
Chapter 18
Symmetries

In classical and in quantum systems, we have Noether’s theorem [16, 63]:

Whenever there is a continuous symmetry in a system, there exists a conserved
quantity associated with it.

Examples are conservation of momentum (translation symmetry), conservation of
energy (symmetry with respect to time translations), and angular momentum (ro-
tation symmetry). In classical systems, Noether’s theorem is limited to continuous
symmetries, in quantum systems, this theorem is even more universal: here also
discrete symmetries have their associated conservation laws: parity P = ±1 of a
system or particle (mirror symmetry), non commuting discrete quantum numbers
associated with more general discrete permutations, etc. Also, in a quantum system,
one can reverse the theorem:

Every conserved quantity is associated to a symmetry,

for instance isospin symmetry follows from the conservation of the isospin vector
�I = (I1, I2, I3), baryon number conservation leads to a symmetry with respect to
U(1) rotations of baryonic wave functions, and so on.

18.1 Classical and Quantum Symmetries

We now claim that this more generalized Noether theorem can also be applied to
classical systems, simply by attaching a basis element of Hilbert space to every
state the classical system can be in. If, for instance, the evolution law Ut,t+δt is in-
dependent of time t , we have a conserved energy. This energy is obtained from the
eigenvalue of Ut,t+δt for the smallest admissible value of δt . Now since an energy
eigenstate will usually not be an ontological state of the system, this energy conser-
vation law only emerges in our quantum procedure; it does not show up in standard
classical considerations. For us, this is very important: if δt is as small as the Planck
time, the energy eigenstates, all the way to the Planck energy, are superpositions of
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216 18 Symmetries

ontological states. If, as we usually do, we limit ourselves to quantum systems with
much lower energies, we are singling out a section of Hilbert space that is not rep-
resented by individual ontological states, and for this reason we should not expect
recognizable classical features in the quantum systems that we are usually looking
at: atoms, molecules, elementary particles.

Often, our deterministic models are based on a lattice rather than a space–time
continuum. The classical space–time symmetries on a lattice are more restricted
than those of a continuum. It is here that our mappings onto quantum systems may
help. If we allow ontological states to have symmetry relations with superimposed
states, much more general symmetry groups may be encountered. This is further
illustrated in this chapter.

Since we often work with models having only finite amounts of data in the form
of bits and bytes in given volume elements, we are naturally led to systems defined
on a lattice. There are many ways in which points can be arranged in a lattice config-
uration, as is well known from the study of the arrangement of atoms in crystalline
minerals. The symmetry properties of the minerals are characterized by the set of
crystallographic point groups, of which there are 32 in three dimensions [72].

The simplest of these is the cubic symmetry group generated by a cubic lattice:

�x = (n1, n2, n3), (18.1)

where n1, n2 and n3 are integers. What we call the cubic group here, is the set of all
48 orthogonal rotations including the reflections of these three integers into ± each
other (6 permutations and 23 signs). This group, called O(3,Z), is obviously much
smaller than the group O(3,R) of all orthonormal rotations. The cubic group is a
finite subgroup of the infinite orthogonal group.

Yet in string theory, Sect. 17.3.2, something peculiar seems to happen: even
though the string theory is equivalent to a lattice model, it nevertheless appears
not to lose its full orthogonal rotation symmetry. How can this be explained?

18.2 Continuous Transformations on a Lattice

Consider a classical model whose states are defined by data that can be arranged
in a d dimensional cubic lattice. Rotation symmetry is then usually limited by the
group O(d,Z). If now we introduce our Hilbert space, such that every state of the
classical system is a basis element of that, then we can introduce superpositions, and
much more symmetry groups are possible. There are several ways now to introduce
continuous translations and rotations.

To this end, it is, again, very instructive to do the Fourier transformation:

〈�x|ψ〉 = (2π)−d/2
∫

|κi |<π

dd �κ 〈�κ|ψ〉ei�κ·�x. (18.2)

Here, |ψ〉 describes a single particle living on the lattice, but we could also take it as
the operator field of a second-quantized system, as is usual in quantum field theories.
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Of course, as is usual in physics notation, 〈�x| are the bras in x space (where �x is
Eq. (18.1), the lattice), whereas 〈�κ| are the bras in momentum space, where �κ are
continuous, and all its components κi obey |κi | < π .

The inverse of the Fourier transform (18.2) is:

〈�κ|ψ〉 = (2π)−d/2
∑
�x∈Zd

〈�x|ψ〉e−i�κ·�x. (18.3)

18.2.1 Continuous Translations

Translations over any distance �a can now be defined as the operation

〈�κ|ψ〉 → 〈�κ|ψ〉e−i�κ·�a, (18.4)

although only if �a has integer components, this represents an ontological shift

〈�x|ψ〉 → 〈�x − �a|ψ〉, (18.5)

since �x must sit in the lattice, otherwise this would represent a non ontological state.
If �a has fractional components, the translation in x space can still be defined.

Take for instance a fractional value for ax , or, �a = (ax,0,0). Then

〈κx |ψ〉 → 〈κx |ψ〉e−iκxax , 〈x|ψ〉 →
∑
x′

〈
x′|ψ 〉

�ax

(
x − x′),

�ax (x1) = (2π)−1
∫ π

−π

dκx e−iaxκx+iκxx1 = sinπ(x1 − ax)

π(x1 − ax)
,

(18.6)

where we also used Eq. (18.3) for the inverse of Eq. (18.2).
One easily observes that Eq. (18.6) reduces to Eq. (18.5) if ax tends to an integer.

Translations over a completely arbitrary vector �a are obtained as the product of
fractional translations over (ax,0,0), (0, ay,0) and (0,0, az):

〈�x|ψ〉 →
∑

x′,y′,z′
〈�x′|ψ〉��a

(�x − �x′), ��a(�x1) = �ax (x1)�ay (y1)�az(z1). (18.7)

Notice that the kernel function ��a(�x1) maximizes for the values of �x1 closest to �a,
so, even for translations over fractional values of the components of �a, the transla-
tion operation involves only the components of |ψ〉 closest to the target value �x − �a.

The generator for infinitesimal translations is the operator �ηop. Translations
over a finite distance �a can then be described by the operator ei�a·�ηop . Writing
�ηop = (ηx, ηy, ηz), and taking ηx, ηy, and ηz each to act only in one dimension,
we have

〈�κ|�ηop|ψ〉 = −�κ〈�κ|ψ〉, (18.8)

〈x|eiηxax |ψ〉 =
∑
x′

〈x′|ψ〉 sinπ(x − x′ − ax)

π(x − x′ − ax)
, (18.9)
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and when ax is taken to be infinitesimal, while x and x′ are integers, one finds

〈x|(I+ iηxax)|ψ〉 =
∑
x′

〈x′|ψ〉
(

δxx′ + (1 − δxx′)
(−1)x−x′

(−πax)

π(x − x′)

)
; (18.10)

〈x|ηx |x〉 = 0, 〈x|ηx |x′〉 = i(−1)x−x′

x − x′ if x �= x′. (18.11)

The eigenstates |ηx〉 of the operator ηx can be found: 〈x|ηx〉 = e−iηxx .
The expressions we found for this generator are the most natural ones but not

the only possible choices; we must always remember that one may add multiples of
2π to its eigenvalues. This modifies the matrix elements (18.11) while the effects of
translations over integer distances remain the same.

An important feature of our definition of fractional translations on a lattice is their
commutation rules. These translations are entirely commutative (as we can deduce
from the definition Eq. (18.4)):

[�η, �η′] = 0. (18.12)

18.2.2 Continuous Rotations 1: Covering the Brillouin Zone with
Circular Regions

What can be done with translations on a lattice, can also be done for rotations, in
various ways. Let us first show how to obtain a perfect general rotation operator on
a lattice, in principle. Again, we start from the Fourier modes, eiκx , Eq. (18.2). How
do we generate arbitrary rotations?

Taking again the cubic lattice as our prototype, we immediately see the diffi-
culty: the space of allowed values for �κ is a square (in 2 dimensions) or a cube
(in 3 dimensions). This square and this cube are only invariant under the discrete
rotation group O(d,Z) . Therefore, rotations over other angles can at best be ap-
proximate, it seems. We illustrate the situation for a two-dimensional square lattice,
but extrapolation to d > 2 space dimensions and/or other lattice configurations is
straightforward.

The space of allowed momentum values is called the Brillouin zone, and it is
the square in Fig. 18.1a. A first approximation for a rotation of the lattice by any
angle ϕ is obtained by drawing the largest possible circle in the Brillouin zone (or
the largest possible sphere in the 3 or higher dimensional case) and rotate the region
inside that. The data on the remainder of the Brillouin zone, outside the circle, are
ignored or replaced by zero.

This procedure perhaps looks good for the lower frequency modes, but it does
not rotate everything, and it would clearly disobey the desired group properties of
rotations and translations, so we must do something better with the remainder of the
Brillouin zone. This is possible, see Fig. 18.1b. The rotation operator could then be
defined as follows.
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Fig. 18.1 Rotations in the Brillouin zone of a rectangular lattice. a We can limit ourselves to the
region inside the largest circle that fits in the Brillouin zone (A). The shaded region (B) is neglected
and the amplitude there replaced by zero. This is good if strongly fluctuating modes in �x space
may be ignored, such as in a photograph with a rectangular grid of pixels. b Unitarity is restored
if we also fill the remainder of the Brillouin zone also with circles, B,C, etc., the larger the better
(as explained in the text), but never overlapping. In the picture, the shaded regions should also be
filled with circles. The rotation operator must rotate every circle by the same angle ϕ (arrows)

We fill the entire Brillouin zone with circular regions, such that they completely
cover the entire space without overlappings. As will be explained shortly, we prefer
to keep these circles as large as possible to get the best1 result. The action of the
rotation operator will now be defined to correspond to a rotation over the same
angle ϕ inside all of these circles (arrows in Figs. 18.1a and b). With “circles” we
here mean circular regions, or, if d > 2, regions bounded by (d − 1)-spheres.

This is—nearly2—the best we can do in the Brillouin zone, being the space of
the Fourier vectors �κ . The reason why we split the Brillouin zones into perfectly
spherical regions, rather than other shapes, becomes clear if we inspect the action
of this operator in �x-space: how does this operator work in the original space of the
lattice sites �x?

Let us first consider the action of a single circle, while the data on the rest of the
Brillouin zone are replaced by zero. First take a circle (if d = 2) or sphere (if d = 3)
whose centre is at the origin, and its radius is r . Projecting out this circle means that,
in �x-space, a wave function ψ(�x) is smeared as follows:

ψ ′(�x) = (2π)−d
∑
�x′

∫
|�κ|<r

dd �κ ei�κ·(�x−�x′)ψ
(�x′)

=
∑
�x′

(
r

π

)d

Kd

(
r
π

∣∣�x − �x′∣∣)ψ(�x′). (18.13)

1“Best” here means that the effect of the rotation is maximally local, as will be seen in the sequel.
2A slight complication that can be cured, is explained shortly after Eq. (18.19) on page 221.
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Fig. 18.2 The function
Kd(y), a for d = 2, and b for
d = 5

The kernel of this rotationally symmetric expression turns out to be a Bessel
function:

Kd(y) = π
d−1

2

2dΓ (d+1
2 )

∫ 1

−1
dk

(
1 − k2) d−1

2 eiπky = (2y)−d/2Jd/2(πy). (18.14)

It is a smooth function, dropping off at infinity as a power of y (see Fig. 18.2):

Kd(y) −→ 2 sinπ(y + 1−d
4 )

π(2y)
d+1

2

as y → ∞. (18.15)

We infer from Eq. (18.13) that, projecting out the inside of a circle with radius r

in the Brillouin zone, implies smearing the data on the lattice over a few lattice sites
in all directions, using the kernel Kd(y). The smaller the radius r , the further out
the smearing, which is why we should try to keep our circles (spheres) as large as
possible.

Next, we notice that most of the circles in Fig. 18.1b are off-centre. A displace-
ment by a vector �κ1 in the Brillouin zone corresponds to a multiplication in con-
figuration space by the exponent ei�κ1·�x . Projecting out a circle with radius r and its
origin on the spot �κ1 in the Brillouin zone, means dividing the wave function ψ(�x)

by the exponent ei�κ1·�x , smearing it with the kernel Kd(y), then multiplying with the
exponent again (thus, we bring the circle to the origin, project out the centralized
circle, then move it back to where it was). This amounts to smearing the original
wave function with the modified kernel

Kd(y, �κ1) = Kd(y)ei�κ1·(�x−�x′), y = r
π

∣∣�x − �x′∣∣. (18.16)

If we add the projections of all circles with which we covered the Brillouin zone,
the total effect should be that we recover the original wave function on the lattice.

And now we can rotate. Rotating a circle (r, κ1) in the Brillouin zone over any
angle ϕ has exactly the same effect as (1) finding the smeared wave function using
the kernel Kd(y)e−i�κ1·�x′

, rotating the resulting continuous function over the angle
ϕ in �x-space, and then multiplying with the exponential ei�κ1·�x . If we add together
the effects of all circles, we get the rotation operator. If we want the effect of an
orthogonal rotation Ω in �x-space, then this results in

ψ ′(�x) =
∑
�x′

∑
i

Kd

( ri
π

∣∣Ω �x − �x′∣∣)ei�κi ·(�x−�x′)ψ
(�x′), (18.17)

where the index i counts the circles covering the Brillouin zone.
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The transformations described in this subsection form a perfectly acceptable rota-
tion group, converging to the usual rotations in the continuum limit. This can easily
be seen by noting that the continuum case is dominated by the small values of �κ ,
which are all in the primary circle. The other circles also rotate the wave functions
to the desired location, but they only move along the rapidly oscillating parts, while
the vectors �κ1 stay oriented in the original direction.

The desired group properties of this operator follow from the fact that the circles
cover the Brillouin zone exactly once.

Ω3 = Ω1Ω2. (18.18)

Of course, the operation (18.17), to be referred to as R(Ω), is not quite an ordi-
nary rotation. If T (�a) is the translation over a non-lattice vector �a as described in
Sect. 18.2.1, then

R(Ω)T (�a) �= T (Ω �a)R(Ω), (18.19)

and furthermore, if Ω is chosen to be one of the elements of the crystal group of the
lattice, R(Ω) does still not coincide with Ω itself. This latter defect can be cured,
but we won’t go into these details.

The best feature of this rotation operator is that it appears to act really locally in
�x-space, spreading the lattice points only slightly with the Bessel function kernels
(18.14), but it also has disadvantages: it will be extremely difficult to construct some
deterministic evolution law that respects this transformation as a symmetry. For this
reason, we now consider other continuous transformation prescriptions that yield
rotations.

18.2.3 Continuous Rotations 2: Using Noether Charges
and a Discrete Subgroup

In a deterministic theory then, we wish to identify an evolution law that respects
our symmetries. This requires a different choice for the definitions of the symme-
tries involved. To this end, we enter Noether’s theorem, as it was introduced at the
beginning of this chapter. For example, symmetry under time translations is associ-
ated to the conservation of energy, translation symmetry is associated to momentum
conservation, and rotation symmetry leads to the conservation of angular momen-
tum. We refer to these conserved quantities as Noether charges. All these conserved
charges are observable quantities, and therefore, if we wish to investigate them in
a quantum theory that we relate to a deterministic system, then this deterministic
system should also exhibit observable quantities that can be directly related to the
Noether charges.

In the PQ formalism, the Noether charges for translation symmetry are built in,
in a sense. Translations in the Qi variables are associated to quantities pi , of which
the integer parts Pi are ontological observables. Only the fractional parts generate
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translations, which then must be integer steps on the Q lattice. We need both com-
ponents of the momentum. If the lattice length is small, the quanta of the integer
parts of the momenta are large. Planets have very large momenta, cold atoms have
very small momenta. Large momenta also are sources of gravitational fields, and
as such directly observable. What about the transition region? It happens to be in a
very familiar domain—the Planck unit of momentum is ∼ 6.5 kg m/sec. Momen-
tum in that domain must be a mixture of the P observables and the Q displacement
operators, whereas in ordinary physics we notice nothing special in that domain.

In the case of angular momentum, we may note that angular momentum is quan-
tized anyway. Can we associate an ontological observable (beable) to angular mo-
mentum? Not so easily, because angular momentum consists of non-commuting
components. At best we will have ontological quantized variables playing the role
of “the classical parts” of angular momentum, supplemented by quantum degrees
of freedom (changeables) that restore the commutation rules. We observe that, for
small particles, angular momentum is only partly observable; sometimes it is a be-
able, sometimes a changeable. For large systems, angular momentum is observable,
with some margin of error.

This leads us to consider the following structure—and indeed we will have to
use similar methods whenever a symmetry group becomes large, meaning that it
has very many elements. Since angular momenta are non commutative, they cannot
be quite ontological, but their ‘classical parts’ must be. Therefore, we assume that
the total angular momenta operators Ji can be written as follows:

Ji = Li + λi, [Ji, Jj ] = iεijkJk, (18.20)

where Li represents the expectation values of Ji in all ontological states, so that Li

are beables. The λi represent the remainder, and their expectation values in ontolog-
ical states vanish:

〈ont|λi |ont〉 = 0 for each ontological state |ont〉. (18.21)

The following subsection will show an explicit procedure to obtain Li and λi .

18.2.4 Continuous Rotations 3: Using the Real Number Operators
p and q Constructed Out of P and Q

If our theory is defined on a lattice, there is another great way to recover many of
the symmetries of the continuum case, by using the PQ trick as it was exposed in
Sect. 16. We saw that string theory, Sect. 17.3, was re-written in such a way that
the string moves on a lattice in target space, where the lattice basically describes the
integer parts of the coordinates, while the space in between the lattice sites actually
correspond to the eigenstates of the displacement operators for the momentum vari-
ables P . Together, they form a continuum, and since the entire system is equivalent
to the continuum string theory, it also shares all continuous translation and rotation
symmetries with that theory.
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By allowing the application of this mechanism, string theory appears to be more
powerful than theories of point particles; the commutation rules for the operators in
target space are fundamentally different, and string theory allows target space to be
in a high number of dimensions.

Thus, in the PQ formalism, we now use the continuum definition of angular mo-
mentum. Consider the wave function of a single particle in three space dimensions,
so that it lives on the product of three P,Q lattices. These lattices generate the three
quantum coordinates qi . Its Hilbert space H is the product space of three Hilbert
spaces H1,H2 and H3.

Write, as in Eqs. (16.18) and (16.19),

q
op
i = Qi + a

op
i , p

op
i = 2πPi + b

op
i , (18.22)

so that the angular momentum operator is (in the 3-dimensional case)

Ji = εijkq
op
j p

op
k = εijk

(
2πQjPk + 2πa

op
j Pk + Qjb

op
k + a

op
j b

op
k

)
. (18.23)

Since the expectation values of a
op
i and b

op
i vanish in the ontological states, |ont〉 =

| �P , �Q〉, and since the last term will be ≤ O(2π), we can identify Li with the first
term:

Li ≈ 2πεijkQjPk. (18.24)

Note, that the Li are quantized in multiples of 2π rather than one, as one might
have expected, so Eq. (18.24) cannot hold exactly.

Let us now inspect the modifications on the commutation rules of these angular
momentum operators caused by the edge states. In each of the three Hilbert spaces
Hi , i = 1,2,3,, we have Eq. (16.22), while the operators of one of these Hilbert
spaces commute with those of the others. Writing the indices explicitly:

[q1,p1] = iI2I3
(
I1 − ∣∣ψ1

e

〉〈
ψ1

e

∣∣), [q1,p2] = 0, and cyclic permutations,

(18.25)

where Ii are the identity operators in the ith Hilbert space, and |ψi
e〉 are the edge

states on the ith P,Q lattice. One then easily derives that the three angular mo-
mentum operators Ji defined in the usual way, Eq. (18.23), obey the commutation
rules

[J1, J2] = iJ3I1I2
(
I3 − ∣∣ψ3

e

〉〈
ψ3

e

∣∣), and cyclic permutations. (18.26)

The importance of this result is that now we observe that the operator J3 only acts
in Hilbert spaces 1 and 2, but is proportional to the identity in H3 (since J3 contains
only q1, q2,p1, and p2). So the projection operator for the edge state |ψ3

e 〉 com-
mutes with J3. This implies that, if we limit ourselves to states that are orthogonal
to the edge states, they will also rotate to states orthogonal to the edge states. In this
subspace of Hilbert space the rotations act normally. And we think that this is re-
markable, because certainly the “ontological” basis defined on the six-dimensional
�P , �Q lattice has no built-in continuous rotation invariance at all.
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18.2.5 Quantum Symmetries and Classical Evolution

In previous subsections it was observed that, when we project classical models on
Hilbert spaces, new symmetries may emerge. These are symmetry transformations
that map classical states onto superpositions of states. A few examples were shown.

None of our procedures are fool proof. In the special case to be discussed next,
we study time translation invariance. As stated earlier, we might split the energy
E into a classical part (δE ) and a quantum part (the generator of discrete time
translations, the Hamiltonian H that lies in the interval [0,2π/δt). However, this
would suggest that we can only measure energies with 2π/δt as our margin of error.
That cannot be right: if δt is the Planck time, then the energy quantum is the Planck
energy, EPlanck, which is about 543 kiloWatt-hours; yet we pay our electricity bills
per kiloWatt-hour, and those bills are certainly ontological. Mutations in our DNA
profiles might require only a couple of electronVolts to take place, and these might
be crucial for our genetically inherited identities; an electronVolt is about 10−28

times the Planck energy. Even that may have to be (mostly) ontological.
Of course we are primarily interested in symmetries that are symmetries of the

evolution operator. The cogwheel model, Sect. 2.2.1, for instance has the classical
symmetry of rotations over N steps, if N is the number of cogwheel position states.
But if we go to the energy eigenstates |k〉H , k = 0, . . .N −1 (Eqs. (2.21) and (2.22)),
we see that, there, a translation over n teeth corresponds to multiplication of these
states as follows:

|k〉H → e2πikn/N |k〉H . (18.27)

Since these are eigenstates of the Hamiltonian, this multiplication commutes with
H and hence the symmetry is preserved by the evolution law.

We now found out that we can enlarge the symmetry group by choosing the
multiplication factors in frequency space

|k〉H → e2πikα/N |k〉H . (18.28)

where α now may be any real number, and this also corresponds to a translation in
time over the real number α. This enhances the symmetry group from the group of
the cyclic permutations of N elements to the group of the continuous rotations of a
circle.

18.2.6 Quantum Symmetries and Classical Evolution 2

An other rather trivial yet interesting example of a symmetry that is enlarged if
we apply our quantum constructions, occurs in a simple cellular automaton in any
number d of space dimensions. Consider the Boolean variables σ(�x, t) = ±1 dis-
tributed over all even sites in a lattice space–time, that is, over all points (�x, t) =
(x1, . . . , xd, t) with xi and t all integers, and x1 + · · · + xd + t = even.
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Let the evolution law be

σ(�x, t + 1) =
(

d∏
i=1

σ(�x + �ei, t)σ (�x − �ei, t)

)
σ(�x, t − 1), (18.29)

where �ei are the unit vectors in the ith direction in d dimensional space. Or: the
product of the data on all direct space–time neighbours of any odd site (�x, t) is
+1. This law is manifestly invariant under time reversal, and we see that it fixes all
variables if the data are given on a Cauchy surface consisting of two consecutive
layers in time t, t − 1. The classical model has the manifest translation symmetry
over vectors δx = (a1, . . . , ad, τ ) with

∑
i ai + τ even.

Now let us introduce Hilbert space, and consider the odd lattice sites. On these
odd sites, we define the action of changeables σ1(�x1, t1) as follows:

The data on the time frame t = t1, are kept unchanged;
on the time frame t = t1 − 1, only σ(�x1, t1 − 1) changes sign, and all others
remain unchanged;
consequently, according to the evolution law, also on the time frame t = t1 +1,
only σ(�x1, t1 + 1) changes sign, all others stay the same.

The reason for the notation σ1 is that in a basis of Hilbert space where
σ(�x1, t1 − 1) = σ3 = ( 1 0

0 −1

)
, our new operator is σ1(�x, t1) = σ1 = ( 0 1

1 0

)
, as in

the Pauli matrices.
Now, checking how the action of σ1(�x, t) propagates through the lattice, we ob-

serve that

σ1(�x, t + 1) =
(

d∏
i=1

σ1(�x + �ei, t)σ1(�x − �ei, t)

)
σ1(�x, t − 1), (18.30)

where now the vector (�x, t) is even, while in Eq. (18.29) they were odd. Thus the
product of the changeables σ1(�x′, t ′) that are direct space–time neighbours of an
even site (�x, t) is also one.

Since we recovered the same evolution law but now on the sites that before were
empty, our translation symmetry group now has twice as many elements. Now, we
can perform a translation over a vector, whose sum of components is odd, but the
states in Hilbert space then have to undergo a transformation; at every site:

|ψ(�x, t)〉 → Uop|ψ(�x, t)〉, Uopσ1U
−1
op = σ3; Uop = 1√

2

(
1 1

1 − 1

)
. (18.31)

Since U2 = 1, this is actually a reflection. This means that the succession of two
odd translations gives an even translation without further phase changes.

This simple model shows how the introduction of Hilbert space may enhance the
symmetry properties of a theory. In this case it also implies that the Brillouin zone
for momentum space becomes twice as large (see Fig. 18.3). A quantum physicist
living in this world will not be able to distinguish the even sites from the odd ones.
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Fig. 18.3 a The Brillouin zone for the lattice momentum �κ of the ontological model described by
Eq. (18.29), in two space dimensions, with data only on the even lattice sites (smaller square, tilted
by 45◦), and b the Brillouin zone for the Hilbert space description of this model (larger square)

18.3 Large Symmetry Groups in the CAI

We end this chapter with a general view of large symmetry groups, such as trans-
lations in space and in time, and the Lorentz group. They have infinite numbers
of group elements. Now we imagine our automaton models to have discretized
amounts of information spread over space and time. How can we have infinite and/or
continuous symmetry groups act on them?

Our impression from the previous results is that the conventional symmetry gen-
erators, as used in quantum theories, will be operators that always consist of combi-
nations of beables and changeables: the Noether charges, such as angular momen-
tum, energy and momentum, will have classical limits that are perfectly observable,
hence they are beables; yet quantum mechanically, the operators do not commute,
and so there must also be changeable parts.

The beable parts will be conjugated to the tiniest symmetry operations such as
very tiny translations and rotations. These are unlikely to be useful as genuine trans-
formations among the ontological data—of course they are not, since they must
commute with the beables.

The changeable parts of these operators are not ontological observables as they
do not commute. The PQ formalism, elaborated in Sect. 16, is a realization of this
concept of splitting the operators: here, both in position space and in momentum
space, the integer parts of the translation operators are beables, the fractional parts
are changeables. The continuous translation operators pop consist of both ingredi-
ents. We suspect that this will have to become a general feature of all large symme-
try groups, in particular the Hamiltonian itself, and this is what we shall attempt to
implement in the next chapter 19.
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