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Abstract. We show that it is decidable given an MSO-definable prop-
erty P of countable words and a Muller context-free grammar GG, whether
every word in the language generated by G satisfies P.

1 Introduction

A word, called ‘arrangement’ in [9], is an isomorphism type of a countable labeled
linear order. Such words form a generalization of the classic notions of finite and
w-words.

Finite automata on w-words have by now a vast literature, see [13] for a
comprehensive treatment. Finite automata acting on well-ordered words longer
than w have been investigated in [1,6,7,16,17], to mention a few references. In the
last decade, the theory of automata on well-ordered words has been extended
to automata on all countable words, including scattered and dense words. In
[2,3,5], both operational and logical characterizations of the class of languages
of countable words recognized by finite automata were obtained.

Context-free grammars generating w-words were introduced in [8] and sub-
sequently studied in [4,12]. Context-free grammars generating arbitrary count-
able words were defined in [10,11]. Actually, two types of grammars were defined,
context-free grammars with Biichi acceptance condition (BCFG), and context-free
grammars with Muller acceptance condition (MCFG). These grammars generate
the Biichi and the Muller context-free languages of countable words, abbreviated
as BCFLs and MCFLs. Every BCFL is clearly an MCFL, but there exists an MCFL
of well-ordered words that is not a BCFL, for example the set of all countable well-
ordered words over some alphabet. In contrast, the set of all countable words over
an alphabet is a BCFL.

In [11], it was shown that it is decidable (in polynomial time) whether a given
MCFG generates well-ordered (or scattered) words only. This result was obtained
by analysing the structure of a finite graph canonically associated with the gram-
mar. In this note we establish a generic decidability result to the effect that
whenever P is some property of countable words definable in monadic second-
order logic (MSO), e.g., being well-ordered or scattered, then it is decidable
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whether an MCFG generates only words satisfying P. Of course for such a gen-
eral setting one cannot hope for efficient algorithms since model checking MSO
is nonelementary.

The main idea of the proof is that one can associate with each MCFG a
regular tree in which every derivation tree of the grammar can be represented
and moreover, the set of all derivation trees is MSO-definable.

2 Notation

Countable Words and Muller Context-Free Grammars. An alphabet is a
finite nonempty set X of symbols, usually called letters. A word over X is a strict
linear ordering (I, <) equipped with a labeling function X\ : I — X. The empty
word, denoted €, is the unique word over the empty ordering. It is assumed
that no alphabet contains e. When X' is an alphabet, Y. stands for X U {e}.
An embedding of words is a mapping between the respective underlying linear
orderings that preserves the order and the labeling; a surjective embedding is an
isomorphism. We usually identify isomorphic words and denote by X* the set of
all countable words over the alphabet ¥. As usual, we denote the collections of
finite and w-words over X' by X* and X, respectively. Sometimes we will also
use the same notation for infinite sets.

Let N denote the set of positive integers. When u € N* and ¢ € N, we usually
write ui as u - i. A tree domain D is a prefix- and left-sibling closed nonempty
(but possibly infinite) subset of N*. Thus, whenever u - (¢ + 1) is in D, where
1 € N, then w- 7 is also in D, and v -¢ € D implies u € D as well. Elements of
a tree domain D are also called the nodes of D. When u and u - ¢ are nodes of
D, where u € N* and i € N, then u - i is called a child of u. A descendant of
a node v is a node of the form uv, or u - v, where v € N*. Nodes of D having
no child are the leaves of D. The leaves, equipped with the order inherited from
the lexicographic ordering <, of N* (that is, u <, v iff u = wiw’ and v = wjw”
for some i < j € N, w,w’,w” € N*) form the frontier of D, denoted fr(D). An
inner node of D is a non-leaf node. A path of a tree domain D is a (finite or
infinite) prefix-closed subset 7 of D such that each node of 7 has at most one
child in 7. Given a tree domain D and some node v € D, the sub-tree domain
of D rooted at u is the tree domain D|, = {v : uv € D}.

A tree over some alphabet A, or a A-tree for short, is a mapping ¢ : dom(t) —
A., where dom(t) is a tree domain, such that inner vertices are mapped to letters
in A. Notions such as nodes, paths etc. of tree domains are lifted to trees. When
7 is a path of the tree t, then labels(w) = {t(u) : u € 7} is the set of labels
occurring on 7 and infLabels(7) = [ {t(v) : wv € 7} C labels(r) is the set of

uem
labels occurring infinitely often. Given a tree ¢ and some node u € dom(t), the

subtree of t rooted at u is the tree t|, with domain dom(t|,) = dom(t)|, and
labeling t|,,(v) = t(uv). A tree is regular if it has finitely many subtrees.

The frontier word lfr(t) of a tree t is determined by the leaves not labeled
by e, which is equipped with the lexicographic ordering of N* and the labeling
function inherited from ¢. The root symbol of t is t(e).
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A Muller context-free grammar [11], or MCFG for short, is a system G =
(V,X,R,S,F), where V and X are the pairwise disjoint alphabets of nontermi-
nals and terminals respectively, R is the finite set of productions of the form
A—awithAeVand ae (XUV)*, S eV isthe start symbol and F C P(V)
is the set of accepting sets.

A (VU X)-tree t is locally consistent with the above grammar G if it satisfies
the following conditions:

1. The root symbol of ¢ is S.
2. For each inner node wu of ¢ there exists a production A — X7 ... X, in R with
t(u) = A, X; € VU X such that:
(a) either n > 0, the children of u are exactly u-1,...,u-n and for each
1<i<n,tlu-i) =X
(b) or n =0 and u has a single child « - 1 labeled e.
3. The leaves of t are labeled in ..

A derivation tree of the above grammar G is a locally consistent tree ¢ satis-
fying the additional condition that for each infinite path 7 of ¢, infLabels(r) is
an accepting set of G.

The language L(G) C X* generated by G is the set of frontier words of
derivation trees. A Muller context-free language, or MCFL for short, is a language
generated by some MCFG.

Ezxample 1. If G = ({S,I},{a,b}, R, S, {{I}}), with
R={S—a,S—b8S—¢eS—1I1— SI},
then L(G) consists of all the well-ordered words over {a, b}.

Indeed, assume t1,1%s,... are derivation trees. Then so is the tree ¢ depicted
in Fig. 1 with frontier word lfr(¢;)lfr(t2) . . .. Thus, L(G) contains the empty word
(by S — €), the words of length 1 (by S — a and S — b), and is closed under
taking “w-products”. Since the least class of order types which contains 0, 1 and
which is closed under w-sums is the class of all countable ordinals (see e.g. [15]),
L(G) contains all the well-ordered words over {a,b}.

t3

Fig. 1. Derivation tree corresponding to Example 1

For the other direction, assume ¢ is a derivation tree having a frontier word
containing an infinite descending chain u; > us > .... Then let us define the
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path vg,v1,...1in t: vg = € and v;41 is v; - 1 if this node is an ancestor of infinitely
many u; and v; - 2 otherwise (which happens if v; corresponds to the production
I — ST and the node v; -1 (which is labeled \S) has no descendant of the form wu;
at all). Note that for each u; there exists a unique v;; such that v;; is an ancestor
of u; and v;; 41 is not, since the length of the words v; grows without a bound.
Now these nodes v;; correspond to the production I — ST and v;;41 = vy, - 1,
so that the successor of v;; along the path is labeled by S. Hence v, v1, ..., is a
path 7 in ¢ such that infLabels(7) contains S, which is a contradiction since the
only accepting set is {I}.

MSO on Trees and Words. Let X} and X5 be fixed, countably infinite,
disjoint sets of first-order and second-order variables, respectively. It is assumed
that X7 and A, are disjoint from alphabets, they do not contain ¢, etc.

Given an alphabet A, the set of monadic second-order, or MSO-formulas (for
trees over A) is the least set satisfying the following conditions:

1. When z is a first-order variable and § € A, is a symbol, then d(x) is an
MSO-formula.

2. When x and y are first-order variables, then y = « - 1 and sibling(x, y) are
MSO-formulas.

3. When z is a first-order and X is a second-order variable, then X (), also
written & € X is an MSO-formula.

4. When ¢ and 1 are MSO-formulas, then so are (¢ V ¢) and (—).

5. When « (X, resp.) is a first-order (second-order, resp.) variable and ¢ is an
MSO-formula, then so is (Jzp) ((3X ¢), resp).

We also use the standard abbreviations of pAY) = —(=pV—1), o — b = (=) Vi),
Vxyp = —Jdx—p etc., and omit some parentheses for the sake of readability.
Formulas over A are interpreted on A-trees in the expected way. A structure is
a triple (¢, ITy, IT5) where t is a A-tree, IT; : X1 — dom(t) assigns a node of ¢
to each first-order variable, and I : X, — P(dom(t)) assigns a set of nodes of
t to each second-order variable. Then, the above structure satisfies the formula
@, denoted (¢, IT1, IT) = ¢, if and only if one of the following conditions holds:

1. p =0(x) for § € A, and x € Xy, and t(I11(x)) = 6.

2. p=(y=ax-1) forx,y € Xy and II1(y) = Il (z) - 1.

3. ¢ =sibling(z, y) for ¢,y € A1 and there exist u € N*, i € N with IT; () = u-,
Ih(y) = u-(i+1)

4. Y = X(Il?) for x € X, X e Xy and Hl(IB) S HQ(X)

5. ¢ = (p1V 2) and (¢, IT1, IT5) satisfies ¢1 or o (or both).

6. © = (1) and it is not the case that the structure satisfies .

7. ¢ = (3xp1) and there is a structure (¢, I, II2) satisfying ;1 such that
IT, (y) = II{(y) for each first-order variable y # x.

8. ¢ = (3X 1) and there is a structure (¢, Iy, IT)) satisfying ¢; such that

II,(Y) = II5(Y) for each second-order variable Y # X.
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It is clear that satisfaction depends on ITy(x) or II3(X) only if the appropriate
variable occurs freely in the formula (i.e. not within the scope of some 3 quan-
tifier). Hence when ¢ is a sentence, a formula without free variable occurrences,
it makes sense to write ¢ = ¢ instead of (¢, I11, IT5) = .

In order to ease notation, when II; and Il are clear from the context, we
write  and X for IT; (x) and II1(X).

Ezxample 2. One can define the i-th child relation y = x - ¢ for ¢ € N inductively
as 3z(z = x - (i — 1) A sibling(z,y)) (which is satisfied by a structure if and
only if y = x - 7).

Consider the formula

child(z,y) =3z(z =z -1) A
VX((Vz((z =x-1)—z€X)) A

VzVw(z € X Asibling(z,w) »we X) -y € X)

Then, child(x, y) holds in the structure iff & has a first child and if whenever a
set X contains the first child of  and is closed under taking right siblings, then
X contains y as well, that is, if and only if y = « - i for some 3.

As another example, the formula N

Jz(x € X) A VaVy(x € X Achild(y,z) — y € X)
holds in a structure if X is a nonempty, prefix-closed subset of the nodes.

It is well-known [14] that given any regular tree t and MSO sentence ¢, it is
decidable whether ¢ = ¢ holds.

For countable X-words, the syntax and semantics of MSO are slightly
changed due to the differing relational structure: the atomic formulas are of
the form a(x) for a € ¥ and © € X; and = < y for x,y € A}, interpreted in
the expected way. A property P of countable X-words is called MSO-definable
if there exists an MSO sentence ¢p which is satisfied exactly by those Y-words
having property P.

3 Result

Let us fix a Muller context-free grammar G = (V, X, R, S, F) for this section,
with R being disjoint from V U X. Without loss of generality we assume that
each A € V is the left-hand side of at least one production. We define the
grammar tree associated with G as the unique derivation tree 7 of the following
grammar G' = (VUR, X, R, S, P(VUR)) with R’ consisting of productions of
the following form:

1. When A — a3,...,A — ay are all the productions of G having A on their
left side in some fixed ordering of the productions, then A — (A — a1)(A —
as)...(A — ag) is a production of G’ (the right-hand side of this single
production is in R* while the left-hand side is in V).
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2. For each production A — Xj...X}, the production (A — X;...Xy) —
X1 ...Xg. (which is a production of the form r — « for some r € R and
a € (VU X)*) is a production of G’.

Note that each element of VUR is the left-hand side of exactly one production
in R/, hence there exists exactly one locally consistent tree of G’. Also, since the
acceptance condition is P(V U R), this tree is a valid derivation tree of the
grammar, thus 7 is well-defined and has at most |V| + |R| 4 | X¢| subtrees up to
isomorphism. Hence it is a regular tree.

Example 3. For the MCFG of Example 1, this tree 7 is depicted in Fig. 2.

S
T
S—a S—b S—e¢ S—1
Vo] ;

I—JSI
/\
S I

S—a S—b S—e S—1 I—SI

a b e 1

Fig. 2. Grammar tree of the MCFG of Example 1

Moreover, each locally consistent tree ¢ of G can be embedded into 7 in the
following sense: there exists a mapping h; : dom(t) — dom(7) with h(e) = ¢
and t(u) = 7 (ht(u)) for each u € dom(t), moreover h:(u - 7) is a descendant
(in particular, a grandchild) of h¢(u) in 7 for each u -4 € dom(t), moreover,
when u and v are siblings in ¢, then so are h;(u) and h:(v) in 7. Indeed, assume
u-i € dom(t) and that v’ = hs(u) is already defined. Then since u is an inner node
of ¢, we have t(u) = A € V. By 7 (v) = t(u) = A, each production r = A — «
occurs as 7 (u - k) for some k. € N. In particular, let r = A — X;... X, be
the production corresponding to u, so that u has n children and t(u - j) = X;
for each j = 1,...,n (subsuming the case when n =0 as t(u - 1) = €). Then, we
define hi(u - j) as v’ - Ky - j.

We call a prefix-closed nonempty set T'C dom(7) derivation-like iff it satis-
fies the following conditions:

1. For each u € T with 7 (u) € R, each child of u is in T.
2. For each u € T with 7 (u) € V, exactly one child of u is in T.
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It is clear that derivation-like subsets of dom(7) are in one-to-one correspon-
dence with the locally consistent trees of G: with any locally consistent tree ¢
of G we associate the derivation-like set ' C dom(7) which is the closure of
im(h;) with respect to the prefix relation. Given a derivation-like set T, the
corresponding locally consistent tree is denoted ¢.

Ezample 4. Figure3 shows a (part of a) derivation tree t of the grammar of
Example 1 and the corresponding derivation-like subset T of dom(7") (as nodes
in boldface).

S—a S—b S—e S 1
b
15 s
;
I S—b S—e S—1
&N @ o Lo
'l !

Fig. 3. A part of a derivation tree ¢t of Example 1 and the corresponding derivation-like
subset T of T

Proposition 1. There is an MSO formula d(X) with the free variable X € Xy
such that (T, I, II) = d(X) if and only if X is a derivation-like set.
(In short, it is MSO-definable whether some set X is derivation-like.)

Proof. We can define d(X) as the conjunction of the formulas stating that X is
nonempty and prefix-closed (see Example 2), the formula

Vm((w € XA T\G/Rr(w)) — Wy(child(z,y) — y € X))

stating that all the children of the nodes labeled by productions are members of
X, and the formula

V:c((:c e XA \/ A(x)) — Ely(child(a:,y) AVz(child(z,z) ANz € X « z = y)))
AeV

stating that exactly one child of the nodes labeled by nonterminals is in X. O
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Also, from a derivation-like set T" determining a locally consistent tree t of G,
one can select a subset of nodes corresponding to a path of ¢:

Proposition 2. There exists an MSO-formula p(X,Y") with the free second-
order variables X,Y such that (T,111,1I5) = p(X,Y) if and only if X =T
s a derivation-like subset of T with corresponding locally consistent tree t and
Y = hi(m)! for some infinite path T of t.

Proof. p(X,Y) expresses the following:

i) X is a derivation-like subset of 7, i.e. d(X) holds,

(i) ¥ C X,

(iii) each of the nodes of Y is labeled by some member of V|

(iv) whenever v is a grandparent of some node v € Y, then v € Y as well, and
(v) each u € Y has exactly one grandchild in Y.

These properties can clearly be defined in MSO. O

Proposition 3. There is an MSO formula d'(X) expressing that X is a deri-
vation-like set corresponding to an actual derivation tree of G.

Proof. The descendant relation @ < y can be defined in MSO by a formula
expressing that whenever Y is a prefix-closed set containing y, then Y contains
x as well. n

Then, for each F' € F we can construct a formula mp(Y') stating that if Y =
h¢ () for some path 7 of some locally consistent tree t of G, then infLabels(w) = F:

mp(Y)= N ia(Y) A J\ =ia(Y)
A€F A¢F
where i4(Y) is the formula

Vz(x €Y - Jy(x =y AN yeY A A(y)))

stating that A occurs infinitely many times on the path given by Y.
Now, we can define d'(X) as

d(X)AVY (p(X,Y) = \/ mp(Y))
FecF

expressing that X is a derivation-like set corresponding to some locally consistent
tree t of G such that any infinite path 7 of ¢ satisfies the Muller acceptance
condition. O

Now a set Y C dom(7) corresponds to a frontier word of some derivation tree of
G (i.e. belongs to L(G)) if and only if there exists some X C dom(7) satisfying

! Here, h, () denotes the set of images of the nodes of 7w with respect to the embedding
he.
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d’'(X) such that a node v € dom(7) is in Y if and only if v € X and is a
X-labeled node of 7', which is an MSO-definable property:

IX (d'(X)AVyY(y €Y < (ye X A \/ a()))).
acXy

Moreover, the lexicographic ordering on these leaves can also be defined in
MSO as u <y v iff there exists some common ancestor w of u and v such that
w -4 and w - j are respectively ancestors of u and v for some ¢ < j:

T <y = HzlﬂzQ(zl <x A zo=y A sibling+(z1,z2))
where sibling+(w, y) is the transitive closure of sibling:
x££y N VX (x e X AVz1Vzo(z1 € X Asibling(z1,22) > 22 € X)) mye X

Hence we have shown:

Proposition 4. For any MCFG G, there exists an effectively constructible MSO
formula w(Y') such that (T, II1,II2) |E w(Y) if and only Y is the set of X'-labeled
leaves of some derivation-like subset of T corresponding to a derivation tree of G.

As a corollary, we obtain the main result of this note.

Theorem 1. [t is decidable for a given MCFL L and an MSO-definable property
@ of words whether every member of L satisfies .

Proof. The question can be reduced to checking whether 7 satisfies the for-
mula VY (w(Y) — ¢(Y)) where ¢(Y) is obtained from ¢ by replacing all the
subformulas of the form Jxy’ and IX ¢’ respectively to Jz(x € Y A ¢') and
AXVx(rx € X - x €Y))A¢) and substituting the formula defining the lex-
icographic ordering  <; y in place of the atomic formulas = < y. Since 7 is
regular, model checking the resulting formula on 7 is decidable. a

(We remark that thus it is also decidable whether there exists a word in L
satisfying an MSO formula ¢ since such a word exists if and only if not all
members of L satisfy —¢.)

In particular, our former decidability results (without complexity bounds)
regarding whether an MCFG generates scattered (or well-ordered) words are
corollaries of this general theorem. However, since model-checking MSO formu-
las on regular trees has a high complexity in general (tower(n) when n is the
alternation depth of the second-order quantifiers), no polytime decision proce-
dures follow from the present theorem. Nevertheless several interesting properties
are decidable in polynomial time, including whether every word generated by an
MFCG is scattered or well-ordered, cf. [11].

As another example, let X' = {a,b} be an alphabet. The following formula
segment(X) expresses that X is a nonempty interval, or segment of a given
word:

(Frxze X)A(VavyVz(zr <yry<zAz e X NzeX)—yeX).
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The following formula dense(X) expresses that X is a dense subset (containing
at least two elements) of the word:

Jzdy(x <yrxe X Aye X)A
Va:Vy(m<y/\:cEX/\yGXHEIz(a:<z/\z<y/\z€X)>.

Thus, the property “there exists a dense segment X of the word such that for
all x < y in X there exists z, 2’ with z < 2,2’ < y and z is labeled by a, 2’ is
labeled by b” is also expressible in MSO as

EIX( dense(X) A segment(X) A
VaVy(x <yrz e X hye X

—>3z§|z'(:c<z/\z<y/\:1:<z’/\z’<y/\a(z)/\b(z/)))>

In other words, w € {a,b}* satisfies the above formula iff w = u{a, b}"v for some
words u,v € {a,b}* where {a,b}" is the so-called shuffle of a and b. Thus, it is
also decidable for a MCFL L whether every word in L is of the form u{a,b}"v.
Another expressible property is that whether a word is the shuffle product of,
say, a dense word and a scattered word consisting only of a’s, that is, whether
the underlying linear order can be partitioned into two subsets such that the
two subwords determined by the partitions satisfy the appropriate property:

IX (dense(X)/\V:c(:c ¢ X —a@)A-Y (Va(zcY —>a¢ X)A dense(Y))).

Thus, it is also decidable for a given MCFL L whether every member of L is a
shuffle product of a dense word and a scattered one consisting only of a’s.

4 Conclusion

We have proved that there is an algorithm to decide for a Muller context-free
language L generated by an MCFG and an MSO-definable property P of words
whether every word in L has property P. We obtained this result by assigning a
regular tree ¢ to an MCFG such that the derivation trees of the grammar have
an MSO-interpretation in ¢. We then used the fact that the MSO-theory of a
regular tree is decidable.

There is an alternative method. First, we can prove that the MCFLs are
exactly the frontier languages of the tree languages recognizable by Muller tree
automata. This is similar to the well-known fact that ordinary context-free lan-
guages are the frontier languages of the languages of finite trees recognizable
by finite tree automata. Also, there is an algorithm to decide, for a Muller tree
automaton and an MSO-definable property of trees whether every tree in the
language L recognized by the automaton has property P. This follows using the
fact that every Muller tree automaton can be converted to an MSO-formula ¢,
and if P is definable by the formula 1, then it holds that every tree in L satisfies
P iff there is no tree satisfying ¢ A =), which is decidable.
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