard to figure out in
any real way whether the repertoire of molecules involved in the control of active
cell death was “simple” or “complex” in the last common ancestor of modern-day
animal species. Yet, as they are descendants of lineages that diverged early in the
history of multicellular animals, the study of basal metazoan species can offer useful
clues, e.g., about the presence of a BH3-dependent mitochondrial apoptotic path-
way in their ancestors, or about the possible non-apoptotic function(s) of the BCL-2
ancestral protein. Whether metazoan BCL-2 homologous proteins emerged as
stress-signaling molecules, or as switches connecting and controlling the execution
of the various pathways involved in cell survival and death (including apoptosis,
autophagy and programmed necrosis), or as key players serving biochemical
functions distinct from cell death regulation remains an open question.
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