
Chapter 19
The Discretized Hamiltonian Formalism in PQ
Theory

19.1 The Vacuum State, and the Double Role of the Hamiltonian
(Cont’d)

The energy conservation law is usually regarded as an interesting and important
feature of both classical and quantum mechanics, but it is often not fully realized
how important the role of this law really is. The importance of energy is that it is
conserved, it is defined locally, and that it cannot be negative.1 This allows us to
define the vacuum as the single quantum state of the universe that has the lowest
possible energy (or energy per unit of volume).

Consider a small perturbation of this vacuum: a light particle, or a grain of dust.
It carries only a small amount of energy. In our world, this energy cannot increase
spontaneously, because the surrounding vacuum cannot deliver it, and its own en-
ergy cannot increase. All transitions, all processes inside the grain of dust, can only
transform the object into other states with exactly the same energy. If the object de-
cays, the decay products must have even lower amounts of energy. Since the number
of distinct states with the same or less energy is very limited, not much can happen;
the object represents a very stable situation.

But now imagine an alien world where the concept of a conserved, positive en-
ergy would not exist. Perhaps our alien world would nevertheless have something
like a vacuum state, but it would have to be defined differently. In this alien world,
our tiny object could grow spontaneously, since we postulated that there is no con-
served quantity such as energy to stop it from doing so. What this means is that the
tiniest perturbations around the vacuum state will destabilize this vacuum. Similarly,
any other initial state may turn out to be unstable.2

1Often, the Casimir effect is brought forward as a counter example. Of course, it is important to
realize that this effect can produce small regions of negative energy, but those regions are always
accompanied by domains of much larger amounts of positive energy nearby, so that this effect has
little impact on the fundamental issues of stability raised here.
2The absence of a stabilizer does not imply that a dynamical system has to destabilize; the solar
system is a classical case in point, it stayed in roughly the same state for billions of years, without
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We can state this differently: solutions of the equations of motion are stationary
if they are in thermal equilibrium (possibly with one or more chemical potentials
added). In a thermal equilibrium, we have the Boltzmann distribution:

Wi = Ce
−βEi+∑

j μj Rji , (19.1)

where β = 1/kT is the inverse of the temperature T , with Boltzmann constant k,
and i labels the states; μj are chemical potentials, and Rji the corresponding con-
served quantities.

If the energies Ei were not properly bounded from below, the lowest energies
would cause this expression to diverge, particularly at low temperatures.

What is needed is a lower bound of the energies Ei so as to ensure stability of our
world. Furthermore, having a ground state is very important to construct systematic
approximations to solutions of the time-independent Schrödinger equation, using
extremum principles. This is not just a technical problem, it would raise doubt on
the mere existence of correct solutions to Schrödinger’s equation, if no procedure
could be described that allows one to construct such solutions systematically.

In our world we do have a Hamiltonian function, equal to the total energy, that
is locally conserved and bounded from below. Note that “locally conserved” means
that a locally defined tensor Tμν(�x, t) exists that obeys a local conservation law,
∂μTμν = 0, and this feature is connected in important ways not only to the theory of
special relativity, but also to general relativity.

Thus, the first role played by the Hamiltonian is that it brings law and order in
the universe, by being (1) conserved in time, (2) bounded from below, and (3) local
(that is, it is the sum of completely localized contributions).

Deriving an equation of motion that permits the existence of such a function, is
not easy, but was made possible by the Hamiltonian procedure, first worked out for
continuum theories (see Sect. 5.6.2 in Part I).

Hamilton’s equations are the most natural ones that guarantee this mechanism to
work: first make a judicious choice of kinetic variables xi and pi , then start with
any function H({xi,pj }) that is bounded and local as desired, and subsequently
write down the equations for dxi/dt and dpj/dt that guarantee that dH/dt = 0.
The principle is then carried over to quantum mechanics in the standard way.

Thus, in standard physics, we have a function or operator called Hamiltonian that
represents the conserved energy on the one hand, and it generates the equations of
motion on the other.

And now, we argue that, being such a fundamental notion, the Hamiltonian prin-
ciple should also exist for discrete systems.

any conspicuous reason for not converting into a more “probable” state. Therefore, the argument
presented here must be handled with care.
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19.2 The Hamilton Problem for Discrete Deterministic Systems

Consider now a discrete, deterministic system. Inevitably, time will also be discrete.
Time steps must be controlled by a deterministic evolution operator, which implies
that there must be a smallest time unit, call it δt . When we write the evolution
operator U(δt) as U(δt) = e−iEquantδt then Equant is defined modulo 2π/δt , which
means that we can always choose Equant to lie in the segment

0 ≤ Equant < 2π/δt, (19.2)

Instead, in the real world, energy is an additively conserved quantity without any
periodicity. In the PQ formalism, we have seen what the best way is to cure such a
situation, and it is natural to try the same trick for time and energy: we must add a
conserved, discrete, integer quantum to the Hamiltonian operator: Eclass = 2πN/δt ,
so that we have an absolutely conserved energy,

E
?=Equant + Eclass. (19.3)

In the classical theory, we can only use Eclass to ensure that our system is stable, as
described in the previous section.

In principle, it may seem to be easy to formulate a deterministic classical system
where such a quantity Eclass can be defined, but, as we will see, there will be some
obstacles of a practical nature. Note that, if Eq. (19.3) is used to define the total
energy, and if Eclass reaches to infinity, then time can be redefined to be a continuous
variable, since now we can substitute any value t in the evolution operator U(t) =
e−iEt .

One difficulty can be spotted right away: usually, we shall demand that energy
be an extensive quantity, that is, for two widely separated systems we expect

Etot = E1 + E2 + Eint, (19.4)

where Eint can be expected to be small, or even negligible. But then, if both E1 and
E2 are split into a classical part and a quantum part, then either the quantum part of
Etot will exceed its bounds (19.2), or Eclass will not be extensive, that is, it will not
even approximately be the sum of the classical parts of E1 and E2.

An other way of phrasing the problem is that one might wish to write the total
energy Etot as

Etot =
∑

lattice sites i

Ei →
∫

dd �xH(�x), (19.5)

where Ei or H(�x) is the energy density. It may be possible to spread Etot
class over

the lattice, and it may be possible to rewrite Equant as a sum over lattice sites, but
then it remains hard to see that the total quantum part stays confined to the interval
[0,2π/δt) while it is treated as an extensive variable at the same time. Can the
excesses be stowed in Eint?

This question will be investigated further in our treatment of the technical details
of the cellular automaton, Chap. 22.
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19.3 Conserved Classical Energy in PQ Theory

If there is a conserved classical energy Eclass( �P , �Q), then the set of �P , �Q values
with the same total energy E forms closed surfaces ΣE . All we need to demand for
a theory in ( �P , �Q) space is that the finite-time evolution operator U(δt) generates
motion along these surfaces [116]. That does not sound hard, but in practice, to
generate evolution laws with this property is not so easy. This is because we often
also demand that our evolution operator U(δt) be time-reversible: there must exist
an inverse, U−1(δt).

In classical mechanics of continuous systems, the problem of characterizing
some evolution law that keeps the energy conserved was solved: let the continuous
degrees of freedom be some classical real numbers {qi(t),pi(t)}, and take energy
E to be some function

E = H( �p, �q) = T ( �p) + V (�q) + �p · �A(�q), (19.6)

although more general functions that are bounded from below are also admitted. The
last term, describing typically magnetic forces, often occurs in practical examples,
but may be omitted for simplicity to follow the general argument.

Then take as our evolution law:

dqi

dt
= q̇i = ∂H( �p, �q)

∂pi

, ṗi = −∂H( �p, �q)

∂qi

. (19.7)

One then derives

dH( �p, �q)

dt
= Ḣ = ∂H

∂qi

q̇i + ∂H

∂pi

ṗi = ṗi q̇i − q̇i ṗi = 0. (19.8)

This looks so easy in the continuous case that it may seem surprising that this
principle is hard to generalize to the discrete systems. Yet formally it should be easy
to derive some energy-conserving evolution law:

Take a lattice of integers Pi and Qi , and some bounded, integer energy func-
tion H( �P , �Q). Consider some number E for the total energy. Consider all
points of the surface ΣE on our lattice defined by H( �P , �Q) = E. The number
of points on such a surface could be infinite, but let us take the case that it is fi-
nite. Then simply consider a path Pi(t),Qi(t) on ΣE , where t enumerates the
integers. The path must eventually close onto itself. This way we get a closed
path on ΣE . If there are points on our surface that are not yet on the closed
path that we just constructed, then we repeat the procedure starting with one
of those points. Repeat until ΣE is completely covered by closed paths. These
closed paths then define our evolution law.

At first sight, however, generalizing the standard Hamiltonian procedure now seems
to fail. Whereas the standard Hamiltonian formalism (19.8) for the continuous case
involves just infinitesimal time steps and infinitesimal changes in coordinates and
momenta, we now need finite time steps and finite changes. One could think of
making finite-size corrections in the lattice equations, but that will not automatically
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work, since odds are that, after some given time step, integer-valued points in the
surface ΣE may be difficult to find. Now with a little more patience, a systematic
approach can be formulated, but we postpone it to Sect. 19.4.

19.3.1 Multi-dimensional Harmonic Oscillator

A superior procedure will be discussed in the next subsections, but first let us con-
sider the simpler case of the multi-dimensional harmonic oscillator of Sect. 17.2,
Sect. 17.2.2: take two symmetric integer-valued tensors Tij = Tji , and Vij = Vji .
The evolution law alternates between integer and half-odd integer values of the time
variable t . See Eqs. (17.77) and (17.78):

Qi(t + 1) = Qi(t) + TijPj

(
t + 1

2

); (19.9)

Pi

(
t + 1

2

) = Pi

(
t − 1

2

) − VijQj (t). (19.10)

According to Eqs. (17.84), (17.85), (17.88) and (17.89), the conserved classical
Hamiltonian is

H = 1
2TijPi

(
t + 1

2

)
Pj

(
t − 1

2

) + 1
2VijQi(t)Qj (t)

= 1
2TijPi

(
t + 1

2

)
Pj

(
t + 1

2

) + 1
2VijQi(t)Qj (t + 1)

= 1
2

�P +T �P + + 1
2

�P +T V �Q + 1
2

�QV �Q
= 1

2

( �P + + 1
2

�QV
)
T

( �P + + 1
2V �Q) + �Q( 1

2V − 1
8V T V

) �Q
= �P +( 1

2T − 1
8T V T

) �P + + 1
2

( �Q + 1
2

�P +T
)
V

( �Q + 1
2T �P +)

, (19.11)

where in the last three expressions, �Q = �Q(t) and �P + = �P(t + 1
2 ). Equa-

tions (19.11) follow from the evolution equations (19.9) and (19.10) provided that
T and V are symmetric.

One reads off that this Hamiltonian is time-independent. It is bounded from be-
low if not only V and T but also either V − 1

4V T V or T − 1
4T V T are bounded

from below (usually, one implies the other).
Unfortunately, this requirement is very stringent; the only solution where this

energy is properly bounded is a linear or periodic chain of coupled oscillators, as in
our one-dimensional model of massless bosons. On top of that, this formalism only
allows for strictly harmonic forces, which means that, unlike the continuum case,
no non-linear interactions can be accommodated for. A much larger class of models
will be exhibited in the next section.

Returning first to our model of massless bosons in 1+1 dimensions, Sect. 17, we
note that the classical evolution operator was defined over time steps δt = 1, and this
means that, knowing the evolution operator specifies the Hamiltonian eigenvalue up
to multiples of 2π . This is exactly the range of a single creation or annihilation
operator aL,R and aL,R†. But these operators can act many times, and therefore the
total energy should be allowed to stretch much further. This is where we need the
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exactly conserved discrete energy function (19.11). The fractional part of H , which
we could call Equant, follows uniquely from the evolution operator U(δt). Then we
can add multiples of 2π times the energy (19.11) at will. This is how the entire
range of energy values of our 2 dimensional boson model results from our mapping.
It cannot be a coincidence that the angular energy function Equant together with the
conserved integer valued energy function Eclass taken together exactly represent the
spectrum of real energy values for the quantum theory. This is how our mappings
work.

19.4 More General, Integer-Valued Hamiltonian Models
with Interactions

According to the previous section, we recuperate quantum models with a continuous
time variable from a discrete classical system if not only the evolution operator over
a time step δt is time-reversible, but in addition a conserved discrete energy beable
Eclass exists, taking values 2πN/δt where N is integer. Again, let us take δt = 1. If
the eigenvalues of Uop(δt) are called e−iEquant

, with 0 ≤ Equant < 2π then we can
define the complete Hamiltonian H to be

H = Equant + Eclass = 2π(ν + N), (19.12)

where 0 ≤ ν < 1 (or alternatively, −1/2 < ν ≤ 1/2) and N is integer. The quantity
conjugated to that is a continuous time variable. If we furthermore demand that
Eclass is bounded from below then Eq. (19.12) defines a genuine quantum system
with a conserved Hamiltonian that is bounded from below.

As stated earlier, it appears to be difficult to construct explicit, non-trivial exam-
ples of such models. If we try to continue along the line of harmonic oscillators,
perhaps with some non-harmonic forces added, it seems that the standard Hamilto-
nian formalism fails when the time steps are finite, and if we find a Hamiltonian that
is conserved, it is usually not bounded from below. Such models then are unstable;
they will not lead to a quantum description of a model that is stable.

In this section, we shall show how to cure this situation, in principle. We con-
centrate on the construction of a Hamiltonian principle that keeps a classical energy
function Eclass exactly conserved in time.

In the multidimensional models, we had adopted the principle that we in turn
update all variables Qi , then all Pi . That has to be done differently. To obtain better
models, let us phrase our assignment as follows:

Formulate a discrete, classical time evolution law for some model with the fol-
lowing properties:

i The time evolution operation must be a law that is reversible in time.3 Only then
will we have an operator U(δt) that is unitary and as such can be re-written as
the exponent of −i times a Hermitian Hamiltonian.

3When information loss is allowed, as in Sect. 7 of Part I, we shall have to relax this condition.
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ii There must exist a discrete function Eclass depending on the dynamical variables
of the theory, that is exactly conserved in time.

iii This quantity Eclass must be bounded from below.

When these first three requirements are met we will be able to map this system on a
quantum mechanical model that may be physically acceptable. But we want more:

iv Our model should be sufficiently generic, that is, we wish that it features inter-
actions.

v Ideally, it should be possible to identify variables such as our Pi and Qi so that
we can compare our model with systems that are known in physics, where we
have the familiar Hamiltonian canonical variables �p and �q .

vi We would like to have some form of locality; as in the continuum system, our
Hamiltonian should be described as the integral (or sum) of a local Hamiltonian
density, H(�x), and there should exist a small parameter ε > 0 such that at fixed
time t , H(�x) only depends on variables located at �x′ with |�x′ − �x| < ε.

The last condition turns our system in some discretized version of a field theory
( �P and �Q are then fields depending on a space coordinate �x and of course on time t ).
One might think that it would be hopeless to fulfill all these requirements. Yet there
exist beautiful solutions which we now construct. Let us show how our reasoning
goes.

Since we desire an integer-valued energy function that looks like the Hamiltonian
of a continuum theory, we start with a Hamiltonian that we like, being a continuous
function Hcont(�q, �p) and take its integer part, when also �p and �q are integer. More
precisely (with the appropriate factors 2π , as in Eqs. (16.6) and (18.22) in previous
chapters): take Pi and Qi integer and write4

Eclass( �Q, �P) = 2πH class( �Q, �P),

H class( �Q, �P) = int
( 1

2π
Hcont( �Q,2π �P)

)
,

(19.13)

where ‘int’ stands for the integer part, and

Qi = int(qi), Pi = int(pi/2π), for all i. (19.14)

This gives us a discrete, classical ‘Hamiltonian function’ of the integer degrees
of freedom Pi and Qi . The index i may take a finite or an infinite number of values
(i is finite if we discuss a finite number of particles, infinite if we consider some
version of a field theory).

Soon, we shall discover that not all classical models are suitable for our con-
struction: first of all: the oscillatory solutions must oscillate sufficiently slowly to
stay visible in our discrete time variable, but, as we shall see, our restrictions will
be somewhat more severe than this.

4Later, in order to maintain some form of locality, we will prefer to take our ‘classical’ Hamiltonian
to be the sum of many integer parts, as in Eq. (19.27), rather than the floor of the sum of local parts,
as in Eq. (19.13).
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It will be easy to choose a Hamiltonian obeying these (mild) constraints, but what
are the Hamilton equations? Since we wish to consider discrete time steps (δt = 1),
the equations have to be rephrased with some care. As is the case in the standard
Hamiltonian formalism, the primary objective that our equations of motion have to
satisfy is that the function H( �Q, �P) = Eclass must be conserved. Unlike the standard
formalism, however, the changes in the values �Q and �P at the smallest possible time
steps cannot be kept infinitesimal because both time t and the variables �Q and �P
contain integer numbers only.

The evolution equations will take the shape of a computer program. At integer
time steps with intervals δt , the evolution law will “update” the values of the integer
variables Qi and Pi . Henceforth, we shall use the word “update” in this sense. The
entire program for the updating procedure is our evolution law.

As stated at the beginning of this section, it should be easy to establish such
a program: compute the total energy E of the initial state, H( �Q(0), �P (0)) = E.
Subsequently, search for all other values of ( �Q, �P) for which the total energy is
the same number. Together, they form a subspace ΣE of the �Q, �P lattice, which
in general may look like a surface. Just consider the set of points in ΣE , make a
mapping ( �Q, �P ) �→ ( �Q′, �P ′) that is one-to-one, inside ΣE . This law will be time-
reversible and it will conserve the energy. Just one problem then remains: how do
we choose a unique one-to-one mapping?

To achieve this, we need a strategy. Our strategy now will be that we order the
values of the index i in some given way (actually, we will only need a cyclic or-
dering), and update the (Q,P ) pairs sequentially: first the pair (Q1,P1), then the
pair (Q2,P2), and so on, until we arrive at the last value of the index. This sequence
of updating every pair (Qi,Pi) exactly once will be called a cycle. One cycle will
define the smallest step Uop(t, t + δt) for the evolution law.

This reduces our problem to that of updating a single Q,P pair, such that the
energy is conserved. This should be doable. Therefore, let us first consider a single
Q,P pair.

19.4.1 One-Dimensional System: A Single Q,P Pair

While concentrating on a single pair, we can drop the index i. The Hamiltonian will
be a function of two integers, Q and P . For demonstration purposes, we restrict
ourselves to the case

H(Q,P ) = T (P ) + V (Q) + A(Q)B(P ), (19.15)

which can be handled for fairly generic choices for the functions T (P ),V (Q),A(Q)

and B(P ). The last term here, the product AB , is the lattice generalization of the
magnetic term �p · �A(�q) in Eq. (19.6). Many interesting physical systems, such as
most many body systems, will be covered by Eq. (19.15). It is possible to choose
T (P ) = P 2, or better: 1

2P(P − 1), but V (Q) must be chosen to vary more slowly
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with Q, otherwise the system might tend to oscillate too quickly (remember that
time is discrete). Often, for sake of simplicity, we shall disregard the AB term.

The variables Q and P form a two-dimensional lattice. Given the energy E,
the points on this lattice where the energy H(Q,P ) = E form a subspace ΣE . We
need to define a one-to-one mapping of ΣE onto itself. However, since we have just
a two-dimensional lattice of points (Q,P ), we encounter a risk: if the integer H

tends to be too large, it will often happen that there are no other values of Q and P

at all that have the same energy. Then, our system cannot evolve. So, we will find
out that some choices of the function H are better than others. In fact, it is not so
difficult to see under what conditions this problem will occur, and how we can avoid
it: the integer-valued Hamiltonian should not vary too wildly with Q and P . What
does “too wildly” mean? If, on a small subset of lattice points, a (Q,P ) pair does
not move, this may not be so terrible: when embedded in a larger system, it will
move again after the other values changed. But if there are too many values for the
initial conditions where the system will remain static, we will run into difficulties
that we wish to avoid. Thus, we demand that most of the surfaces ΣE contain more
than one point on them—preferably more than two. This means that the functions
V (Q), T (P ),A(Q) and B(P ) should not be allowed to be too steep.

We then find the desired invertible mapping as follows. First, extrapolate the
functions T ,P,A and B to all real values of their variables. Write real numbers q

and p as

q = Q + α, p = P + β, Q and P integer, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. (19.16)

Then define the continuous functions

V (q) = (1 − α)V (Q) + αV (Q + 1),

T (p) = (1 − β)T (P ) + βT (P + 1),
(19.17)

and similarly A(q) and B(p). Now, the spaces ΣE are given by the lines H(q,p) =
T (p)+V (q)+A(q)B(p) = E, which are now sets of oriented, closed contours, see
Fig. 19.1. They are of course the same closed contours as in the standard, continuum
Hamiltonian formalism.

The standard Hamiltonian formalism would now dictate how fast our system runs
along one of these contours. We cannot quite follow that prescription here, because
at t = integer we wish P and Q to take integer values, that is, they have to be at one
of the lattice sites. But the speed of the evolution does not affect the fact that energy
is conserved. Therefore we modify this speed, by now postulating that

at every time step t → t + δt , the system moves to the next lattice site that is
on its contour ΣE .

If there is only one point on the contour, which would be the state at time t , then
nothing moves. If there are two points, the system flip-flops, and the orientation of
the contour is immaterial. If there are more than two points, the system is postulated
to move in the same direction along the contour as in the standard Hamiltonian for-
malism. In Fig. 19.1, we see examples of contours with just one point, and contours
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Fig. 19.1 The QP lattice in the 1 + 1 dimensional case. Constant energy contours are here the
boundaries of the differently coloured regions. Points shown in white are local extrema; they are
not on a contour and therefore these are stable rest points. Black points are saddle points, where
two contours are seen to cross one another. Here, some unique evolution prescriptions must be
phrased, such as: “stick to your right”, and it must be specified which of the two contours contains
the black dot. All these exceptional points are related to local minima (−) and maxima (+) of the
functions T and V

with two or more points on them. Only if there is more than one point, the evolution
will be non-trivial.

In some cases, there will be some ambiguity. Precisely at the lattice sites, our
curves will be non-differentiable because the functions T ,C,A, and B are non-
differentiable there. This gives some slight complications in particular when we
reach extreme values for both T (p) and V (q). If both reach a maximum or both a
minimum, the contour shrinks to a point and the system cannot move. If one reaches
a minimum and the other a maximum, we have a saddle point, and some extra rules
must be added. We could demand that the contours “have to be followed to the
right”, but we also have to state which of the two contours will have to be followed
if we land on such a point; also, regarding time reversal, we have to state which of
the two contours has the lattice point on it, and which just passes by. Thus, we can
make the evolution law unique and reversible. See Fig. 19.1. The fact that there are
a few (but not too many) stationary points is not problematic if this description is
applied to formulate the law for multi-dimensional systems, see Sect. 19.4.2.

Clearly, this gives us the classical orbit in the correct temporal order, but the
reader might be concerned about two things: one, what if there is only one point



19.4 More General, Integer-Valued Hamiltonian Models with Interactions 237

Fig. 19.2 A small region in
the QP lattice where the
(integer valued) Hamiltonian
is reasonably smooth. See
Eq. (19.18). The sides of the
tilted square are ε

√
a2 + b2.

Contours of approximately
constant H values are
indicated

on our contour, the point where we started from, and two, we have the right time
ordering, but do we have the correct speed? Does this updating procedure not go too
fast or too slowly, when compared to the continuum limit?

As for the first question, we will have no choice but postulating that, if there is
only one point on a contour, that point will be at rest, our system does not evolve.
Later, we shall find estimates on how many of such points one might expect.

Let us first concentrate on the second question. How fast will this updating pro-
cedure go? how long will it take, on average, to circle one contour? Well, clearly,
the discrete period T of a contour will be equal to the number of points on a contour
(with the exception of a single point, where things do not move5). How many points
do we expect to find on one contour?

Consider now a small region on the (Q,P ) lattice, where the Hamiltonian H class

approximately linearizes:

H class ≈ aP + bQ + C, (19.18)

with small corrections that ensure that H class is an integer on all lattice points. With
a little bit of geometry, one finds a tilted square with sides of length ε

√
a2 + b2,

where the values of H class vary between values C and C + K , with K = ε(a2 +
b2). Assuming that all these integers occur at about the same rate, we find that the
total number of lattice sites inside the square is ε2(a2 + b2), and since there are K

contours, every contour has, on average,

ε2(a2 + b2)/K = ε (19.19)

points on it. The lengths of the contours in Fig. 19.2 is ε
√

a2 + b2, so that, on
average, the distance between two points on a contour is

√
a2 + b2.

This little calculation shows that, in the continuum limit, the propagation speed
of our updating procedure will be

√
(

δq

δt

)2

+
(

δp

δt

)2

=
√

(
∂H

∂p

)2

+
(

∂H

∂q

)2

, (19.20)

5But we can also say that, in that case, the period is δt , the time between two updates.
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completely in accordance with the standard Hamilton equations! (Note that the fac-
tors 2π in Eqs. (19.13) and (19.14) cancel out)

A deeper mathematical reason why our discrete lattice Hamiltonian formalism
generates the same evolution speed as the continuum theory may be traced to the
Liouville theorem: a co-moving infinitesimal volume element in (p, q)-space stays
constant in the continuum theory; in the discrete lattice case, time reversibility en-
sures that the number of lattice points inside a small volume on the lattice stays fixed,
so that we have the same Liouville theorem on the lattice. When increasing values
for the partial derivatives of the Hamiltonian cause a squeezing of the infinitesimal
volume elements, both the continuum theory and the lattice theory require the same
increase in the velocities to keep the volume elements constant.

One concludes that our updating procedure exactly leads to the correct contin-
uum limit. However, the Hamiltonian must be sufficiently smooth so as to have more
than one point on a contour. We now know that this must mean that the continuous
motion in the continuum limit cannot be allowed to be too rapid. We expect that, on
the discrete lattice, the distance between consecutive lattice points on a contour may
vary erratically, so that the motion will continue with a variable speed. In the con-
tinuum limit, this must average out to a smooth motion, completely in accordance
with the standard Hamilton equations.

Returning to the question of the contours with only one point on them, we ex-
pect their total lengths, on average, to be such that their classical periods would
correspond to a single time unit δt . These periods will be too fast to monitor on our
discrete time scale.

This completes our brief analysis of the 1+1 dimensional case. We found an evo-
lution law that exactly preserves the discrete energy function chosen. The procedure
is unique as soon as the energy function can be extended naturally to a continuous
function between the lattice sites, as was realized in the case H = T + V + AB in
Eq. (19.17). Furthermore we must require that the energy function does not vary too
steeply, so that most of the closed contours contain more than one lattice point.

An interesting test case is the choice

T (P ) = 1
2P(P − 1); V (Q) = 1

2Q(Q − 1), (19.21)

This is a discretized harmonic oscillator whose period is not exactly constant, but
this one is easier to generalize to higher dimensions than the oscillator described in
Sect. 17.2 and Sect. 19.3.1.

19.4.2 The Multi-dimensional Case

A single particle in 1 space- and 1 time dimension, as described in the previous
section, is rather boring, since the motion occurs on contours that all have rather
short periods (indeed, in the harmonic oscillator, where both T and V are quadratic
functions of their variables, such as in Eq. (19.21), the period will stay close to
the fundamental time step δt itself). In higher dimensions (and in multi component



19.4 More General, Integer-Valued Hamiltonian Models with Interactions 239

oscillators, particularly when they have non-linear interactions), this will be quite
different. So now, we consider the variables Qi,Pi, i = 1, . . . , n. Again, we postu-
late a Hamiltonian H( �Q, �P ) that, when Pi and Qi are integer, takes integer values
only. Again, let us take the case that

H( �Q, �P ) = T ( �P ) + V ( �Q) + A( �Q)B( �P ). (19.22)

To describe an energy conserving evolution law, we simply can apply the procedure
described in the previous section n times for each cycle. For a unique description,
it is now mandatory that we introduce a cyclic ordering for the values 1, . . . , n that
the index i can take. Naturally, we adopt the notation of the values for the index i to
whatever ordering might have been chosen:

1 < 2 < · · · < n < 1 . . . . (19.23)

We do emphasize that the procedure described next depends on this ordering.
Let U

op
i be our notation for the operation in one dimension, acting on the vari-

ables Qi,Pi at one given value for the index i. Thus, Uop
i maps (Pi,Qi) �→ (P ′

i ,Q
′
i )

using the procedure of Sect. 19.4.1 with the Hamiltonian (19.22), simply keeping
all other variables Qj,Pj , j 	= i fixed. By construction, U

op
i has an inverse U

op−1
i .

Now, it is simple to produce a prescription for the evolution Uop for the entire sys-
tem, for a single time step δt = 1:

Uop(δt) = U
op
n U

op
n−1 . . .U

op
1 , (19.24)

where we intend to use the physical notation: U
op
1 acts first, then U

op
2 , etc., although

the opposite order can also be taken. Note, that we have some parity violation: the
operators U

op
i and U

op
j will not commute if i 	= j , and therefore, if n ≥ 3 , the

resulting operator Uop is not quite the same as the one obtained when the order is
reversed.

Time inversion gives:

Uop(−δt) = Uop−1(δt) = U
op−1
1 U

op−1
2 · · ·Uop−1

n . (19.25)

Finally, if the exchange U
op
i ↔ U

op−1
i might be associated with “particle–anti-

particle conjugation”, C, then the product P (parity) T (time inversion) C (conju-
gation) may still be a good symmetry. In the real world, this might lead to a natural
explanation of CPT symmetry, while P , T , or CP are not respected.

19.4.3 The Lagrangian

It was emphasized by Elze [34] that systems with a discrete Hamiltonian should also
have an action principle. If both time as well as the variables P and Q are discrete,
one could consider Lagrangians such as

L(t)
?= 1

2P(t)
(
Q(t + 1) − Q(t − 1)

) − H
(
P(t),Q(t)

)
,

S =
∑

t∈Z
L(t).

(19.26)
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This, however, would lead to Lagrange equations that are finite difference equa-
tions, at best, while they would no longer guarantee conservation of energy. Some
Lagrangians may exist that are purely quadratic in the integers P and Q, but, as we
saw, this would be too strong a restriction that excludes any non-trivial theory. At
this moment we have no proposal for a Lagrange principle that works as well as our
discrete Hamilton formalism.

19.4.4 Discrete Field Theories

An important example of an infinite-dimensional (Qi,Pi) system is a local field the-
ory. Suppose that the index i is replaced by a lattice coordinate �x, plus possibly other
indices j labelling species of fields. Let us rename the variables (Φj (�x),Pj (�x)),
where Φj are canonical fields and Pj are their momentum variables (often, in the
continuum theory, d

dt
Φj ). Now assume that the Hamiltonian of the entire system is

the sum of local terms:

Hint =
∑

�x
Hint(�x), Hint(�x) = V

( �Φ(�x), �Φ(�x′)) + T
( �P (�x)

)
, (19.27)

where the coordinates �x′ are limited to neighbours of �x only, and all functions V and
T are integers. This would be a typical discretization of a (classical or quantum) field
theory (ignoring, for simplicity, magnetic terms).

We can apply our multi-dimensional, discrete Hamiltonian equations to this case,
but there is one important thing to remember: where in the previous subsections we
stated that the indices i must be cyclically ordered, this now means that, in the
field theory of Eq. (19.27), not only the indices i but also the coordinates �x must
be (cyclically) ordered. The danger of this is that the functions Vi(�x) also refer
to neighbours, and, consequently, the evolution step defined at point �x affects the
evolution at its neighbouring points �x′, or: [Uop(�x),Uop(�x′)] 	= 0. Performing the
updates in the order of the values of the coordinates �x, might therefore produce
signals that move much faster than light, possibly generating instantaneous non local
effects across the entire system over a single time step t → t + δt . This we need to
avoid, and there happens to be an easy way to do this:

First make sure that the interaction terms in the Hamiltonian only involve
nearest neighbours, The evolution equations (e.o.m.) of the entire system over
one time step δt , are then obtained by ordering the coordinates and other in-
dices as follows: first update all even lattice sites, then update all odd lattice
sites.

Since the Uop operators generated by Hi(�x) do commute with the evolution op-
erators Uop(�x′) when �x and �x′ are both on an even site or both on an odd site of
the lattice (so that they are not nearest neighbours), this ordering does not pass on
signals beyond two lattice links. Moreover, there is another huge advantage of this
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law: the order in which the individual even sites of the lattice are updated is now
immaterial, and the same for the set of all odd sites.

Thus, we obtained a cellular automaton whose evolution law is of the type

Uop = AopBop, Aop =
∏

�x=even

Aop(�x), Bop =
∏

�y=odd

Bop(�y), (19.28)

where the order inside the products over the sites �x and �y is immaterial, except
that Aop(�x) and Bop(�y) do not commute when �x and �y are direct neighbours. Such
automata are interesting objects to be studied, see Chap. 21.

19.4.5 From the Integer Valued to the Quantum Hamiltonian

A deterministic system obeying a discrete Hamiltonian formalism as described in
the previous sections is of particular interest when we map it onto a quantum sys-
tem following the program discussed in this book. This is because we here have
two different operators that both play the role of energy: we have the integer val-
ued, discrete Hamiltonian Hclass that generates the classical equations of motion,
and we have the angular, or fractional valued Hamiltonian Hquant, defined from the
eigenstates and eigenvalues of the one-time step evolution operator Uop(δt):

Uop(δt) = e−iH
op
quant , 0 ≤ Hquant < 2π (δt = 1), (19.29)

where Hquant refers to the eigenvalues of the operator H
op
quant.

As anticipated in Sect. 19.4, we can now uniquely define a total Hamiltonian that
is a real number operator, by

H = Hclass + H
op
quant. (19.30)

The bounds imposed in Eq. (19.29) are important to keep in mind, since Hquant,
as defined, is strictly periodic. Hclass is assumed to take only integer values, times
2π/δt . In this section we study the quantum theory defined by the Hamiltonian
(19.30).

We have seen, for instance in Chap. 2, Sect. 2.2.1, Eq. (2.26) in Part I, and in
Chap. 12, Sect. 12.2, Eq. (12.10) in Part II, how the operator H

op
quant can be calcu-

lated from the eigenvalues U(δt) of the operator Uop(δt): for instance by Fourier
transformations, one derives that, if the eigenvalues of Hquant are assumed to lie
between 0 and 2π , then

H
op
quant = π −

∞∑

n−1

i

n

(
Uop(nδt) − Uop(−nδt)

)
. (19.31)

This sum converges nearly everywhere, but the vacuum is the edge state where the
equation does not hold, and it is not quite local, since the evolution operator over n

steps in time, also acts over n steps in space.
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But both Hclass and Hquant are uniquely defined, and since Hquant is bound to an
interval while Hclass is bounded from below, also H is bounded from below.

Note that demanding a large number of low energy states near the vacuum (the
absence of a large mass gap) implies that Uop(nδt) be non-trivial in the Hclass = 0
sector. This is often not the case in the models described in Sect. 19.4.2, but in
principle there is no reason why such models should not exist also. In fact, some
of the cellular automaton models discussed later in Chap. 21 have no manifestly
conserved Hclass, so that all their states can be regarded as sitting in the Hclass = 0
sector of the theory.

Because of the non-locality of Eq. (19.31), the Hamiltonian (19.31) does not obey
the rule vi, see page 233, but if Uop(δt) is the product of local evolution operators,
the evolution over integer time steps nδt is local, so the theory can be claimed to
obey locality, as long as we refrain from defining its states at time t when t is not an
integer.6

As we have seen in Sect. 14, the sum (19.31) does not converge rapidly every-
where in Hilbert space. We are particularly interested in the Hamiltonian as it acts
on states very close to the vacuum, in our notation: Hclass = 0, Hquant = ω, where
0 < ω � 2π . Suppose then that we introduce a cut-off in the sum (19.31) (or 12.8)
by multiplying the summand with e−n/R , where R is also the range of non-locality
of the last significant terms of the sum. As we have seen in Sect. 14, breaking off
the expansion at the point R modifies the Hamiltonian as follows:

Hquant → Hquant + 2

RHquant
, (19.32)

and this is only acceptable if

R � MPl/〈Hquant〉2. (19.33)

Here, MPl is the “Planck mass”, or whatever the inverse is of the elementary time
scale in the model. This cut-off radius R must therefore be chosen to be very large,
so that, indeed, the exact quantum description of our local model generates non-
locality in the Hamiltonian.

We conclude that the Hamiltonian can be expressed in terms of local terms, but
we need to include the operators Uop(±�t) where �t is large compared to the
inverse of the Hamiltonian we wish to calculate. These will develop non localities
that are still serious. This is still an obstacle against the construction of a local
quantum Hamiltonian density (the classical component, H class obeys condition vi).
As yet, therefore, more has to be done to obtain locality: second quantization.

The apparent locality clash between the quantum Hamiltonian and the classical
theory may well be looked upon as a possible additional explanation of the appar-
ent non-localities expected in ‘hidden variable’ theories: neither the pure quantum

6Some have tried to shoot down our theories by objecting that our classical/quantum equivalence
only holds for integer times. Of course we simply point out then that, if we restrict ourselves to
sufficiently low energies, the time-variability is sufficiently slow that having an equation that only
holds rigorously at integer multiples of δt is all we need.
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system that we usually employ in quantum field theories, nor the associated clas-
sical system exhibit any non-locality, but the mapping between them does. This
non-locality is spurious, it has no physical consequence whatsoever, but mathe-
matically it may imply that the quantum system should not be split up into local
wave functions that do not communicate with each other—perhaps that is the route
along which apparent non-locality arises in classical mechanical models. There is
no non-locality in the classical theory, but it is in the representation of the quantum
variables, or: the classical-quantum mapping.
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