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Abstract. Extended regular expressions (with complement and inter-
section) are used in many applications due to their succinctness. In par-
ticular, regular expressions extended with intersection only (also called
semi-extended) can already be exponentially smaller than standard reg-
ular expressions or equivalent nondeterministic finite automata (NFA).
For practical purposes it is important to study the average behaviour
of conversions between these models. In this paper, we focus on the
conversion of regular expressions with intersection to nondeterministic
finite automata, using partial derivatives and the notion of support.
First, we give a tight upper bound of 2O(n) for the worst-case number
of states of the resulting partial derivative automaton, where n is the
size of the expression. Using the framework of analytic combinatorics,
we then establish an upper bound of (1.056 + o(1))n for its asymptotic
average-state complexity, which is significantly smaller than the one for
the worst case.

1 Introduction

Regular expressions with additional operators are used in applications such as pro-
gramming languages [12], XML processing [23], or runtime verification [22]. Most
of these operators do not increase their language expressive power but lead to gains
in the succinctness of the representation. This is the case for intersection. For regu-
lar expressions with intersection (RE∩) (or semi-extended), several computational
complexity decision problems, such as membership, equivalence and emptiness,
were studied by various authors. Petersen [21] has shown that the membership
problem is LOGCFL-complete, while for standard regular expressions (RE) it is
NL-complete [19]. Fürer [14] has proved that inequivalence and non-empty comple-
ment are EXPSPACE-complete, which contrasts with the PSPACE-completeness
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of these problems for RE. The complexity of the conversions from regular expres-
sions with intersection to standard regular expressions, and to finite automata,
were recently studied by Gelade and Neven [16], Gruber and Holzer [18], and
Gelade [15]. The conversion fromRE∩ toRE or to nondeterministic finite automata
(NFA) is exponential and it is double exponential to deterministic finite automata
(DFA). The conversion from α ∈ RE∩ to a DFA can be accomplished using Brzo-
zowski’s derivatives [8]. From RE to NFA a standard algorithm is the partial deriv-
ative automaton construction (Apd) introduced by Antimirov [1], which coincides
with the resolution of systems of equations by Mirkin [20]. The average complexity
of these conversions was recently studied using the framework of analytic combi-
natorics [4,5], and also their extension to regular expressions with shuffle [7]. For
these studies, Mirkin’s construction is essential as it provides inductive definitions
that can be used to obtain generating functions.

Caron et al. [9] extended the Apd to regular expressions with both inter-
section and complement (extended regular expressions)1. In their approach a
partial derivative is a set of sets of expressions (akin a disjunctive normal form),
whereas here it is simply a set of expressions. In the worst-case, their approach
also leads to NFAs that can be exponentially larger than the original expres-
sions. Moreover, considering sets of sets of expressions would turn the analytic
combinatoric analysis much harder.

In this paper we show that for RE∩, Mirkin’s construction can lead to
automata not initially connected and thus larger than the ones built by
Antimirov’s construction. However, the two constructions can produce identi-
cal NFAs. We present an exponential worst-case upper bound which is tight for
both. Using the framework of analytic combinatorics, we give an upper bound
for the asymptotic average-state complexity for the Mirkin’s construction, which
turns out to be much smaller than the worst-case bound. This also means that
Antimirov’s construction is asymptotically and on average much smaller than
the worst-case upper bound.

2 Regular Expressions with Intersection

Let Σ = {a1, . . . , ak} be an alphabet of size k. A word over Σ is a finite sequence
of symbols of Σ. The empty word is denoted by ε. The set Σ� is the set of all
words over Σ. A language over Σ is a subset of Σ�. The set RE∩ of regular
expressions with intersection over Σ contains the expression ∅ and all terms
generated by the following grammar:

α → ε | a | (α + α) | (α · α) | (α ∩ α) | (α�) (a ∈ Σ), (1)

where the operator · (concatenation) is often omitted. Parenthesis can also be
omitted considering the following precedences for the operators: � > · > ∩ > +.
The size of a regular expression α ∈ RE∩ is denoted by ||α|| and defined
as the number of occurrences of symbols (parenthesis not counted) in α.

1 And a more general framework is also reported in [10].
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Similarly, |α|Σ denotes the number of occurrences of alphabet symbols in α,
and |α|∩ the number of occurrences of the binary operator ∩. The language
L(α) for α ∈ RE∩ is defined as usual, with L(α ∩ β) = L(α) ∩ L(β). We say
that two regular expressions α, β ∈ RE∩ are equivalent, if L(α) = L(β), and
write α

.= β in this case. For a set S ⊆ RE∩, the language of S is defined as
L(S) =

⋃
α∈S L(α). The notion of equivalence extends naturally to sets of regu-

lar expressions. The left-quotient of a language L w.r.t. a word w ∈ Σ� is defined
as w−1L = { x | wx ∈ L }. The algebraic structure (RE∩,+, ·, ∅, ε) constitutes
an idempotent semiring, that with the unary operator � is a Kleene algebra.
Antimirov and Mosses [2] presented a complete and sound axiomatization for
RE∩, where the binary operator ∩ is idempotent, commutative, associative, dis-
tributes over +, and also satisfies the following axioms, where ai, aj ∈ Σ:

(ε ∩ β) .= ∅ ∧ (α .= βα + γ) ⇒ α
.= β�γ, ε ∩ α� .= ε,

ε ∩ (αβ) .= (ε ∩ α) ∩ β, ε ∩ ai
.= ∅ ∩ α

.= ∅,
(aiα) ∩ (ajβ) .= (ai ∩ aj)(α ∩ β), ai ∩ aj

.= ∅ (ai 	= aj),
(αai) ∩ (βaj)

.= (α ∩ β)(ai ∩ aj), α + (α ∩ β) .= α.

With the usual abuse of notation, define the function ε : RE∩ → {∅, ε} by
ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise. The methods developed in Sects. 3
and 4 are syntactical and aim at building automata equivalent to a given regular
expression. To ensure the finiteness of the constructions it is not necessary to
consider regular expressions modulo any of the above properties2. However, in
some examples, for the sake of succinctness, we also consider regular expressions
modulo the identities of · and +. Note that this does not affect the upper bounds
of the number of states, both in the worst and in the average case.

3 Automata and Systems of Equations

We first recall the definition of a nondeterministic finite automaton (NFA) as a
tuple A = 〈S,Σ, S0, δ, F 〉, where S is a finite set of states, Σ is a finite alphabet,
S0 ⊆ S a set of initial states, δ : S ×Σ → 2S the transition function, and F ⊆ S
a set of final states. The language of A is L(A) = {w ∈ Σ� | δ(S0, w) ∩ F 	= ∅}.
The right language of a state s, denoted by Ls, is the language accepted by
A if we take S0 = {s}. It is well known that, for each n-state NFA A, over
Σ = {a1, . . . , ak}, having right languages L1, . . . ,Ln, it is possible to associate
a system of linear language equations

Li = a1L1i ∪ · · · ∪ akLki ∪ ε(Li), for i ∈ [1, n],

where Lji =
⋃

l∈δ(i,aj)
Ll and L(A) =

⋃
i∈S0

Li. In the same way, it is possible
to associate to each regular expression a system of equations. We here extend
Mirkin’s contruction to regular expressions with intersection.

Definition 1. Consider α0 ∈ RE∩ over Σ = {a1, . . . , ak}. A support of α0 is a
set {α1, . . . , αn} of regular expressions with intersection that satisfies a system
of equations
2 As is the case, for instance, for Brzozowski DFA or Caron et al. approach.
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αi
.= a1α1i + · · · + akαki + ε(αi) i ∈ [0, n], (2)

for some α1i, . . . , αki, where each αj,i is a (possibly empty) sum of elements in
{α1, . . . , αn}.

It is clear that the existence of a support of α implies the existence of an
NFA that accepts the language of α.

A support for a regular expression α ∈ RE∩ can be computed using the
function π : RE∩ → 2RE∩ defined below. First, we define some operations on sets
of regular expressions. Given S, T ⊆ RE∩ and β ∈ RE∩, Sβ = { αβ | α ∈ S } and
S∩· T = { α∩β | α ∈ S, β ∈ T }. Note, in particular, that L(S∩· T ) = L(S)∩L(T ).

Definition 2. Given α ∈ RE∩, the set π(α) is inductively defined by:

π(∅) = π(ε) = ∅,
π(a) = {ε} (a ∈ Σ),

π(α�) = π(α)α�,

π(α + β) = π(α) ∪ π(β),
π(αβ) = π(α)β ∪ π(β),

π(α ∩ β) = π(α) ∩· π(β).

Proposition 3. If α ∈ RE∩, then π(α) is a support of α.

Proof. We will proceed by induction on the structure of α. The proof for all
cases, excluding α ∩ β, can be found in [4,11,20]. Let π(α0) = {α1, . . . , αn} and
π(β0) = {β1, . . . , βm} be a support of α0 and β0, respectively. Thus,

αi
.= a1α1i + · · · + akαki + ε(αi), for i = 0, . . . , n

and
βj

.= a1β1j + · · · + akβkj + ε(βj), for j = 1, . . . , m,

where, for all l = 1, . . . , k, αli and βlj are linear combinations of elements of
π(α0) and π(β0), respectively. We want to prove that π(α0 ∩β0) is a support for
α0 ∩ β0. For i = 0, . . . , n and j = 0, . . . ,m, and using the axioms for ∩, we have

αi ∩ βj
.=(a1α1i + · · · + akαki + ε(αi)) ∩ (a1β1j + · · · + akβkj + ε(βj))
.=(a1α1i ∩ a1β1j) + · · · + (a1α1i ∩ akβkj) + (a1α1i ∩ ε(βj))+

. . . + (akαki ∩ a1β1j) + · · · + (akαki ∩ akβkj) + (akαki ∩ ε(βj))+

. . . + (ε(αi) ∩ a1β1j) + · · · + (ε(αi) ∩ akβkj) + (ε(αi) ∩ ε(βj))
.=(a1 ∩ a1)(α1i ∩ β1j) + · · · + (ak ∩ ak)(αki ∩ βkj) + (ε(αi) ∩ ε(βj))
.=a1(α1i ∩ β1j) + · · · + ak(αki ∩ βkj) + ε(αi ∩ βj).

For each l = 1, . . . , k, we know that αli =
∑

i′∈Ili

αi′ and βlj =
∑

j′∈Jlj

βj′ , for

Ili ⊆ {1, . . . , n} and Jlj ⊆ {1, . . . , m}. And, since

αli ∩ βlj
.=

∑

i′∈Ili

αi′ ∩
∑

j′∈Jlj

βj′
.=

∑

i′∈Ili,j′∈Jlj

(αi′ ∩ βj′),

we conclude that π(α0)∩· π(β0) = {α1∩β1, . . . , α1∩βm, . . . , αn∩βm} is a support
for α0 ∩ β0. �
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Example 4. Given the regular expression α1 = (b + ab + aab + abab) ∩ (ab)�,
π(α1) = {bab ∩ b(ab)�, ab ∩ b(ab)�, b ∩ b(ab)�, ε ∩ b(ab)�, bab ∩ (ab)�, ab ∩
(ab)�, b ∩ (ab)�, ε ∩ (ab)�}.

The next proposition provides an upper bound on the cardinality of the
support of a regular expression.

Proposition 5. For all α ∈ RE∩, the inequality |π(α)| ≤ 2|α|Σ−|α|∩−1 holds.

Proof. We proceed by induction on the structure of the regular expression α.
It is easily proved that the statement holds for the base cases ε, ∅ and a ∈ Σ.
Assume that the result holds for some α, β ∈ RE∩. We will make use of the fact
that 2m + 2n ≤ 2m+n+1, for any m,n ≥ 0. For α + β, one has

|π(α + β)| = |π(α) ∪ π(β)| ≤ |π(α)| + |π(β)| ≤
≤ 2|α|Σ−|α|∩−1 + 2|β|Σ−|β|∩−1 ≤
≤ 2|α|Σ−|α|∩−1+|β|Σ−|β|∩−1+1 = 2|α+β|Σ−|α+β|∩−1.

The case for αβ is analogous. For α�, one has

|π(α�)| = |π(α)α�| = |π(α)| ≤ 2|α|Σ−|α|∩−1 = 2|α�|Σ−|α�|∩−1.

Finally, for α ∩ β, one has

|π(α ∩ β)| = |π(α) ∩· π(β)| ≤
≤ |π(α)| · |π(β)| ≤ 2|α|Σ−|α|∩−1 · 2|β|Σ−|β|∩−1 =

= 2|α|Σ−|α|∩−1+|β|Σ−|β|∩−1 = 2|α∩β|Σ−(|α∩β|∩−1)−2 =

= 2|α∩β|Σ−|α∩β|∩−1.

�
The next examples present families of regular expressions that witnesses the
tightness of the upper bound established in Proposition 5.

Example 6. Let the regular expression rn ∈ RE∩ over Σ = {a, b} be induc-
tively defined by r0 = a�b�, r1 = b�a and rn = rn−2 ∩ r�

n−1, for n ≥ 2. Using
the definition of support it is straightforward that |π(r0)| = |{a�b�, b�}| = 21,
|π(r1)| = |{b�a, ε}| = 21, and |π(rn)| = |π(rn−2)| · |π(rn−1)|, for n ≥ 2. Thus, we
obtain |π(rn)| = 2fib(n), for n ≥ 0, and where fib(n) is the Fibonacci sequence.
Also, |r0|Σ − |r0|∩ − 1 = 2 − 0 − 1 = 1, |r1|Σ − |r1|∩ − 1 = 2 − 0 − 1 = 1,
and |rn|Σ − |rn|∩ − 1 = |rn−2|Σ + |rn−1|Σ − |rn−2|∩ − |rn−1|Σ − 1 − 1 =
(|rn−2|Σ − |rn−2|∩ − 1) + (|rn−1|Σ − |rn−1|∩ − 1), for n ≥ 2. Consequently,
|rn|Σ − |rn|∩ − 1 = fib(n), for n ≥ 0. We conclude that |π(rn)| = 2|rn|Σ−|rn|∩−1,
for n ≥ 0.
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Example 7. Let the regular expression rn ∈ RE∩ over {a}, be defined inductively
by r0 = a�a and rn = rn−1 ∩a�a, for n ≥ 1. We have π(r0) = π(a�a) = {a�a, ε},
and for n ≥ 1,

π(rn) = {a∗a, ε} ∩· · · · ∩· {a∗a, ε}
︸ ︷︷ ︸

n+1

.

Thus |π(r0)| = 2 and |π(rn)| = |π(r0)|n+1 = 2n+1. Note that |rn|Σ = 2n+2 and
|rn|∩ = n. Therefore |π(rn)| = 2n+1 = 22n+2−n−1 = 2|rn|Σ−|rn|∩−1.

4 Partial Derivatives

The notions of partial derivatives and partial derivative automata were intro-
duced by Antimirov [1] for standard regular expressions. We now consider the
Antimirov construction from RE∩ expressions to NFAs.

Definition 8. For a regular expression α ∈ RE∩ and a symbol a ∈ Σ, the set
∂a(α) of partial derivatives of α w.r.t. a is defined by:

∂a(∅) = ∅,
∂a(ε) = ∅,

∂a(b) =

{
{ε}, if a = b

∅ otherwise,

∂a(αβ) =

{
∂a(α)β ∪ ∂a(β), if ε(α) = ε

∂a(α)β otherwise,
∂a(α + β) = ∂a(α) ∪ ∂a(β),
∂a(α ∩ β) = ∂a(α) ∩· ∂a(β),

∂a(α�) = ∂a(α)α�.

This definition is extended to words w ∈ Σ� by ∂ε(α) = {α}, ∂wa(α) =⋃
αi∈∂w(α) ∂a(αi), and ∂w(R) =

⋃
αi∈R ∂w(αi), where R ⊆ RE∩. It follows easily

that L(∂w(α)) = w−1L(α). The set of partial derivatives of an expression α is
∂(α) =

⋃
w∈Σ� ∂w(α). We also define ∂+(α) =

⋃
w∈Σ+ ∂w(α).

As for standard regular expressions, the partial derivative automaton of
an expression α ∈ RE∩ is defined by Apd(α) = 〈∂(α), Σ, {α}, δα, Fα〉, where
Fα = { γ ∈ ∂(α) | ε(γ) = ε } and δα(γ, a) = ∂a(γ). It follows that L(Apd(α))
is exactly L(α). Mirkin’s and Antimirov’s constructions coincide for standard
regular expressions. We will see that this is not true for regular expressions with
intersection.

The following lemmas present some properties of the function ∂w, used to
prove Proposition 11 and are easy to prove.

Lemma 9. For all S, S′ ⊆ RE∩ and a ∈ Σ, the following property holds

∂a(S ∩· S′) = ∂a(S) ∩· ∂a(S′).

Let suff(w) be the set of all non-empty suffixes of w, being defined as suff(w) =
{ v ∈ Σ+ | ∃u ∈ Σ� : uv = w }. Except for the second case, the following lemma
was shown by Antimirov.
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Lemma 10. For every regular expressions α, β ∈ RE∩ and word w ∈ Σ+, ∂w

satisfies the following:

∂w(α + β) = ∂w(α) ∪ ∂w(β), (3)
∂w(α ∩ β) = ∂w(α) ∩· ∂w(β), (4)

∂w(αβ) ⊆ ∂w(α)β ∪
⋃

v∈suff(w)

∂v(β), (5)

∂w(α�) ⊆
⋃

v∈suff(w)

∂v(α)α�. (6)

Proposition 11. For every regular expressions α, β ∈ RE∩, the following holds.

∂+(α + β) ⊆ ∂+(α) ∪ ∂+(β), ∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β),
∂+(αβ) ⊆ ∂+(α)β ∪ ∂+(β), ∂+(α�) ⊆ ∂+(α)α�.

Proof. First note that, given a set E ⊆ RE∩ and a regular expression α ∈ RE∩,
if, for all w ∈ Σ+, we have that ∂w(α) ⊆ E, then we have

⋃
w∈Σ+ ∂w(α) ⊆ E and

thus ∂+(α) ⊆ E. Moreover, we know that for every w ∈ Σ+, ∂w(α) ⊆ ∂+(α),
since ∂+(α) =

⋃
w∈Σ+ ∂w(α). Let α, β ∈ RE∩ be regular expressions over Σ. In

order to prove the inclusions above, the facts mentioned above are used. The
proof of each inclusion is given, respectively, by the following four proofs:

1. From Eq. (3), for all w ∈ Σ+, the following holds:

∂w(α + β) = ∂w(α) ∪ ∂w(β) ⊆ ∂+(α) ∪ ∂+(β).

And thus, we can conclude that ∂+(α + β) ⊆ ∂+(α) ∪ ∂+(β).
2. In the same way, from Eq. (4), for all w ∈ Σ+, the following holds:

∂w(α ∩ β) ⊆ ∂w(α) ∩· ∂w(β) ⊆ ∂+(α) ∩· ∂+(β).

And then, ∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β).
3. From Eq. (5), for all w ∈ Σ+, the following holds:

∂w(αβ) ⊆ ∂w(α)β ∪
⋃

v∈suff(w)

∂v(β) ⊆ ∂+(α)β ∪ ∂+(β).

Thus, ∂+(αβ) ⊆ ∂+(α)β ∪ ∂+(β).
4. Finally, from Eq. (6), for all w ∈ Σ+, the following holds:

∂w(α�) ⊆
⋃

v∈suff(w)

∂v(α)α� ⊆ ∂+(α)α�.

Therefore, we have that ∂+(α) ⊆ ∂+(α)α�. �
Example 12. Consider again α1 = (b+ab+aab+abab)∩(ab)�. We have ∂+(α1) =
{bab ∩ b(ab)�, ab ∩ b(ab)�, b ∩ b(ab)�, ab ∩ (ab)�, ε ∩ (ab)�}. Now, with β =
(b + ab + aab + abab), one has

∂+(β) ∩· ∂+((ab)�) ={bab ∩ b(ab)�, ab ∩ b(ab)�, b ∩ b(ab)�,

ε ∩ b(ab)�, bab ∩ (ab)�, ab ∩ (ab)�, b ∩ (ab)�, ε ∩ (ab)�}.

Thus, we conclude that ∂+(α1) ⊂ ∂+(b + ab + aab + abab) ∩· ∂+((ab)�).
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The following proposition relates the function ∂+ and the support π.

Proposition 13. Given α ∈ RE∩, ∂+(α) ⊆ π(α).

Proof. The proof proceeds by induction on the structure of α. It is trivial that
∂+(∅) = π(∅), ∂+(ε) = π(ε) and ∂+(a) = π(a), for a symbol a ∈ Σ. Assume
that ∂+(α) ⊆ π(α) and ∂+(β) ⊆ π(β) holds, for α, β ∈ RE∩. For α + β, we have
∂+(α+β) ⊆ ∂+(α)∪∂+(β) ⊆ π(α)∪π(β). For α∩β, there is ∂+(α∩β) ⊆ ∂+(α)∩·
∂+(β) ⊆ π(α)∩· π(β). For αβ, we have ∂+(αβ) ⊆ ∂+(α)β∪∂+(β) ⊆ π(α)β∪π(β).
Finally, for α�, ∂+(α�) ⊆ ∂+(α)α� ⊆ π(α)α�. �
Since, for every regular expression α ∈ RE∩, the set π(α) is finite, Proposition 13
also proves that the set ∂+(α) is finite. For regular expressions without intersec-
tion it is known that π and ∂+ coincide [11]. Examples 4 and 12 show that there
exists α ∈ RE∩ such that π(α) 	= ∂+(α). The following lemmas establish some
conditions for the equality of π(α ∩ β) and ∂+(α ∩ β) to hold for α, β ∈ RE∩,
and will be used in Proposition 16.

Lemma 14. Given α, β ∈ RE∩, one has π(α ∩ β) = ∂+(α ∩ β) if and only if
π(α) = ∂+(α), π(β) = ∂+(β) and ∂+(α ∩ β) = ∂+(α) ∩· ∂+(β).

Proof. (⇒) We have that π(α∩β) = ∂+(α∩β) ⊆ ∂+(α)∩· ∂+(β). From Proposi-
tion 13 follows that ∂+(α) ⊆ π(α) and ∂+(β) ⊆ π(β). Suppose by contradiction
that ∂+(α) ⊂ π(α) or ∂+(β) ⊂ π(β). Then ∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β) ⊂
π(α) ∩· π(β) = π(α ∩ β), a contradiction since π(α ∩ β) = ∂+(α ∩ β). Thus,
we conclude that π(α) = ∂+(α) and π(β) = ∂+(β). Consequently, π(α ∩ β) =
π(α) ∩· π(β) = ∂+(α ∩ β).

(⇐) This follows trivially from the definition of support, i.e., π(α ∩ β) =
π(α) ∩· π(β), since π(α) = ∂+(α) and π(β) = ∂+(β). �
Lemma 15. Given α, β ∈ RE∩, such that ∂w(α) = π(α) or ∂w(β) = π(β) holds
for all w ∈ Σ+, then ∂+(α ∩ β) = ∂+(α) ∩· ∂+(β).

Proof. First, note that if γ ∈ RE∩ and ∂w(γ) = π(γ) for every w ∈ Σ+, then
∂+(γ) =

⋃
w∈Σ+ ∂w(γ) = π(γ). Given α, β ∈ RE∩, there are three possible

cases to prove. First, suppose that, for all w ∈ Σ+, we have ∂w(α) = π(α) and
∂w(β) = π(β). Then

∂+(α ∩ β) =
⋃

w∈Σ+

(∂w(α) ∩· ∂w(β)) = π(α) ∩· π(β) = ∂+(α) ∩· ∂+(β).

It remains to prove the cases that either ∂w(α) = π(α) or ∂w(β) = π(β), for all
w ∈ Σ+. The proof is the same for both cases. So, we will only present the proof
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for the first case. Suppose that, for all w ∈ Σ+, ∂w(α) = π(α), it holds that

∂+(α ∩ β) =
⋃

w∈Σ+

(∂w(α) ∩· ∂w(β) =
⋃

w∈Σ+

(π(α) ∩· ∂w(β))

=
⋃

w∈Σ+

{αi ∩ βj | αi ∈ π(α), βj ∈ ∂w(β)}

=
{

αi ∩ βj

∣
∣
∣ αi ∈ π(α), βj ∈

⋃

w∈Σ+

∂w(β)
}

= {αi ∩ βj | αi ∈ π(α), βj ∈ ∂+(β)}
= π(α) ∩· ∂+(β) = ∂+(α) ∩· ∂+(β).

�
By Proposition 13, |π(α)| is an upper bound for the cardinality of ∂+(α).

This upper bound can be achieved, as shown by the following proposition.

Proposition 16. For any n ∈ N there exists a regular expression rn ∈ RE∩ of
size O(n) such that |∂+(rn)| = 2|rn|Σ−|rn|∩−1.

Proof. Consider the regular expressions rn ∈ RE∩ from Example 7. We prove
that π(rn) = ∂+(rn). The proof proceeds by induction on n. For n = 0 and for
all w ∈ Σ+, we have ∂w(a�a) = {a�a, ε} = ∂+(a�a) = π(a�a). Let us assume,
by induction, that π(rn) = ∂+(rn), for n ≥ 1. It follows from Lemma 15 that
∂+(rn+1) = ∂+(rn ∩a�a) = ∂+(rn)∩· ∂+(a�a). Since π(a�a) = ∂+(a�a), π(rn) =
∂+(rn), and ∂+(rn ∩a�a) = ∂+(rn)∩· ∂+(rn), we conclude, from Lemma 14, that
π(rn+1) = π(rn ∩ a�a) = ∂+(rn ∩ a�a) = ∂+(rn+1). �

The next example provides another non-trivial family of regular expressions
for which the set of partial derivatives and the support coincide.

Example 17. For n ≥ 0 let the regular expression sn ∈ RE∩ be inductively
defined by s0 = (a+b)�b(a+b)� and sn = ((a+b)sn−1(a+b))∩ ((a+b)�(a+b)),
for n ≥ 1. The alphabetic length of sn is |sn|Σ = 5 + 8n and |sn|∩ = n. The
cardinality of the support of sn is given by: |π(s0)| = 2, |π(s1)| = 6 and |π(sn)| =∑n

i=2 2i + 3 · 2n, for n ≥ 2 Thus, for n ≥ 2 we have |π(sn)| = O(2n). Let
m = |sn|Σ − |sn|∩ − 1 = 5 + 7n − 1, i.e. n = (m − 4)/7. Then, |π(sn)| =
O(2

1
7m) = O(1.105m), which is much smaller than the upper bound 2m. For all

n ≥ 0, π(sn) = ∂+(sn).

5 Average Complexity Results

We know that the number of states in the partial derivative automaton of an
expression α has |π(α)| as its tight upper bound. In this section we estimate an
upper bound for the asymptotic average size of π(α). This is done using standard
methods of analytic combinatorics as expounded by Flajolet and Sedgewick [13],
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which apply to generating functions f(z) =
∑

n anzn associated with combina-
torial classes. Given some measure of the objects of a combinatorial class A, the
coefficient an represents the sum of the values of this measure for all objects
of size n. We will use the notation [zn]f(z) for an. For an introduction to this
approach applied to formal languages, we refer to Broda et al. [6].

Although the methods here used are the standard ones from the Analytic
Combinatorics (and Complex Analysis), each application of these techniques is
always a challenge, as one cannot foresee the analytic difficulties that one can
incur into when conducting the study of the generation function. The generating
function f can be seen as a complex analytic function, and the study of its
behaviour near its dominant singularity η (in case there is only one, as it happens
with the functions here considered) gives us access to the asymptotic form of its
coefficients. In particular, if f(z) is analytic in some appropriate neighbourhood
of 0 containing η, then one has the following [6,13]:

Proposition 18. If f(z) = a−b
√

1 − z/ρ+o
(√

1 − z/ρ
)
, with a, b ∈ R, b 	= 0,

then
[zn]f(z) ∼ b

2
√

π
ρ−nn−3/2.

If f(z) = a√
1−z/ρ

+ o

(
1√

1−z/ρ

)

, with a ∈ R, and a 	= 0, then

[zn]f(z) ∼ a√
π

ρ−nn−1/2.

5.1 Number of Expressions and Letters and ∩ Symbols

The study of the combinatorial behaviour of the RE∩-expressions, both in terms
of the number of expressions and the number of letters in them, is identical to
the study of any other regular expressions with 3 binary operators and a single
unary operator. Thus the results presented in Broda et al. [7] are valid for the
case here studied. Denoting by Rk(z) the generating function for the number of
RE∩-expressions without ∅ over a k letters alphabet, and by Lk(z) the generating
function for the number of letters in the expressions, one has:

[zn]Rk(z) ∼ ckρ
−n− 1

2
k n− 3

2 , (7)

[zn]Lk(z) ∼ k

12πck
ρ

−n+ 1
2

k n− 1
2 , (8)

where ck =
4√3+3k
6
√

π
and ρk = −1+2

√
3+3k

11+12k .
The average number of letters in an expression of size n is given by

[zn]Lk(z)
[zn]Rk(z)

.
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Using Eqs. (7) and (8), one obtains, asymptotically,

|α|Σ ∼ 3kρk√
3 + 3k

||α|| −−−−→
k→∞

1
2
||α||. (9)

The number of intersections in the RE∩-expressions under consideration can
be computed as follows. Consider the bivariate generating function

Ik(u, z) =
∑

m,n

ιmnumzn,

where ιmn is the number of RE∩-expressions with m intersection symbols and
size n. From (1), and using the symbolic method, we can write

Ik(u, z) = (k + 1)z + 2zIk(u, z)2 + uzIk(u, z)2 + zIk(u, z).

Solving this for Ik(u, z), differentiating the result w.r.t. u, and making u = 1,
we obtain an expression for the generating function for the cumulative number
of intersection symbols in all RE∩-expressions of size n:

Ik(z) =
1

18z

√
qk(z) +

(k + 1)z
3
√

qk(z)
+

z − 1
18z

, (10)

where qk(z) = 1 − 2z − (11 + 12k)z2, from which one obtains, using the same
methods,

[zn]Ik(z) ∼ 1
6
√

π

(
(k + 1)

√
ρk

4
√

3 + 3k
√

n
−

4
√

3 + 3k
3
√

ρk n3/2

)

ρ−n
k . (11)

The average number of symbols ∩ in an expression of size n is given by

[zn]Ik(z)
[zn]Rk(z)

.

Using Eqs. (7) and (11), one obtains, asymptotically,

|α|∩ ∼ (k + 1)ρk√
3 + 3k

||α|| −−−−→
k→∞

1
6
||α||. (12)

5.2 Average Size of π

Let Pk(z) denote the generating function for the size of π(α) for expressions
without ∅. From Definition 2 it follows that, given an expression α, an upper
bound, p(α), for the number of elements3 in the set π(α) satisfies:

p(ε) = 0,
p(a) = 1, for a ∈ Σ,

p(α�) = p(α),

p(α + β) = p(α) + p(β),
p(αβ) = p(α) + p(β),

p(α ∩ β) = p(α)p(β).

3 This upper bound corresponds to the case where all unions in π(α) are disjoint.



56 R. Bastos et al.

From this, we directly get

Pk(z) = kz + 4zPk(z)Rk(z) + zPk(z) + zPk(z)2,

from which we obtain the following closed expression

Pk(z) =
1 − z + 2

√
qk(z) −

√
pk(z) + 4(1 − z)

√
qk(z)

6z
, (13)

where
pk(z) = 5 − 10z − (43 + 84k)z2. (14)

One now needs to determine the dominant singularity of Pk(z) which can
either be a root of qk(z) or a root of rk(z) = pk(z)+4(1− z)

√
qk(z). We need to

know which of the two expressions rk(z) or qk(z) has the smallest positive zero.
Because this is not trivial (note that one needs to decide this for all k), one will
do it indirectly using the method expounded in the following paragraphs.

Observing that rk(0) = 9 is positive and

rk(ρk) =
12

(
13 − 14k − 24k2 + (8k − 4)

√
3 + 3k

)

(11 + 12k)2
< 0,

by Bolzano theorem, rk(z) must have a positive zero smaller than ρk. This
conclusion could be achieved, directly, from the fact that the absolute value of the
negative zero of qk(z) is smaller than its positive zero, and thus, by Pringsheim
theorem [13], another smaller positive singularity of Pk(z) necessarily exists that
can only be due to rk(z). Letting

ρ̄k =
−1 − 2

√
3 + 3k

11 + 12k
,

and observing that

rk(ρ̄k) = −12
(−13 + 14k + 24k2 + (8k − 4)

√
3 + 3k

)

(11 + 12k)2
< 0,

one concludes that rk(z) has necessarily two real zeros in its domain, [ρ̄k, ρk].
Analogously, sk(z) = pk(z)− 4(1− z)

√
qk(z) has also two real zeros in the same

interval, and since rk(z)sk(z) is a fourth degree polynomial, it follows that rk(z)
has exactly two zeros, ηk and η′

k, which are real. Since sk(0) = 1 < rk(0) = 9,
and rk(x) = sk(x) only at the end points of [ρ̄k, ρk] it follows that sk(x) < rk(x)
in ]ρ̄k, ρk[. Considering the four real zeros of the polynomial rk(z)sk(z), given
what we just said, we conclude that the two more distant zeros from the origin
are the roots of rk(z). In fact, we can obtain an explicit expression for the zeros
of rk(z)sk(z) by noticing that

pk(z) ± 4(1 − z)
√

qk(z) =
(
1 − z ± 2

√
qk(z)

)2

− 36kz2

=
(
1 − z ± 2

√
qk(z) − 6

√
kz

)(
1 − z ± 2

√
qk(z) + 6

√
kz

)
,
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and thus, solving the equations resulting of nulling those factors, we obtain the
four zeros of rk(z)sk(z):

ηk =
4
√

2k + 1 + 2
√

k − 1
28k + 4

√
k + 15

, η′
k = −4

√
2k + 1 + 2

√
k + 1

28k − 4
√

k + 15
,

η′′
k =

4
√

2k + 1 − 2
√

k − 1
28k − 4

√
k + 15

, η′′′
k = −4

√
2k + 1 − 2

√
k + 1

28k + 4
√

k + 15
. (15)

It is possible to verify that ηk and η′
k are the roots of rk(z) and the other two

the roots from sk(z). Therefore, one has

rk(z)sk(z) = (7056k2 + 7416k + 2025)(z − ηk)(z − η′
k)(z − η′′

k )(z − η′′′
k ). (16)

From (13) one has

6zPk(z) = 1 − z −
√

rk(z) + 2
√

qk(z), (17)

and we split the study of the coefficients of the series of Pk(z) into the study of
the coefficients of 1 − z − √

rk(z) and of 2
√

qk(z). For the first one, we use that

rk(z) =
7056k2 + 7416k + 2025

sk(z)
ηk(η′

k − z)(η′′
k − z)(η′′′

k − z)
(

1 − z

ηk

)

,

and the fact that given a complex function f , defined in a neighbourhood of η
such that limz→η f(z) = a, one has, for all r ∈ R, f(z)(1−z/η)r = a(1−z/η)r +
o((1 − z/η)r), together with Proposition 18, to obtain

[zn]
(
1 − z −

√
rk(z)

)
∼ λkη−n

k n− 3
2 ,

where

λk =
(

(7056k2 + 7416k + 2025)(η′
k − ηk)(η′′

k − ηk)(η′′′
k − ηk)ηk

2πsk(ηk)

) 1
2

. (18)

For the last summand one has, similarly,

2
√

qk(z) = 4 4
√

3 + 3k ρ
1
2
k (ρk − ρ̄k)

1
2 (1 − z/ρk)

1
2 + o

(
(1 − z/ρk)

1
2

)
,

from which it follows, [zn]2
√

qk(z) ∼ −μkρ−n
k n− 3

2 , where

μk = 2π− 1
2 ρ

1
2
k

4
√

3 + 3k. (19)

Summing up, we get that

[zn]Pk(z) ∼ 1
6

(
λkη

−(n+1)
k − μkρ

−(n+1)
k

)
n− 3

2 . (20)
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In order to see what this result entails for the average case when compared
with the worst case result, expressed in Proposition 5, attend to the following.

(
[zn]Pk(z)
[zn]Rk(z)

) 1
n

∼
(

1
6λkη

−(n+1)
k n− 3

2

ckρ
−n− 1

2
k (n + 1)− 3

2

) 1
n

−−−−→
n→∞

ρk

ηk
.

Setting γk = ρk

ηk
, this means that, on average,

|π(α)| ∼ γ
||α||
k .

One has γ2 ∼ 1.01655, γ10 ∼ 1.04137, γ100 ∼ 1.05294, and

lim
k→∞

γk =
7
√

3
6
√

2 + 3
∼ 1.05564.

Proposition 19. For large values of k and n an upper bound for the average
number of states of Apd is (1.056 + o(1))n.

Considering the estimates given in (9) and (12), the worst-case upper bound
2|α|Σ−|α|∩−1 from Proposition 5 leads to an upper bound for the average case
roughly of 3

√
2

||α||
, for α large enough. As 3

√
2 ∼ 1.25992, the result just obtained

shows that the upper bound for the average complexity is significantly smaller
than the one for the worst case.

6 Conclusions

The conversion of a regular expression with intersection α to NFA is in the worst-
case 2Ω(||α||) [15,17,18]. This fact leads to the assumption that, although succinct,
these expressions are not useful in practical applications. Here we show that,
asymptotically, an upper bound for the average-state complexity of Apd(α) is
exponential but with a base only slightly above 1. Actually, experimental results
using a uniform distribution suggest that the average-state complexity of Apd(α)
may even be polynomial [3].
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