
Chapter 21
The Cellular Automaton

The fundamental notion of a cellular automaton was briefly introduced in Part I,
Sect. 5.1. We here resume the discussion of constructing a quantum Hamiltonian
for these classical systems, with the intention to arrive at some expression that
may be compared with the Hamiltonian of a quantum field theory [110], resem-
bling Eq. (20.6), with Hamiltonian density (20.7), and/or (20.14). In this chapter,
we show that one can come very close, although, not surprisingly, we do hit upon
difficulties that have not been completely resolved.

21.1 Local Time Reversibility by Switching from Even to Odd
Sites and Back

Time reversibility is important for allowing us to perform simple mathematical ma-
nipulations. Without time reversibility, one would not be allowed to identify single
states of an automaton with basis elements of a Hilbert space. Now this does not in-
validate our ideas if time reversibility is not manifest; in that case one has to identify
basis states in Hilbert space with information equivalence classes, as was explained
in Sect. 7. The author does suspect that this more complicated situation might well
be inevitable in our ultimate theories of the world, but we have to investigate the
simpler models first. They are time reversible. Fortunately, there are rich classes of
time reversible models that allow us to sharpen our analytical tools, before making
our lives more complicated.

Useful models are obtained from systems where the evolution law U consists
of two parts: UA prescribes how to update all even lattice sites, and UB gives the
updates of the odd lattice sites. So we have U = UA · UB .

21.1.1 The Time Reversible Cellular Automaton

In Sect. 5.1, a very simple rule was introduced. The way it was phrased there, the
data on two consecutive time layers were required to define the time evolution in
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the future direction as well as back towards the past—these automata are time re-
versible. Since, quite generally, most of our models work with single time layers
that evolve towards the future or the past, we shrink the time variable by a fac-
tor 2. Then, one complete time step for this automaton consists of two procedures:
one that updates all even sites only, in a simple, reversible manner, leaving the odd
sites unchanged, while the procedure does depend on the data on the odd sites, and
one that updates only the odd sites, while depending on the data at the even sites.
The first of these operators is called UA. It is the operator product of all operations
UA(�x), where �x are all even sites, and we take all these operations to commute:

UA =
∏

�x even

UA(�x); [
UA(�x),UA

(�x′)] = 0, ∀�x, �x′. (21.1)

The commutation is assured if UA(�x) depends only on its neighbours, which are
odd, but not on the next-to-nearest neighbours, which are even again. Similarly, we
have the operation at the odd sites:

UB =
∏

�y odd

UB(�y); [
UB(�y),UB

(�y′)] = 0, ∀�y, �y′, (21.2)

while [UA(�x),UB(�y)] �= 0 only if �x and �y are direct neighbours.
In general, UA(�x) and UB(�y) at any single site are sufficiently simple (often they

are finite-dimensional, orthogonal matrices) that they are easy to write as exponen-
tials:

UA(�x) = e−iA(�x),
[
A(�x),A

(�x′)] = 0;
UB(�y) = e−iB(�y),

[
B(�y),B

(�y′)] = 0.
(21.3)

A(�x) and B(�y) are defined to lie in the domain [0,2π), or sometimes in the domain
(−π,π].

The advantage of this notation is that we can now write1

UA = e−iA, A =
∑

�x even

A(�x); UB = e−iB, B =
∑

�y odd

B(�y), (21.4)

and the complete evolution operator for one time step δt = 1 can be written as

U(δt) = e−iH = e−iAe−iB . (21.5)

Let the data in a cell �x be called Q(�x). In the case that the operation UA(�x)

consists of a simple addition (either a plane addition or an addition modulo some
integer N ) by a quantity δQ(Q(�yi)), where �yi are the direct neighbours of �x, then
it is easy to write down explicitly the operators A(�x) and B(�y). Just introduce the
translation operator

Uη(�x) = eiη(�x), Uη|Q(�x)〉 ≡ |Q(�x) − 1 modulo N〉, (21.6)

1The sign in the exponents is chosen such that the operators A and B act as Hamiltonians them-
selves.
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to find

UA(�x) = e−iη(�x)δQ(Q(�yi)),

A(�x) = η(�x)δQ
(
Q(�yi)

); B(�y) = η(�y)δQ
(
Q(�xi)

)
.

(21.7)

The operator η(�x) is not hard to analyse. Assume that we are in a field of
additions modulo N , as in Eq. (21.6). Go the basis of states |k〉U, with k =
0,1, . . . ,N − 1, where the subscript U indicates that they are eigenstates of Uη and
η (at the point �x):

〈Q|k〉U ≡ 1√
N

e2πikQ/N . (21.8)

We have

〈Q|Uη|k〉U = 〈Q + 1|k〉U = e2πik/N 〈Q|k〉U; Uη|k〉 = e2πik/N |k〉U (21.9)

(if − 1
2N < k ≤ 1

2N ), so we can define η by

η|k〉U = 2π

N
k|k〉U,

〈Q1|η|Q2〉 =
∑

k

〈Q1|k〉U

( 2π
N

k
)

U〈k|Q2〉

= 2π

N2

∑

|k|< 1
2 N

ke2πik(Q1−Q2)/N = 4πi

N2

1
2 N∑

k=1

k sin
(
2πk(Q1 − Q2)/N

)
,

(21.10)

mathematical manipulations that must look familiar now, see Eqs. (2.25) and (2.26)
in Sect. 2.2.1.

Now δQ(�yi) does not commute with η(�yi), and in Eq. (21.7) our model assumes
the sites �yi to be only direct neighbours of �x and �xi are only the direct neighbours
of �y. Therefore, all A(�x) also commute with B(�y) unless |�x− �y| = 1. This simplifies
our discussion of the Hamiltonian H in Eq. (21.5).

21.1.2 The Discrete Classical Hamiltonian Model

In Sect. 19.4.4, we have seen how to generate a local discrete evolution law from
a classical, discrete Hamiltonian formalism. Starting from a discrete, non negative
Hamiltonian function H , typically taking values N = 0,1,2, . . . , one searches for
an evolution law that keeps this number invariant. This classical H may well be
defined as a sum of local terms, so that we have a non negative discrete Hamiltonian
density. It was decided that a local evolution law U(�x) with the desired properties
can be defined, after which one only has to decide in which order this local operation
has to be applied to define a unique theory. In order to avoid spurious non-local
behaviour, the following rule was proposed:
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The evolution equations (e.o.m.) of the entire system over one time step δt ,
are obtained by ordering the coordinates as follows: first update all even lattice
sites, then update all odd lattice sites

(how exactly to choose the order within a given site is immaterial for our discussion).
The advantage of this rule is that the U(�x) over all even sites �x can be chosen
all to commute, and the operators on all odd sites �y will also all commute with
one another; the only non-commutativity then occurs between an evolution operator
U(�x) at an even site, and the operator U(�y) at an adjacent site �y.

Thus, this model ends up with exactly the same fundamental properties as the
time reversible automaton introduced in Sect. 21.1.1: we have UA as defined in
Eq. (21.1) and UB as in (21.2), followed by Eqs. (21.3)–(21.5).

We conclude that, for model building, splitting a space–time lattice into the even
and the odd sub lattices is a trick with wide applications. It does not mean that we
should believe that the real world is also organized in a lattice system, where such
a fundamental role is to be attributed to the even and odd sub lattices; it is merely
a convenient tool for model building. We shall now discuss why this splitting does
seem to lead us very close to a quantum field theory.

21.2 The Baker Campbell Hausdorff Expansion

The two models of the previous two subsections, the arbitrary cellular automaton
and the discrete Hamiltonian model, are very closely related. They are both de-
scribed by an evolution operator that consists of two steps, UA and UB , or, Ueven
and Uodd. The same general principles apply. We define A,A(�x),B and B(�x) as in
Eq. (21.4).

To compute the Hamiltonian H , we may consider using the Baker Campbell
Hausdorff expansion [71]:

eP eQ = eR,

R = P + Q + 1
2 [P,Q] + 1

12

[
P, [P,Q]]

+ 1
12

[[P,Q],Q] + 1
24

[[
P, [P,Q]],Q] + · · · ,

(21.11)

a series that continues exclusively with commutators. Replacing P by −iA, Q by
−iB and R by −iH , we find a series for H in the form of an infinite sequence of
commutators. We noted at the end of the previous subsection that the commutators
between the local operators A(�x) and B(�x′) are non-vanishing only if �x and �x′ are
neighbours, |�x − �x′| = 1. Therefore, if we insert the sums (21.4) into Eq. (21.11),
we obtain again a sum. Writing

K(�r) = A(�r) if �r is even, and B(�r) if �r is odd,

L(�r) = A(�r) if �r is even, and −B(�r) if �r is odd,
(21.12)

so that

A(�r) = 1
2

(
K(�r) + L(�r)) and B(�r) = 1

2

(
K(�r) − L(�r)), (21.13)
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we find

H =
∑

�r
H(�r),

H(�r) = H1(�r) +H2(�r) +H3(�r) + · · · , (21.14)

where

H1(�r) = K(�r),
H2(�r) = 1

4 i
∑

�s

[
K(�r),L(�s)],

H3(�r) = 1
24

∑

�s1,�s2

[
L(�r), [K(�s1),L(�s2)

]]
, etc.

(21.15)

The sums here are only over close neighbours, so that each term here can be regarded
as a local Hamiltonian density term.

Note however, that as we proceed to collect higher terms of the expansion, more
and more distant sites will eventually contribute; Hn(�r) will receive contributions
from sites at distance n − 1 from the original point �r .

Note furthermore that the expansion (21.14) is infinite, and convergence is not
guaranteed; in fact, one may suspect it not to be valid at all, as soon as energies
larger than the inverse of the time unit δt come into play. We will have to discuss
that problem. But first an important observation that improves the expansion.

21.3 Conjugacy Classes

One might wonder what happens if we change the order of the even and the odd
sites. We would get

U(δt) = e−iH ?= e−iBe−iA, (21.16)

instead of Eq. (21.5). Of course this expression could have been used just as well. In
fact, it results from a very simple basis transformation: we went from the states |ψ〉
to the states UB |ψ〉. As we stated repeatedly, we note that such basis transformations
do not affect the physics.

This implies that we do not need to know exactly the operator U(δt) as defined
in Eqs. (21.5) or (21.16), we need just any element of its conjugacy class. The con-
jugacy class is defined by the set of operators of the form

GU(δt)G−1, (21.17)

where G can be any unitary operator. Writing G = eF , where F is anti-Hermitian,
we replace Eq. (21.11) by

eR̃ = eF eP eQe−F , (21.18)
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so that

R̃ = R + [F,R] + 1
2

[
F, [F,R]] + 1

3!
[
F,

[
F, [F,R]]] + · · · . (21.19)

We can now decide to choose F in such a way that the resulting expression becomes
as simple as possible. For one, interchanging P and Q should not matter. Secondly,
replacing P and Q by −P and −Q should give −R̃, because then we are looking
at the inverse of Eq. (21.19).

The calculations simplify if we write

S = 1
2 (P + Q), D = 1

2 (P − Q); P = S + D, Q = S − D (21.20)

(or, in the previous section, S = − 1
2 iK, D = − 1

2 iL ). With

eR̃ = eF eS+DeS−De−F , (21.21)

we can now demand F to be such that:

R̃(S,D) = R̃(S,−D) = −R̃(−S,−D), (21.22)

which means that R̃ contains only even powers of D and odd powers of S. We can
furthermore demand that R̃ only contains terms that are commutators of D with
something; contributions that are commutators of S with something can be removed
iteratively by judicious choices of F .

Using these constraints, one finds a function F(S,D) and R̃(S,D). First let us
introduce a short hand notation. All our expressions will consist of repeated com-
mutators. Therefore we introduce the notation

{X1,X2, . . . ,Xn} ≡ [X1, [X2, [· · · ,Xn]] · · ·]. (21.23)

Subsequently, we even drop the accolades { }. So when we write

X1X2X
2
3X4, we actually mean: [X1, [X2, [X3, [X3,X4]]]].

Then, with F = − 1
2D + 1

24S2D + · · ·, one finds

R̃(S,D) = 2S − 1
12DSD + 1

960D
(
8S2 − D2)SD

+ 1
60480D

(−51S4 − 76DSDS + 33D2S2 + 44SD2S − 3
8D4)SD

+O(S,D)9. (21.24)

There are three remarks to be added to this result:

(1) It is much more compact than the original BCH expansion; already the first two
terms of the expansion (21.24) correspond to all terms shown in Eq. (21.11).

(2) The coefficients appear to be much smaller than the ones in (21.11), consider-
ing the factors 1/2 in Eqs. (21.20) that have to be included. We found that, in
general, sizeable cancellations occur between the coefficients in (21.11).

(3) However, there is no reason to suspect that the series will actually converge any
better. The definitions of F and R̃ may be expected to generate singularities
when P and Q, or S and D reach values where eR̃ obtains eigenvalues that
return to one, so, for finite matrices, the radius of convergence is expected to be
of the order 2π .
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In this representation, all terms Hn(�r) in Eq. (21.14) with n even, vanish. Using

S = − 1
2 iK, D = − 1

2 iL, R̃ = −iH̃ , (21.25)

one now arrives at the Hamiltonian in the new basis:

H̃1(�r) = K(�r),
H̃3(�r) = 1

96

∑

�s1,�s2

[L(�r), [K(�s1),L(�s2)]],

H̃5(�r) = 1
30720

∑

�s1,...,�s4

[L(�r),
(

8[K(�s1), [K(�s2)−[L(�s1), [L(�s2)
)
, [K(�s3),L(�s4)]]]],

(21.26)

and H̃7 follows from the second line of Eq. (21.24).
All these commutators are only non-vanishing if the coordinates �s1, �s2, etc., are

all neighbours of the coordinate �r . It is true that, in the higher order terms, next-
to-nearest neighbours may enter, but still, one may observe that these operators all
are local functions of the ‘fields’ Q(�x, t), and thus we arrive at a Hamiltonian H

that can be regarded as the sum over d-dimensional space of a Hamiltonian density
H(�x), which has the property that

[
H(�x),H

(�x′)] = 0, if |�x, �x′| � 1. (21.27)

At every finite order of the series, the Hamiltonian density H(�x) is a finite-
dimensional Hermitian matrix, and therefore, it will have a lowest eigenvalue h.
In a large but finite volume V , the total Hamiltonian H will therefore also have a
lowest eigenvalue, obeying

E0 > hV. (21.28)

However, it was tacitly assumed that the Baker–Campbell–Hausdorff formula
converges. This is usually not the case. One can argue that the series may perhaps
converge if sandwiched between two eigenstates |E1〉 and |E2〉 of H , where E1 and
E2 are the eigenvalues, that obey

|E1 − E2| � 2π, (21.29)

We cannot exclude that the resulting effective quantum field theory will depend
quite non-trivially on the number of Baker–Campbell–Hausdorff terms that are kept
in the expansion.

The Hamiltonian density (21.26) may appear to be quite complex and unsuitable
to serve as a quantum field theory model, but it is here that we actually expect that
the renormalization group will thoroughly cleanse our Hamiltonian, by invoking the
mechanism described at the end of Sect. 20.8.
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